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Abstract. The locomotion of quadruped and humanoid robots shares some characteris-
tics with the one of animals and humans: a kinematic tree structure and a free-floating base,
switches in the model due to different contact situations and a high number of degrees of free-
dom consisting of many links and many actuated joints. One main difference is in actuation:
while robots commonly are driven by (at most) one motor for each joint, animals and humans
usually use much more than one muscle for each joint. Although a single muscle may also be
connected to several joints, the tree-like structure of the multibody system may be preserved.
This enables the use of efficient, recursive dynamics modeling methods exploiting tree structure
which have already been successfully developed for legged robots .

Optimization techniques for exploiting redundancy in dynamic motions are presented. Biome-
chanical systems inhibit two levels of redundancy. First, the motion (e.g. point-to-point) of a
whole limb or body can be realized by many different joint trajectories. This is common for
robots with legs and arms as well as for animals and humans. Second, the joint torques (and
as a result the joint motions) can be generated by different forces of the individual muscles in-
volved in the motion of the joint. Several optimization hypotheses exist how the participating
muscles are actuated during joint motion. The backward dynamics simulation and optimization
starts from measured joint trajectories to compute an approximation of the required control
for the observed motion. The forward dynamics simulation and optimization results in a high
dimensional, nonlinear optimal control problem. In principle, it enables the forecast of a free
motion for a validated model but is much more computationally expensive. Compared to cur-
rent approaches reach a computational speed-up by two orders of magnitude using tailored,
efficient dynamics modeling, recursively obtained, explicit sensitivity information of the system
dynamics and efficient direct transcription methods for solving the optimal control problem by
direct collocation (already successfully used for optimization of gaits of legged robots).

Numerical results are presented for walking robots and for the kicking motion of a leg with
two joints and five muscle-tendon-groups.
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1 INTRODUCTION

A strong need for more insight to biomechanics comes from motion analysis or prediction
and prosthesis design, where muscle excitations are of interest but often may cannot be obtained
easily, e.g. only by surgery. In this cases simulation may provide a sensible method to determin
muscle excitation.

Efficient numerical methods for finding optimal gaits for walking robots have successfully
been used and validated in experiments. This paper shall review these methods and show the
extensions made to handle biomechanic systems.

The outline of the paper is as follows: Section2 reviews an efficient dynamics algorithm for
walking robots and explains the extension to biomechanics systems. Optimization techniques
used are presented in Section3. Numerical and experimental results are presented in Section4.
Section5 concludes the paper.

2 DYNAMICS ALGORITHMS

Efficient dynamics algorithms are needed, especially when optimizing high dimensional sys-
tems. Walking robots show some characteristics (Section2.1) which may be exploited in the
dynamics algorithms (Section2.2). Sensitivity information which is useful for optimization
may be obtained from this algorithm at low cost (Section2.3). General extensions needed for
biomechanics systems compared to walking robots are explained in Section2.4, while Section
2.5describes the special modifications in actuation.

2.1 Characteristics of walking robots

Walking robots generally are high dimensional dynamic systems with a large number of
actuated joints and rigid links. Each joint is actuated by at most one motor. Motors are char-
acterized by maximum (short-time or permanent) torque resp. current, angle constraints, gear
ratio and axis inertias. Due to different contact situations the kinematic structure of the robot
changes periodically. When cutting the contacts, the systems show tree structure, i.e. there are
no kinematic loops except with ground contacts.

2.2 Dynamics algorithms for tree structured systems

The basic equations of motion are those for a rigid, multibody system (MBS) experiencing
contact forces

q̈ = M(q)−1
(
Bu− C(q, q̇)− G(q) + Jc(q)T f c

)

0 = gc(q)

whereN equals the number of links in the system,m equals the number of actively controlled
joints,M ∈ RN×N is the square, positive-definite mass-inertia matrix,C ∈ RN contains the
Coriolis and centrifugal forces,G ∈ RN the gravitational forces, andu(t) ∈ Rm are the control
input functions which are mapped with the constant matrixB ∈ RN×m to the actively controlled
joints. The ground contact constraintsgc ∈ Rnc represent holonomic constraints on the system
from which the constraint Jacobian may be obtainedJc =

∂gc

∂q ∈ Rnc×N , while f c ∈ Rnc is the
ground constraint force.q, q̇, andq̈ ∈ R are the generalized position, velocity and acceleration
vectors respectively.

These equations may be established with several algorithms. We use articulated body algo-
rithm (ABA) due to its numerous advantages over other methods. ABA is a recursive numerical
algorithm of order N (with N the number of links in the MBS). It is tailored to tree structured,
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fully three dimensional systems and shows a high flexibility in exchange of parts of the model
(kinematic and kinetic data, actuation, contact situations). ABA may be formulated analytically
in operator formulation, which due to the special stacked structure of the operators involved
numerically may be realized by recursive calculations in three sweeps from base to tip and
vice versa [7, 23]. Additional sweeps may be added to handle contact forces and sensitivity
information.

The main idea of the algorithm lies in the fact that the mass matrix may be inverted explicitly
using a factorization of the mass matrix:

M = (I −KΘH)T D(I + KΘH),

M−1 = (I −KΨH)D−1(I + KΨH)T ,

where the occurring operators have physical interpretations [17]. A review of all the occurring
operators, the recursive algorithm and an approach for an object oriented implementation of the
algorithm tailored to its structure may be found in [13].

2.3 Sensitivities

Information about sensitivities are essential not only in numerical optimization but also non-
linear analysis, parameter identification and calibration. Exact sensitivities are superior to ap-
proximations (e.g. by finite differences) but often not available at reasonable cost. Jain [16]
showed that in the operator formulation sensitivity information may be gained at low cost from
ABA. The resulting iterative algorithms provide sensitivity information. Manipulator Jacobian
may be calculated as well as sensitivities of inverse dynamics∂u and forward dynamics∂q̈
w.r.t. position, velocity and control variables for tree-structured rigid MBS:

∂u = ∇qu∂q +∇q̇u∂q̇ +∇q̈u∂q̈,

∂q̈ = ∇uq̈∂u +∇qq̈∂q +∇q̇q̈∂q̇.

The occurring partial derivatives may be stated in stacked operator notation. The resulting
recursive algorithm is an extension of the forward dynamics recursive algorithm with modified
inboard sweep and two additional sweeps.

2.4 Extensions to biomechanical systems

Biomechanical systems differ from walking robots in several points. One main difference
lies in actuation: While robots are driven by motors, at most one motor for each joint and
each motor attached only to one joint, in biomechanics, joints are actuated by muscles, which
primarily exert linear forces. Muscles may span over several joints and commonly one joint is
connected to several muscles. Nevertheless tree structure may be conserved when muscles are
assumed to have no mass or having its mass rigidly attached to the bones. Knowing the force
insertion points (which depend on the joint angle, cf. muscle paths Section2.5.4), torques may
be calculated and inserted directly into the problem.

Control variables for walking robots are torques or motor currents, for biomechanic system
controls are the muscle activations (cf. Section2.5.3). Once the linear force for each muscle
is determined, each joint’s torque is calculated taking into account the muscle path (Sections
2.5.5, 2.5.4).

In contrast to the robots rigid links, biomechanic structure show high flexibility. Especially
the wobbling masses should be taken into account (but are not considered yet in this paper).
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Contact situation of human feet with the ground are much more complex than rigid robot’s
feet’s contact with the ground. For the example of kicking investigated in Section4.2however,
this is not necessary because there is no contact that has to be modeled at all.

2.5 Muscle modeling

Each muscle shows some characteristic behavior due to its structure. We review the resulting
relations ([24]) and short explanations for them; the structure itself shall not be reviewed here.
The relations give factors to be multiplied with the maximum isometric force.

2.5.1 Force-velocity relation

The active force a muscle may exert depends on its velocity. It is equal to the muscle max-
imum isometric force at zero velocity and equal to zero at the maximum contraction velocity.
The active force is higher than the maximum isometric force if the muscle has excentric veloc-
ity. The overall relation not only depends on the maximum velocity but also on parametersc3, c4

that indicate how fast the force converges to zero with contractive velocity resp. how fast the
force converges to the maximum force with excentric velocity. For fast musclesc3 ∈ [0.25, 1],
while for slow muscles,c3 ∈ [0.1, 0.25]. The overall force-velocity relation is given by:

fFV

(
vM

)
=





1− vM

vM
max

1+ vM

vM
maxc3

, vM ≤ 0

1−1.33 vM

vM
maxc4

1− vM

vM
maxc4

, vM > 0.

Figure1 shows two examples of the force-velocity relation for a fast and a slow muscle.
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Figure 1: Force-velocity relation for a slow (c3 = 0.1, c4 = 0.02; left) and a fast (c3 = 1.0, c4 = 0.1; right)
muscle.

2.5.2 Tension-length relation

Muscle forces result from biochemical structures that grip into each other an thereby cause
the movement respective force. It is obvious, that the more overlapping structures exist, the
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Figure 2:Tension-length relation withc1 = 0.017 and
c2 = 0.015.
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Figure 3:Activation dynamics.

higher are the forces that may be established. If the muscle is expanded, less overlapping
area and thus less force exists. If the muscle on the other hand is shortened, the structures
obstruct each other and also less force may be exerted. This is modeled with the following
equations, wherec1 andc2 are parameters for the effect of decrease of forces when expanding
resp. shortening the muscle:

fTL

(
lM

)
=





e
− 1

c1
(1− lM

1.1lM0

)3

, lM ≤ 1.1lM0

e
− 1

c2
( lM

1.1lM0

−1)3

, lM > 1.1lM0

Figure2 gives an example of the relation.

2.5.3 Activation dynamics

Muscles may not exert force instantaneously. Muscle excitationu leads to increased calcium
ion concentrationγ in the muscle which finally results in force exertion. This is modeled by:

γ̇ = b2(b3u− γ)

How the calcium ion concentration relates to the force exerted is given by the following equa-
tion:

fAD (γ(u)) =
(b1γ(u))3

1 + (b1γ(u))3

The overall muscle activation dynamics is shown in Figure3.

2.5.4 Muscle path

The muscle lengths and velocities needed for the relations above may be expressed by joint
angles and joint angular velocity:

lM = l(q1, q2, ...),

vM = v(q1, q2, ..., q̇1, q̇2, ...)
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To calculate the torques that result from the linear muscle forces, the muscle path, i.e. the force
insertion points and force exertion direction (or the resulting lever directly), have to be modeled.
Anyway the resulting lever depends on the joint angles only (the first indexi indicates the
number of the muscle or muscle group, the second indexj the number of the joint, the muscle
has effects on; not all combinations ofi, j are needed):

di,j = di,j(q1, q2, ...).

2.5.5 Total muscle force

With the factors given in the previous section, the total muscle force may be stated as:

F (γ, lM , vM) = F iso
maxfAD(γ)fTL(lM)fFV (vM).

2.5.6 Resulting active torques

The torque in jointj that results from the muscle forces is (with appropriate index setsIj

that indicate with muscles have effect to jointj):

τj,a =
∑
i∈Ij

di,jFi(γi, l
M
i , vM

i ).

2.5.7 Passive torques

In addition to the active torques, passive torques that depend onlM ,vM ,γ (bold letters
indicate the vector of all occurring lengths, velocities, calcium ion concentrations), and the joint
angles and that model passive effects of tendons, ligament and the connective tissue (especially
at the boundaries of the feasible joint angle intervals) have to be considered [12, 32]:

τj,p = τj,p(l
M , vM ,γ, q).

The total torque applied to jointj is τj = τj,a + τj,p Note that for robotic systemsu is the torque
and is equal to the control in the optimal control problem if no detailed motor model is used.
For biomechanic systemsu is the control (i.e. the muscle activations) andτ = (τ1, τ2, ...) are
the torque for the dynamics calculations.

3 OPTIMIZATION TECHNIQUES

3.1 Forward vs. inverse dynamics solution

Simulation of a time dependent behavior of a human movement modeled with the techniques
stated in Section2 not only means numerical integration of a high dimensional ODE system
but also the solution of a static or dynamic optimization problem for the redundant muscle
groups involved. If you consider a sequence of static postures of a movement this results in
a sequence of static optimization problems. Their solution however only for slow movements
give approximations of acceptable quality to the solution of the dynamic optimization problem
over the whole time horizon of the movement (i.e. to the optimal control problem) [2, 9].
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Inverse dynamics simulation and optimization

Inverse dynamics simulation for a given, e.g. measured movement calculates the muscle activa-
tions of the muscles involved under the assumption of certain criteria for solving the redundancy
problem. By this approach practically only given movements may be analyzed; new movements
may not be calculated and goal oriented movements (e.g. reaching certain joint angles) may not
at all or may only very limitedly be optimized, e.g. [5].

Approaches to extend inverse dynamics simulation to the optimization of human movements
rely on very specialized assumptions (like min/max criteria) to the objective function for solving
the redundancy problem of the muscles and use a low dimensional parameterization of the free
parameter space to efficiently solve the resulting optimization problem numerically [21, 22].

For slow movements dynamic properties of wobbling masses have no effect to the quality of
the solution and only for slow movements special min/max-criteria for solving the redundancy
problem of the human musculoskeletal system on muscle-tendon-level may be justified. The
overall forces and torques at one joint then are distributed to the muscles according to different
parameters of the muscles. But if faster movements shall be investigated other optimality criteria
have to be used.

From the biomechanic point of view not only faster movements but also other optimality
criteria are of interest. By now there are no methods to solve these problems with inverse dy-
namics simulation satisfactorily. First approaches to the efficient treatment of loops of parallel
muscles, may be found in [18]. Inverse dynamics however here also is not solved for any gen-
eral optimality criterion. In a two-level algorithm first the joint torques and then the muscle
forces are calculated.

Forward dynamics simulation and optimization

With forward dynamics simulation, in contrast, analysis of given movements as well as the
calculation and optimization of free movements is possible. Starting with the muscle activations
(that are to be determined) forward dynamics simulation calculates the resulting movement. By
forward dynamics simulation it is possible to analyze movements of parts of the human body or
the whole body. This leads to a high dimensional nonlinear optimal control problem.

One advantage of analyzing human movements with forward dynamics simulation is that
differences of measured and calculated movements may be integrated into the optimality crite-
rion which allows compensation of measurement errors (e.g. [27]), while with inverse dynamics
simulation small measurement errors may result in large errors of the muscle forces.

3.2 Common approaches to forward dynamics optimization

Optimization using forwards dynamics simulation up to now numerically most often is
treated by methods that are not optimally tailored to the problem’s structure. Most methods
transform the optimal control problem into a finite-dimensional, constrained, nonlinear opti-
mization problem (NLP) by parameterization of the controls (direct shooting [31]). The result-
ing NLP is solved using sequential quadratic programming methods.

For numerical calculation of the gradients of the objective function and constraints w.r.t.
the optimized parameters the sensitivity matrix of the solution of the system of differential
equations w.r.t. the optimized parameters has to be computed. For human movements this
is usually done by external numerical differentiation with differences approximation which is
a numerical quite expensive approach [19, 20, 28] because the differential equations of the
system have to be integrated numerically at least as often as grid points in the discretization of
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the controls exist. This leads to overall very high computing times for movements with a higher
number of muscle groups.

For example the computing times for human jumping with a leg model with 9 muscle groups
and three joints [27, 6] have been reported to be in the region of days on a workstation ([25]).
For a three-dimensional model of the whole body with 54 muscle groups computing times on
workstations in the region of months have also been reported ([1]).

In [3] computing times are compared when using MIMD parallel computers and vector par-
allel computers. The method from [20] is used for a 14 dof model with 46 muscle-tendon
groups. Computing times were up to three month on a normal computer (SGI Iris 4D25), 77 h
on a vector parallel computer and 88 h on a MIMD parallel computer.

The problem investigated in Section4.2with 2 joints and 5 muscle groups required comput-
ing time in the region of hours on 1996’s workstations [26].

3.3 Direct collocation

The direct collocation method DIRCOL ([30]) is used to solve the resulting optimal control
problems. States and controls are approximated by piece cubic resp. linear polynomials on
a time discretization grid which can be refined successively. The differential equations and
nonlinear implicit and boundary conditions are discretized this way to a nonlinear problem with
the piecewise coefficients as variables. The resulting NLP is solved using efficient sequential
quadratic programming method SNOPT ([8]), which exploits sparsity that is a result of the
special structure of the discretization.

3.4 Use of sensitivity information

The sequential quadratic programming method SNOPT does not need user defined derivative
information, but may also compute derivatives by difference approximation. However, exact
derivatives are useful. First experiments comparing results with SNOPT’s derivatives and exact
sensitivities gained from the dynamics algorithm showed slight improvements ([14, 15]).

4 NUMERICAL AND EXPERIMENTAL RESULTS

In this section we present numerical and experimental results for walking robots and a biome-
chanic systems. All optimization calculations have been performed with the method of Section
3.3. DIRCOL. Articulated body algorithm was used for dynamics calculations, except for the
biomechanic example, where analytic equations have been implemented directly.

4.1 Robotics: Walking robots

4.1.1 Four legged robot

A full three dimensional models of Sony’s four legged robot AIBO ERS-210(A) (see Figure
4) has been optimized ([29]). The robot’s four legs consist of three joints each; the main body
has been modeled to be rigid. Therefore, the optimal control problem consists of 6 states for
the virtual 6-dof-joint for the robot’s torso’s position and orientation, 12 joint angles and 18
derivatives of those position and angle coordinates due to the transformation of the differential
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Figure 4:The four-legged Sony robot (left) and the kinematical structure of one leg (right).

equation to a system of first order. The optimal control problem is stated in the following form:

minJ (q, q̇,u, tf ) subject to minimize the merit functionJ subject to

Mq̈ = Bu− C (q, q̇)− G (q) + JT
c f c, system of MBS ODE,

gc (q) = 0 contact algebraic conditions,

b (q(t0),u(t0), q(tf ), u(tf ), t0, tf ) = 0 boundary conditions,

n(q, u) ≥ 0 nonlinear implicit conditions,

qmin ≤ q ≤ qmax, umin ≤ u ≤ umax box constraints on states and controls.

Note that the optimal control problem in this notation contains the differential algebraic
equation of multibody system differential equations and contact algebraic equations. However,
when solving the optimal control problem, this system of differential algebraic equations is re-
placed by the reduced dynamics equations (ordinary differential equations of reduced size that,
involving the inverse kinematics of the robot’s legs, have the same solution like the differential
algebraic equations), see [10].

Possible merit functions are for example time, energy or combinations of both. Boundary
conditions contain conditions for

• symmetry resp. anti-symmetry of states at boundaries (as only a half stride is optimized),

• foot placement, i.e. conditions that force the feet to be placed on desired positions (which
may depend on parameters and therefore are also subject to the optimization),

• contact forces at the end of the stance phase, that allow the foot to lift off.

Nonlinear implicit conditions are:

• Hips of legs in contact with the ground must stay within maximum radius of the leg,
so that the inverse kinematics solution required for reduced dynamics has a well-defined
solution.
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Figure 5:Four scenes from an animation of a computed trot gait.

• The swing feet must move above a certain height relative to the ground, for example a
sine curve. This increases stability by avoiding contact with the ground resulting from
deflexions of bodies and joints, and which would lead to stumbling of the robot.

• Slipping is avoided by limiting horizontal contact forces relative to vertical contact forces.

• Vertical contact forces must be positive, i.e. the robot may only push to ground but may
not pull from ground.

• The next implicit conditions to be introduced to the problem are detailed motor charac-
teristics. By now box constraints for minimal and maximal values of angular velocities
and torques give a rough model of the motor.

Note that stability is not enforced explicitly, because it is not that essential for four legged robot
and may be checked by one of the criteria given in [11]. More details on each of the constraints
may be found in [4], where the constraints are stated for a humanoid robot.

Kinematic and dynamic data has been provided by SONY. Motor data has not been pro-
vided but had to be tuned iteratively by implementing the optimized gaits to the real robot and
measuring differences in desired and realized joint angle trajectories.

Finally, parameters have been found that result in optimal gaits which may be implemented
to the real system and show the behavior expected from simulations. Figure6 show the joint
angle trajectories calculated and measured with the 2nd hip motor not yet tuned; Figure5 gives
some postures of AIBO from an optimized trajectory.

4.1.2 Biped robot

Fig. 7 displays a schematic of a humanoid prototype built in cooperation with a group from
TU Berlin (now TU Munich) [4]. See Figure7 (left) for a picture of the real robot. The
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Figure 6: Numerical and experimental results for Aibo ERS-210(A) robot: The experimentally measured joint
angle trajectories (dotted lines; joint angle [rad] versus time [s]) for the first hip joints and the knee joints match
the computed reference trajectories (solid lines) quite well after considering improved estimates for maximum
torque and velocity constraints. For the second hip joints, the constraints have not yet been adapted resulting in the
depicted difference. The joint trajectories are shown for about two and half strides of the trot gait.

11



Maximilian Stelzer, Oskar von Stryk

personal
computer

board
control
motion

joint
revolute

batteries

he
ig

ht
 8

0 
cm

−5−30 −25 −20 −15 −10 20 25 30 350 5 10 15 40 45 50

�����
�����
�����
�����

���
���
���
���

���
���
���

���
���
���

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

80

75

0 5 10 15 20

M5

M6

M1

M4

M2

M3

M7M8

M9

z

y

z

x

Figure 7:Humanoid Kinematic Structure.

humanoid construction consists of 17 actuated joints:

• two legs each with 6 actuated joints, namely

– a hip with 3 DoF (Degrees of Freedom) rotating about the x-, z- and y-axes,

– a knee with 1 DoF rotating about the y-axis,

– an ankle with 2 DoF rotating about the y- and x-axes,

• a waist with 1 actuated joint rotating about the z-axis,

• two shoulders each with 2 actuated joints rotating about the y- and x-axes.

The head is currently fixed to the body, though it is planned to equip the head with 2 actuated
joints (pan-tilt) and a CCD-camera.
The humanoid dynamic model consists of:

• 6 DoF describing a fictitious 3D rotation and translation joint between the reference free-
floating body (torso) and an inertial reference frame and

• 17 DoF for the existing internal joints.

A total of 23 position and 23 velocity states(q(t), q̇(t)) resulting in 46 ordinary differential
equations describe the system configuration.

q =




q1−3

q4−6

q7−12

q13−46


 =




Euler angles for system orientation
System linear translation vector

System angular and linear velocity vector
Legs, waist and shoulder angles and angle velocities




u =

[
u1−12

u13−17

]
=

[
Applied torques to legs

Applied torque to waist and shoulders joint

]

Trajectories for a full three dimensional model of the robot (with the joints of the upper body
fixed) have been optimized. The optimal control problem is simular to the one stated for the
four-legged robot in Section4.1.1. Experimental results have shown good matching to the
optimized walking trajectories. However, stability even with optimized trajectories is difficult
to handle in experiments ([4]). Figure8 shows a walking sequence of the robot.
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Figure 8:Snapshots of a step sequence.

4.2 Biomechanics: Kicking movement

A time optimal kicking movement has been investigated. Kinematic and kinetic data of the
musculoskeletal system as well as muscle model parameters and measured reference data have
been taken from Sp̈agele ([24, 27]). The model (cf. Figure9) consists of two joints, two rigid
links and five muscle groups.

The problem is formulated as an optimal control problem with 9 states and 5 controls as
follows:

x =




q1

q2

q̇1

q̇2

γ1

γ2

γ3

γ4

γ5




=




hip angle
knee angle
hip velocity

knee velocity
ca2+ concentration muscle 1
ca2+ concentration muscle 2
ca2+ concentration muscle 3
ca2+ concentration muscle 4
ca2+ concentration muscle 5




,u =




u1

u2

u3

u4

u5




=




activation of muscle 1
activation of muscle 2
activation of muscle 3
activation of muscle 4
activation of muscle 5




The kicking movement was optimized to be time optimal, i.e. the merit function is

J = tf .

Compared to the measured movements (and the results of [24, 27], which match the mea-
sured data very well), our results show a shorter time and higher maximum angles. The reason
therefore is, that in [24] the maximum muscle forces were modified to match the optimized time
of the measurement. Obviously our optimal movement is another local minimum. Nevertheless,
the controls (Figure12) show the same characteristics.

Computing time and size of the resulting NLP are shown in table10. The direct shooting
approach used in [24, 27] for 11 grid points required in the region of hours to compute the
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solution ([26]). Comparing the computing time with our approach (Figure10) and considering
how computational speed has progressed since 1996, we still obtain a speed up of two orders of
magnitude.

Figure 9:Kinematic structure of the leg with 5 muscle
groups.

grid points 10 60
nonlinear constraints 81 829
nonlinear variables 129 531
computing time 1.2 s 6.3 s

Figure 10:Size of the resulting NLP and computation
time on a 1700 MHZ+ Athlon XP for two different
numbers of grid points in the discretization.
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Figure 11:Hip (left) and knee (right).

5 CONCLUSIONS AND OUTLOOK

We reviewed efficient numerical multibody systems dynamics algorithms and optimization
techniques that allow solving the forward dynamics optimization in biomechanics two orders
of magnitude faster than present methods.

Future work includes refinements of the model:

• wobbling masses and

• a contact situation of the foot, which shall be modeled by a detailed foot model.
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Figure 12:Results from optimization: Controls (corresponding to EMG) and calcium ions concentrations.
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Further movements of larger parts of the human body or of the complete human body shall be
investigated. Therefore measurements of joint angle trajectories, ground reaction forces and the
anthropometric data of the proband are needed.
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