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Abstract. This contribution deals with the question if and how non-
linearities can improve the stability of bipedal locomotion. In order to
investigate this issue, three nonlinear modifications of a planar point-
mass model are investigated: the classical spring-mass model, a model
with nonlinear leg kinematics and a model with a sophisticated nonlin-
ear muscle model. Already the simple spring-mass model is nonlinear
due to its variable stucture: this basic model will serve as a benchmark.
Augmented with leg-kinematics the passive two segmented leg model in-
corporates geometric non-linearities. By substituting the passive spring
element by muscle-dynamics, the model is extended with physical non-
linearities. The orbital stability of the periodic motion is analysed using
Poincaré-maps at touch down. A parameter study is carried out in order
to reveal differences in performance and stability of periodic motion of
the three models. The influence of the different types of non-linearities
is demonstrated and discussed in detail.
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1 Introduction

In the field of humanoid robots, bipedal locomotion is a big challenge especially
concerning stability of motion, i.e. robustness against perturbations. Nowadays
this complex problem is attacked by sophisticated control strategies, which con-
sume much computational capacity as well as energy. On the other hand, human
beings move well on two legs and thereby seem to spend neither much brain-
power nor much energy. Thus, it seems to be benefical to transfer principles
of human locomotion to two-legged machines. Unfortunately, to a great extent
these basic principles are still unknown and under debate.

However, understanding these fundamental principles will enable to derive
paradigms for design and control, which allow for stable locomotion with minimal
control effort. One of the accepted design paradigms is the elastic leg [1]: this
basic paradigm has mainly been investigated for linear elastic behavior — to
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2 Do Non-linearities Enhance Stability?

what extent non-linearities influence the stability of bipedal locomotion will be
addressed in this paper. For this purpose three different running models will
be investigated: the basic spring-mass model as reference, a more sophisticated
modification with nonlinear leg-kinematics and finally a model incorporating a
nonlinear muscle model (cf. fig. 1).

2 Model

To begin with, the general framework of the considered model is outlined; later
three particular modifications of this basic model are described in detail. In all
these three models the total inertia of the human body is lumped in its center of
mass. Since lateral motion is not the focus of this consideration, the point mass is
constrained to the sagittal plane, thus undergoing only plane motion. However,
this restriction is not to severe since the presented models could readily be
extended by a lateral degree of freedom and be easily stabilized in this dimension
as suggested by [2]. Since the joint torques as well as the rotational motion of
the body are not considered in this study, the inertia of the legs can be neglected
and they are represented as force elements acting on the center of mass of the
entire body.

Q
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Fig. 1. Three modifications of a simple running model with different level of complexity
and non-linearity: spring-mass model (left), passive two-segmented leg model (middle)
and two-segmented model with muscle actuation (right).

During running, two different phases of motion can be distinguished, during
which the degrees of freedom vary — from a mathematical point of view this
implies that the equations of motion change. Therefore the system has a variable
structure and thus is referred to as a hybrid dynamical system. The phases of
motion are

— Flight as free ballistic motion in the gravitational field of the earth where
the leg angle is fixed, i.e. ¢y = const. This phase is conveniently described
by the energy theorem and will not be considered in detail.

— Stance as bouncing and tilting over a fixed point O (see fig. 2) where the
foot touches the ground. During this phase, the motion of the point of mass
depends on the current leg force, which in general is a nonlinear function of
the state variables (i.e. position, velocity) as well as of time.
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Do Non-linearities Enhance Stability? 3

Fig. 2. Stance phase dynamics of the point mass described in polar coordinates (left),
phase switching at predefined events (right).

The transition between these phases is controlled by the following conditions:

— Flight — Stance: the flight phase is terminated when the foot touches the
ground ("touch down”), i.e. if during the ballistic motion the point mass
reaches a certain height h = rg cos ().

— Stance — Flight: since the contact between foot and ground is unilateral
(i.e. may only transmit pressure forces and no tensile forces), the transition
from stance to flight occurs for vanishing leg force Fio, = 0 ("lift off”).

For convenience, the equations of motion during stance are defined in polar
coordinates. In dimensionless form they read

p" = p@? + Kfieg (p 0/, T) — YOS (1)
py" = =2p"¢" +ysingp, (2)

where p denotes dimensionless leg length, ¢ leg angle, fi., dimensionless leg force,
T = 32 dimensionless time and () differentation with respect to dimensionless

o [ indicates the ratio between poten-
Uom

— 9ro
- 2
Yo

time. The dimensionless parameter kK =
tial energy storable in the leg and initial touchdown kinetic energy while ~
expresses the ratio of gravitational and kinetic energy.

2.1 Spring-Mass Model

The simplest model considered here is the spring-mass model — also known as
spring loaded inverted pendulum — with a linear-elastic spring representing the
effect of the leg. This simple model already predicts the global behavior (ground
reaction force for instance) astonishingly well: a detailed description of the model
and discussion of the results can be found in [3]. The associated dimensionless
leg force is defined by the linear relation

fleg:]-_p' (3)

However, the behavior of the overall model is nonlinear due to its hybrid char-
acter stemming from the switching between stance and flight phase. A possible
nonlinear extension of the model is to modify the leg force according to

fleg = (1 - p)u . (4)
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4 Do Non-linearities Enhance Stability?

Since this force law does not allow for an easy and obvious biologically moti-
vated choice of the unknown exponent v, it was not investigated. Instead the
following model was considered, incorporating nonlinearities stemming from a
more detailed modeling of human leg kinematics.

2.2 Passive Two-segmented Leg Model

The first step towards a more realistic model, capturing human physiology, is the
consideration of leg-kinematics. For this purpose the human leg is represented
by two massless segments of equal dimensionless length s. The segments are
connected by a revolute joint and a linear-elastic torque-spring (torquefree at ) =
o). Since there is no actuation and only a passive force element is implemented,
this model is referred to as a passive one.

Due to the nonlinear relation

1) = arccos (1 - 512p> (5)

between the compressed length p of the leg and the knee angle 1 the leg force
for this model reads

t
Zsin g (p)

where the abbreviation ¢t = (¢ — 1) for the dimensionless joint torque has been
used.

In figure 3 this force law is depicted for relative leg compressions between
0 and 25 %. In the usual operating range the passive two-segmented leg shows
a degressive force-compression curve. The same characteristic can be reached
with the nonlinear extension of the spring-mass model described in section 2.1
by using 0 < v < 1 in equation (4). A detailed description and analysis of the
passive two-segmented leg can be found in [4]. So far, merely passive systems
were considered in order to investigate the influence of kinematics.

fleg = P (6)

2.3 Two-segmented Leg with Activated Muscle

Real world systems in general incorporate dissipation; moreover, human muscles
are far from being passive elements. Hence it is obvious that a more realistic
model must account for the action of muscles, including the dynamical behavior
of the muscle. In order to keep the model simple, merely one virtual muscle-
tendon-complex with the effect of the thigh and shank muscular system is con-
sidered. The pathway of the muscle is not modeled in detail but the force fi,ic
produced by it acts via an effective leverarm d as joint torque t given by

t = dfmtc . (7)

This approach is well established in biomechanics. The muscle-tendon-complex
consists of a serial arrangement of an elastic element (index ee) and an activated
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Do Non-linearities Enhance Stability? 5

fleg

Fig. 3. Absolute value of dimensionless leg force against dimensionless leg compression
of the passive two-segmented leg model with linear-elastic rotational spring.

contractile element (ce). The elastic element is assumed to have a quadratic
force-strain relationship

fee = Ege (8)

and the force of the activated contractile element is assumed to depend on its
actual strain €. and strain rate €. according to

fce = athf(Ece)f(éce) . (9>

Here act is the activation and f is a dimensionless reference force. The strain
gce Of the contractile element is an additional state variable. The dimensionless
activation act € [0, 1] represents the state of the muscle: this is another additional
state variable, and behaves like the response of an ideal lowpass to a stimulation
stim. The stimulation is given by the control loop, which is positiv force feedback
and considers signal delays 7geiqy. Thus, the entire dynamics of stimulation and
activation reads

dact
T— t = sti 10
o + ac stim (10)

stim = stimo + afmic (T — Tdelay) - (11)

Finally, the resulting dimensionless muscle force f,,:. is computed from the equi-
librium equation

fmtc:fce:fee~ (12)

By muscle dynamics, three further non-linearities are added to the model: force-
strain relation, force-strain rate relation and clipping of activation. In the con-
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6 Do Non-linearities Enhance Stability?
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Fig. 4. Non-linear force strain-rate dependency of the contractile element. For fast
contraction (left), force tends to zero, for fast extension, force tends assymptotically to
the value of 1.5 (right).

sidered operating space primarily the nonlinearity of the force-strain-rate depen-
dency (see figure 4) has an effect. The complete model is described in detail in
[5], where also a biological motivation can be found.

3 Results and Discussion

In order to reveal the effects of different non-linearities, parameter studies are
performed for the three proposed running models. The dimensionless notation
allows for the identification of the independent parameters. Equations (1) and
(2) contain the parameters x and 7, together with the fixed leg angle during flight
o there are in total three parameters to investigate. Since the three considered
models have different reference forces F , their k differs. Thus, for the sake of
comparability, the results of the different models are rescaled to metric quantities
with units: instead of the dimensionless quantities (k, 7, o) the three parameters
(vo, m, ¢p) are varied. The values of the remaining parameters are chosen in order
to reasonably model an average adult male human being.

In order to generate results, the differential equations (1) and (2) are inte-
grated numerically, starting from the state of touch down with a given initial
speed vy and being continued for a defined time span. Then, Poincaré-maps of
the computed data at the state of touch down are used to decide whether the
motion is described by a periodical orbit. The state of touch down is defined on
position level, hence only the velocity vector (i.e. value and direction) may be
subject to change and has to be investigated. This vector characterises the state
of the system completely.

Variations of the body mass did not show any particular impact on the
behavior: therefore in figure 5 only the parameters vy and ¢ are considered
and shown on the horizontal axes. Figures 5(a), 5(c) and 5(e) show the velocity
direction é7p at touch down in steady state, figures 5(b), 5(d) and 5(f) the
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Do Non-linearities Enhance Stability? 7

corresponding velocity value v p for the respective running model. If there is no
stable periodic solution — meaning that the motion sooner or later either results
in stumbling or backdropping — the values are set to érp = 0 and Trp = 0: in
such cases stable running motion is not possible.

The total energy Ey,; of each system consists of kinetic energy Fy;n, gravi-
tational potential energy Fy,., and spring potential energy Fqpring, i.e.

Eiot (Pa ®, Pla 90/) = Ekin (P/a S"/) + FEgrav (Pa ‘P) + Fspring (Pa ‘P) . (13)

In the case of energy conservation (model 2.1 and 2.2) this energy is constant:

Eior (py 0,0, ") = const . (14)

Touch down is defined at position level (i.e. prp = 1, orp = o), so equation
(14) yields
Ekin (P7p: ¥rp) = const , (15)
which means
vrp = Vg . (16)
So stable running solutions of conservative systems shape an incline in the vy —
@Yo — UTp Space.

Comparing the passive two segmented model to the spring-mass model (fig-
ure 5(b)) reveals that the two-segmented leg kinematics enlarges the area of
stable running solutions (figure 5(d)) at least by a factor of two. Apart from
this, these two passive (i.e. conservative) models yield results that are qualita-
tively very similar.

In contrast to this, the activated muscle changes the characteristics of the
third model significantly. The muscle is able to accelerate and decelerate the
motion of the point mass. Solutions with small initial velocities no longer lead
to tumbling, but are accelerated towards a periodic solution. On the other hand
there are no stable solutions with velocities higher than ca. 7.5 T. Extended pa-
rameter studies revealed that this limit could not be moved to higher velocities
by changing the parameters of the activation model. Figure 5(f) shows solutions
next to periodic orbits after simulation of 100 s, so the model is able to run for
quite a long time without any intelligent controller just with the simple positiv
force feedback activated muscle model. As depicted in figure 4 the muscle force
is increased for excentric contraction (é.. > 0) and decreased for concentric con-
traction (€. < 0). First, as a matter of principle deceleration of the point mass
in leg direction is favored compared to acceleration. In order to solve this issue
the activation of the muscle has to compensate the unsymmetrical force strain-
rate relation by smaller values during leg shortening and bigger values during
leg lengthening. The sufficient condition for stable period-1 orbits is symme-
try between touch down and lift off concerning the leg angle ¢ (prp = —o,
pro = o, p(po) = p(=po), p' (vo) = —p' (—=¢0), ¥’ (v0) = ¢4 (—¢0)). If the
muscle force and thereby the leg force can not act on the state variables to meet
these conditions, there will be a continuous shift of energy towards vertical or
horizontal velocity components, which leads to failure. To avoid this energy shift,
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(a) Direction of the steady-state touch
down velocity vector of the spring-mass
model.
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(c) Direction of the steady-state touch
down velocity vector of the passive two-
segmented leg model.
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(e) Direction of the steady-state touch
down velocity vector of the two-
segmented leg model with muscle.
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(b) Value of the steady-state touch
down velocity vector of the spring-mass
model.
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(d) Value of the steady-state touch
down velocity vector of the passive two-
segmented leg model.
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(f) Value of the steady-state touch down
velocity vector of the two-segmented leg
model with muscle.

Fig. 5. Direction (left) and value (right) of the steady-state touch down velocity vector
of the three different running models against initial velocity and touch down leg angle.
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Do Non-linearities Enhance Stability? 9

parameters of activation dynamics have to be fine tuned — for instance by an
optimization tool — or adapted during action by a feedback controller.

As results have shown even the spring-mass model with a fixed leg angle
during flight can asymptotically reach stable periodic solutions. The reason for
the asymptotic stability of this conservative system is seen in the variable struc-
ture due to intermittent contact, which gives the piecewise holonomic system an
overall non-holonomic character [7]. Furthermore it has been shown that non-
linearities introduced by leg kinematics improve the stability of the basic model
by enlarging the operating range of stable running. However, the break of origin
symmetry in leg force — as caused by the force strain-rate relation introduced by
muscle dynamics — has a rather detrimental effect on stability.

Motivated by the promising results and open questions of the active muscle
model, future work will comprise more sophisticated control strategies, inspired
by biology and medicine. Moreover, apart from the stability of the periodic
motion the robustness of the models against single perturbations (i.e. obstacles)
should be investigated. Beyond this, further research has to be done to investigate
the influence of non-linearities on the stability of walking. In this context, refined
models should be used since even simple experimental considerations indicate
that foot and lower leg may be an important factor in understanding walking
motion.
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