next up previous
Next: References Up: No Title Previous: Numerical Results

Conclusions

It has been demonstrated that even a simple manoeuvre can exhibit quite a difficult switching structure in the time optimal motion of an industrial robot. The state constraints on the angular velocities play an important role in the time optimal motion as they often become active. The knowledge of the fastest possible motion provides reliable bounds for fast minimum energy motions. Hereby, the stress on the links of the robot can be significantly decreased if an increase in time of about ten percent is accepted. Thus lifetime and reliability of the robot will increase.

The second link of the Manutec r3 robot is the weakest. This is indicated also by several other time optimal movements investigated by the authors where the constraints on become active during most parts of the motions. Thus a better design of robots might be possible if the investigation of optimal trajectories is included in the development phase.

The combination of direct and indirect methods, namely direct collocation and multiple shooting, is an efficient hybrid approach for solving highly complex, nonlinear, real life optimal control problems that amalgamates the benefits of both methods.
Acknowledgement. The authors acknowledge the helpful discussions with Priv.-Doz. Dr. H.J. Pesch and the colleagues from the Numerical Analysis and Optimal Control Group of Prof. R. Bulirsch at the Munich University of Technology and the valuable support by the colleagues from the Robotics Group of Prof. G. Grübel at the Laboratory of Robotics and System Dynamics of the DLR, esp. J. Franke, S. Lewald, and M. Otter.


Oskar von Stryk
Fri Apr 5 21:57:02 MET DST 1996