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Abstract: Optimizing and analyzing human motion
is a very complex task. We here present results for 
the efficient forward dynamics simulation which is 
prior to inverse dynamics simulation in terms of
general merit functions and its flexibility with 
respect to different tasks such as analysis of 
measured human motion or prediction of free goal
oriented human motion. Efficient multibody system
dynamics calculation methods as well as efficient 
numerical optimal control techniques are used and
lead to a forward dynamics optimization approach
being two orders of magnitude more efficient than 
existing approaches. Results are presented for a
kicking motion. Currently, jumping and control of a 
bio-inspired muscle driven humanoid robot are
investigated.

Introduction

Biomechanical systems are very complex due to the
absence of a unique assignment of actuation and
resulting motion: one joint is driven by more than one
muscle (even often more than only two antagonistic
muscles) and there are muscles that span and influence
more than one joint. Furthermore, a certain motion goal
like reaching a certain position may be realized by an 
infinite number of joint motions. The subject of this
paper is how to overcome these two redundancy
problems and calculate muscle activations for measured
or free (goal oriented) human motions efficiently using
general biodynamical human models, where the latter in
fact means prediction of human motion.

Biodynamical Model

The human body is modelled as multibody system in
two or three dimensions including mass, center of mass
and inertia of all limbs, position and orientation of the
joints and boundary constraints for the joint angle range.
This leads to the well-known differential equations of 
motion of general multibody systems:
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where  are the joint angles and velocities,qq,  are the
total torques,  is the mass matrix,  are the
Coriolis and centrifugal forces,  are the
gravitational forces, and  are the contact forces.
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The calcium ion concentration  (which directly
leads to force generation in the muscle) lacks behind
muscle activation u. Differential equations are used to
describe this relation:
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with appropriate parameters  and . The relation
between calcium ion concentration and muscle force is
algebraic. Figure 1 shows the relation between
activation, calcium ion concentration and muscle force
for some example parameter values.
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The muscles are modelled in a Hill-type way; force-
velocity-(FV) and tension-length-(TL)-relations
describe the functional capabilities of the muscles, cf. 
Figure 2. Those relations are given by parameterized
algebraic equations.

Muscle paths are modelled to get the right working
range of the FV- and TL-relation and to get the right
line of action and point of actuation of the muscles.
Properties of tendons and ligaments are taken into
account by passive torques.

Several general merit functions  for distribution of
the total joint torque to the muscle forces are of interest,
e.g. minimization of the sum of all muscle forces, where
each of the forces may be scaled by diameter of the
muscle or by the torque to be applied to the joint, see 
[10]:
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max )/(  (muscles that are attached
to joints where high torque is needed must exert
higher forces),

where  is the muscle force of the i-th muscle,  its 
cross-sectional area,  is the maximum torque
required at the respective joint and N is the number of
muscles. With our approach any general merit function
may be investigated.
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 The models are validated by comparing the
optimization results with data of real human data such
as EMG measurements or joint angle trajectories. Once
having validated the model and having found which
merit function applies in human motion, it is possible to 
predict motions.
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Forward vs. Inverse Dynamics Simulation

The problem to be solved may be stated as: 
minimize a suitable merit subject to the multibody
system and muscle activation system of differential
equations and nonlinear and boundary constraints. Two
generally different approaches exist for solving it: 
inverse and forward dynamics calculations. While
inverse dynamics calculation directly concludes from
the joint motion to the muscle activations by some
specific assumptions on the model only [6], forward
dynamics approaches solve the optimization problem of 
adjusting the muscle activations so that the resulting
motion (here the forward dynamics calculations are 
involved) best fit the given (measured) motion.

More precisely, the target is to find control vectors
 (and thus also state vectors x ) that minimize

some objective function
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which consists of a scalar part (which may involve the
state at final time , all states and the final time) and 
an integral part (which may involve all states and
controls). This objective function is minimized subject
to constraint, which may consist of a system of 
nonlinear ordinary differential equations
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and nonlinear state and control constraints 
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where a special case of the latter are box constraints
(simple lower and upper bounds for the states and 
controls).

Inverse dynamics approaches currently are the most
efficient numerical methods but they have the drawback
that they are directly applicable only to the problem of
analyzing a given motion; forward dynamics approaches
also can handle the problem of optimizing goal oriented
motions (i.e. predicting human motion) for validated
models. The assumption of specific merit functions in

inverse dynamics approaches does not allow
considering general merit function of interest as it is the
case with forward dynamics simulation.

Currently, forward dynamics approaches are based
on control parameterization where only the controls are
discretized; the states are obtained by numerical
integration of the differential equations of motion.
Repeated evaluations are needed to obtain gradients for
optimization which leads to high computational effort.
Our approach is based on discretizing both the controls
and the states and thus solving the differential equations
of motion simultaneously to the optimization [7], which
is more efficient.

Dynamics Algorithms and Optimal Control Techniques

The two main numerical tasks with the forward
dynamics approach are computing of the forward
dynamics and solving the optimal control problem.
For only few degrees of freedom, the systems of 
differential equations of motion may be stated in closed
form. For larger systems, numerical methods are used.
We use the Articulated Body Algorithm (ABA) [1],
which is a recursive algorithm of linear order w.r.t. the
number of joints and shows high modularity for
different components of the model which allows an
efficient object oriented implementation [3]. The
contact case may be handled and gradient information
that may be useful for optimization may be calculated at
low computational cost.

The optimal control problem is solved using the
direct collocation method DIRCOL [8]. The states and 
the controls are discretized by piecewise polynomials
and thus the optimal control problem is transformed into
a nonlinear constrained optimization problem (NLP),
where the parameters to be optimized in the NLP are the
coefficients of the piecewise polynomials of the state
and control approximation. The NLP is solved using
efficient SQP method SNOPT [2]. By this descretization
of both the states and the controls, the system of
differential equations is solved simultaneously to the
optimization. DIRCOL allows treatment of any kind of
constraints and successive grid refinement.

Figure 2: Hill-type muscle characteristics: Force velocity relation (left) and
tension-length-relation (right). Both relations give a factor that is to be
multiplied with the maximum isometric force and the muscle activation to
get the actual muscle force.

Figure 1: Calcium ion concentration
(dotted line) lacks behind muscle
activation (solid line) and directly
leads to force generation (dashed
line).
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Applications

 As a first application of the
method, the kicking motion from [9]
was chosen. The task is to find a
kicking motion, i.e. the motion of the
leg from a given initial posture to a 
final posture in minimum time. The
objective function is thus chosen to
be:

ftJ .
The planar leg model consists of two
joints and five muscle groups, cf.
Figure 3. The resulting optimal
control problem comprises two states 
for each of the joint angles, two states 
for the joint angle velocities and five
states for the calcium ion
concentration in the muscles. The

muscle activations of the five muscle groups are the
controls. The complete state vector is thus given by
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and the control vector is given by
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To make the model perform a kicking motion, the initial
and the final values of the hip and knee angles are
enforced as boundary conditions for the starting time 0t
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The velocity on the knee angle is constrained to zero to 
avoid to high extension of the knee. Inequality
constraints are imposed to the states and controls to
model geometric constraints and the box constraints on
the activation rates and calcium ion concentrations:
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As a starting solution, linear interpolation of initial and
final values are used if known and 0 otherwise. More
details may be found in [7].
Discretization of the states and controls on a grid of 60
grid points leads to a NLP with 531 variables and 829
nonlinear constraints which is solved in about 6 sec on a 
1700 MHz+ Athlon computer, which is two orders of
magnitudes faster than current methods for forward
dynamics optimization for exactly the same problem.
The resulting joint motions match those observed in real 
human kicking very well (cf. Figure 4). The activations
may be found in Figure 5. Although there is no
measurement data available, the activations seem
reasonable. Consider e.g. muscle group 4 (Hamstring
group) which is responsible for flexion of the knee. It is
not activated because the knee mainly is extended.

Figure 4: Joint motion of the hip (left) and the knee
(right). Solid line is obtained from optimization, dashed
line a measurement of real human kicking.

Figure 3: Leg
model [9]
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Conclusions and Outlook

Our approach for forward dynamics simulation and
optimization can reduce the computational effort by two
orders of magnitude. We verified our approach and
validated the model by a simple example. Current work
includes the extension to more complex models such as 
for jumping, where, if human motion shall be predicted,
contact models of the foot are need. Furthermore, the
methods shall be applied to a humanoid robot driven by
artificial muscles [4], where similar problems of
redundancy and questions of optimality arise.
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five muscle groups (time optimal kicking)




