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Abstract—Recent improvements in virtual reality technology
and head-mounted displays have led to a number of novel and
innovative applications in entertainment, education, science and
healthcare. The primary goal in most of these applications is to
give the user a sensation of being part of the virtual reality. This
focus on presence or immersion requires to create a connection
between the user and the virtual environment but also between
the user and his virtual avatar. Synchronizing the body movement
of the user and his avatar can help to improve the feeling
of presence by enhancing the experience of agency and body
ownership over the avatar. A typical example is the combination
of a head-mounted display and a treadmill to create a realistic
walking or running simulation in a virtual environment. In this
scenario, the synchronization of leg movement improves the
feeling of presence and allows to further enhance the virtual
experience, for example by adjusting gait parameters of the
avatar or triggering customized stepping sounds.

This paper presents a robust real-time step detector that
uses the integrated sensors of a state-of-the-art head-mounted
display and allows to recognize the pattern of individual steps.
No additional sensors on the trunk or lower body are required. By
applying a coordinate transformation and straightforward signal
processing, it is possible to discriminate between left and right
steps and detect the current walking speed. This information is
used to animate a virtual avatar by scaling a predefined walking
trajectory and to control the walking speed within a virtual
environment.

Index Terms—Step Detection, Virtual Reality, Head-Mounted
Display, Gaussian Filter

I. INTRODUCTION

Virtual reality (VR) increases user performance via im-
mersion, giving an enhanced sense of “being there” [1], [2].
The feeling of immersion allows the sense of belief that the
user is “present” in the virtual environment [3]. To improve
the immersion when using a head-mounted display (HMD),
it is crucial that the body movements correspond to the
changes in the depicted VR scene [4]. This can be done by
tracking the body movements of the user and synchronizing
the avatar’s humanoid body to improve the feeling of presence
by enhancing the experience of agency and body ownership
over the avatar [5]. By combining a HMD and a treadmill,
realistic walking or running in a virtual environment can be
simulated. A typical application example is a rehabilitation
training, e.g., [6], [7]. Moreover, VR applications are generally

designed to be more interesting and enjoyable than traditional
therapy, thereby encouraging higher numbers of repetitions [8].
Compared to normal treadmill training, a treadmill training in
combination with VR shows a more stimulating experience
which can be increased with real-time feedback [9].

Development of VR systems has already been conducted
during the 1950s and 1960s within NASA and US Air Force
research programs [10]. VR was used for many purposes that
would be dangerous or impractical to do in reality, such as pi-
lot and military training as well as surgical procedure training.
The breakthrough came in the 1990s. Cruz-Neira and Sandin et
al. [11] developed a projection-based VR system called CAVE
(CAVE Automatic Virtual Environment). This immersive VR
facility was designed for exploration of and interaction with
spatially engaging environments. It consists of three rear-
projection screens for walls and a down-projection screen for
the floor. Nowadays, VR can be experienced wearing novel
HMDs, which allows deeper immersion since the display is
mounted directly in front of the eyes. During last years, the
development in VR and HMD technology turned out to play
an increasing role. Among other areas, great progress was
made in improving HMD screen resolutions. One prominent
example is the Oculus Rift1. The Development Kit 1 presented
in 2013 featured a resolution of 1280 × 800 pixels. Devel-
opment Kit 2 introduced in 2014 already provided an high-
definition resolution of 1920 × 1080 pixels. The Consumer
Version 1 released in 2016 has an even higher resolution of
2.160 × 1.200 pixels. Furthermore, other HMDs have been
presented recently, e.g., Sony PlayStation VR2, Samsung Gear
VR3 and HTC Vive4. With systems like Google Cardboard5,
a customary smartphone can be used to experience VR in a
simple and affordable way. Due to the HMD development,
the number of novel and innovative VR applications and
simulations in entertainment, education, science and healthcare
has been increased, e.g., [6], [7], [12], [13]. However, the

1https://www.oculus.com/en-us/rift/
2https://www.playstation.com/en-us/explore/playstation-vr/
3http://www.samsung.com/global/galaxy/wearables/gear-vr/
4https://www.htcvive.com/
5https://www.google.com/get/cardboard/
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(a) Subject walking on the tread-
mill and wearing a HMD.

(b) Avatar in the VR environment with
synchronized steps.

Fig. 1: Combination of a VR environment with a treadmill.

combination of VR with a treadmill and a real-time step
detection is not well explored yet.

In the past years several authors have introduced real-time
step detection in order to support users in various ways. Ying
et al. [14] proposed algorithms using an accelerometer for
automatic step detection that can be used for neurological
rehabilitation research. An accelerometer sensor has to be
fastened on a foot in order to detect whether the foot lifts
off and the heel strikes the ground. Jasiewicza et al. [15]
also introduced different methods for gait detection using
miniature foot-mounted linear accelerometers. In their study
they demonstrated that either linear acceleration or angular
velocity sensors can be used to detect gait events. Yang et al.
[16] presented the development of a wearable accelerometer
system for real-time gait recognition. The wearable motion de-
tector is a single waist-mounted device that is able to measure
trunk accelerations while walking. With an autocorrelation
procedure several gait cycle parameters, such as cadence,
step regularity, stride regularity, and step symmetry can be
estimated in real-time.

These approaches use body-mounted accelerometers which
are fastened not far from the foot or the waist for monitoring
and are capable of gait detection during walking. Encouraged
by these promising results, a new and robust step detector
using only integrated sensors of a HMD is proposed in this
paper. With this step detector, the motion of an avatar can
be synchronized with the actual gait of the user. Thereby, the
person exploring VR would perceive the humanoid avatar body
and movements are more realistic while looking down at the
virtual body. This synchronization greatly supports immersive
VR [4], [5]. The applied experimental setup with a subject on a
treadmill and synchronized avatar gait is depicted in Figure 1.

The rest of this paper is structured as follows. In Section II,
four different algorithms for step detection using the integrated
sensors of a HMD are described. An experimental evaluation
of the presented approaches is given in Section III. A discus-

sion of the results and a conclusion follow in Section IV.

II. APPROACH

In this section, four different approaches for real-time step
detection algorithms using the integrated sensors of an Oculus
Rift Development Kit 2 are presented in detail and explained
on an example dataset of measured sensor data. Manually
marked steps in the example dataset are applied as reference
points. The Development Kit 2 has an integrated inertial
measurement unit with a three-dimensional accelerometer,
gyroscope and magnetometer and a camera-based position
tracker. Integrated sensor fusion and filtering algorithms pro-
vide smooth measurements of linear and rotational position,
velocity and acceleration in space with an update rate of 75Hz.
The virtual environment is modeled by applying the game
engine Unity56.

A. Overview

The sensor measurements are provided in a head-fixed
reference frame (RF) as shown in Figure 2a. The x-axis
points to the right, the y-axis points upwards and the z-axis
is normal to the plane spanned by the other axes and points
backwards. The origin is the center of the head. Before using
the measured values, they have to be transformed to the fixed
world reference frame as shown in Figure 2b. Let q[t] be a
quaternion that represents the head rotation at time step t with
respect to a fixed world RF. The rotation matrix is calculated
using the inverse rotation q[t]−1:

T [t] = Trans(0, 0, 0) · Rot(q[t]−1) · Scale(1, 1, 1).

To get the transformed sensor measurements atrans[t], a
raw data vector araw[t] has to be multiplied with the rotation
matrix, atrans[t] = T [t] · araw[t]. The head-fixed RF is fixed
to the initial position of the user’s head towards the treadmill,
i.e. it is relative to the treadmill. The design of the treadmill

6https://www.unity3d.com/5/

(a) Head-fixed HMD reference
frame [17].

(b) Treadmill-fixed world reference
frame.

Fig. 2: Relation between head-fixed HMD and world-fixed
treadmill reference frames.

https://www.unity3d.com/5/


(a) Acceleration

(b) Velocity

(c) Position

Fig. 3: Measurement signals for walking at 3 km.h−1

constrains the user’s torso to a forward-oriented pose. When
the user rotates or translates the head, the world RF stays
the same. This is beneficial as the world RF always stays
the same relative to the user’s walking direction. In summary,
the transformation of the sensor measurements from the head-
fixed RF to the world RF allows to express them in a RF that
is natural to the user’s body orientation and walking direction.

Four different step detection algorithms have been devel-
oped using linear acceleration, linear and rotational velocity
and linear position measurements, respectively. Figure 3 shows
the different linear measurement signals of the transformed x-
and y-axes for walking at 3 km.h−1. While the acceleration
measurements are quite noisy, the velocity and position mea-

surements are much smoother.

B. Step Detection Algorithm using Acceleration Signals

For each step, a positive peak of the acceleration signal in
the y-axis occurs when the foot is hitting the ground or more
specifically when the heel strikes. Furthermore, this positive
peak in the y-axis appears alternately coincident with a positive
and negative deflection of the acceleration signal in the x-axis.
In most cases, a positive deflection indicates a right step and
a negative deflection implies a left step. This behavior results
from the natural head motion during walking and running.
Figure 4a shows two right steps and one left step where each
heel strike event is manually marked with a cross.

The algorithm applies an adaptive threshold for peak search-
ing and an adaptive side decision. In each time frame, the
rotated acceleration vector is calculated. The transformed
acceleration signal in the y-axis has to be greater than an
adaptive step threshold in order to detect a step. The heel
strike event is defined as the positive peak while the toe off
event is defined as the following local peak. The step threshold
is adapted by calculating the moving average of the 32 most
recent average of the measurement values for toe off and heel
strike events.

When a step is detected, the algorithm checks if the current
step is more likely to be a right or a left step. Therefore, the
acceleration signal in x-axis signal is interpreted. The current
measurement value is compared with the interquartile mean
(IQM) of all detected steps in the current trial. The IQM is
computed discarding the upper 25% and lower 25% of the
measurements and calculating the average of the remaining
values. This approach is quite robust against deviations. Fig-
ure 5 illustrates a flow chart that explains the algorithm in
schematic form.

C. Step Detection Algorithm using Velocity Signals

As the linear velocity is the integral of the linear accel-
eration, the graph of the velocity measurement signal shown
in Figure 4b is much smoother. One can see that the zero-
crossings for the velocity signal in the y-asis roughly coincide
with the heel strikes marked with crosses and the positive

(a) Acceleration (b) Velocity (c) Position

Fig. 4: Measurement signals for three steps of walking at 3 km.h−1 with manually marked step tags “×”. A positive step tag
stands for a right and a negative step tag stands for a left step.
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Fig. 5: Flow chart for acceleration-based step detection.

peaks in the z-axis. The peaks in the y-axis coincide with the
extrema in the x-axis. The general pattern of the linear accel-
eration is repeated in the linear velocity, the base frequencies
of the signals in the y-axis and z-axis are half the frequency
of the signal in the x-axis.

The general concept of the algorithm is signal binarization
using hysteresis in conjunction with a finite state machine.
The flow chart for this algorithm is presented in Figure 6.
The linear velocity is influenced by angular velocity as the
rotational center of the head rotations seldom lies within the
origin of the head-fixed RF. The velocity consists of a linear
and a rotational part, hence v = vlin+vrot which is equivalent
to vlin = v − vrot, where vrot = R · ωraw. The factors
R = antidiag(rx, ry) represent the offset of the rotational
center from the head-fixed RF origin which were found to
be (−0.15, 0.08) on average in the measurements. The entire
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Fig. 6: Flow chart for velocity-based step detection.

calculation is given by[
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Although these constant factors cannot completely eliminate
the effects of head rotation, they do significantly mitigate them.

These rotation-compensated measurements are then trans-
formed into the world RF and fed into buffers with a capacity
of 150 measurements. The buffers separately store x- and y-
axis signals with positive and negative sign, i.e. four buffers
in total. This way, the step detector also works for asymmetric
gaits which may be prevalent in pathological gait.

For each of these buffers, the average and standard deviation
is calculated. The adaptive threshold is calculated for each of
the signals. The positive threshold is the sum of the positive
buffer mean added by one standard deviation, the negative
threshold is the buffer mean subtracted by one standard devi-
ation. These thresholds are used to binarize the signals. If the
current input signal exceeds the upper threshold, the binarized
variable is set to +1 and if it is beneath the lower threshold,
it is set to −1. If none of the previous conditions apply, the
binarized variable is kept at its old value. The binarized signals
are then used to update the state machine shown in Figure 7.
The transition 2-tuple is of the form (X,Y ). Valid transitions
are marked with arrows. In order to assure validity of the
currently detected step phase, the current state of the state
machine is only used, if four consecutive transitions were
valid.

Left Right

Swing1

Swing2

(+1,-1)

(-1,-1)

(-1,+1)

(+1,+1)

Fig. 7: State machine for velocity-based step detection.

D. Step Detection Algorithm using Position Signals

The position signal is the integral of the linear velocity
signal and it shows a much smoother behaviour as illustrated in
Figure 4c. Here, the minima of the signal in the y-axis coincide
with heel strikes and the position in the x-axis indicates
whether it is the left or right heel.

For this algorithm, a simple peak detection algorithm is used
to determine the step state. The algorithm checks, if a local
minimum occurred in the signal in the y-axis. If not, no further
computations are performed. If there is a local minimum, it
is checked whether the last extremum of the x-axis signal
was a maximum or a minimum. If it was a maximum, the
step is classified as a left step otherwise as a right step. The
corresponding flowchart is shown in Figure 8.
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E. Step Detection Algorithm using Gaussian Low-Pass Filter

This algorithms uses a low-pass filtered signal with a
Gaussian window of constant width. The desirable properties
of this filter are the rejection of high-frequency noise and
introduction of a constant delay that can be accounted for.
This filter is applied to the integrated sensor measurements of
the HMD including acceleration, velocity and position.

The first step in this approach is to filter the transformed
measurement signals of linear acceleration and velocity as well
as position with a Gaussian window. The Gaussian window is
computed with

w[n] = e
− 1

2 ( n
σsamples

)2

,

where n ∈ [− l
2 ,

l
2 ] denotes the current sample index in the

window. To compute the filter length l, let σ = 0.1 s and
σsamples = σ

∆T . Let σbreadth represent how wide the window
should be, e.g., σbreadth = 6. Now the filter length can easily be
computed with l = dσbreadth · σsamplese. To apply the Gaussian
window, the scalar product of the raw sensor measurements
and the Gaussian window has to be computed. Thereby, the
filtered sensor measurements are obtained. In a second step, a
local extremum can be determined from the filtered signals
in the x- and y-axes. When either a local minimum or a
local maximum is detected, the distance between these two
extrema is be computed. The next heel strike is predicted
with the average distance. As the filtered sensor measurements
are delayed, the window delay has to be subtracted from
the predicted time of the next heel strike. In a last step, the
decision whether it is a left or right one is done. If the last
observed extremum was a local maximum, the predicted step
is a left step. Otherwise, the predicted step is a right step.
Figure 9 illustrates a flow chart that explains the algorithm in
schematic form.

III. EVALUATION

In order to assess the accuracy of the four presented
approaches, the outputs obtained from the step detectors
and manually labeled events are compared. The correctly
recognized steps are counted and compared with the actual
recognized steps. Two subjects participated in the trials. The
subjects walked on the treadmill at 1 km.h−1, 3 km.h−1,
5 km.h−1 and jogging at 7 km.h−1 while looking straight and
at 3 km.h−1 with intentional head movements. Six trials per

walking test scenario and two trials per jogging test scenario
were performed. The results are presented in Figure 10.

The position-based step detector provided best results at all
walking speeds, even when the subject was looking around,
correctly detecting more than 90% of the steps in most trials.
When the subject was jogging at 7 km.h−1, however, the
position-based step detector shows only poor results. The
Gaussian filtered step detector, while performing acceptably,
did not match the position-based step detector performance
in any of the trials. The accuracy of the worst and best
trial lies between 50% and 98.7%. The acceleration-based
step detector performed similarly to the Gaussian filtered step
detector at 3 km.h−1 and 5 km.h−1 with the accuracy between
47.3% and 92.9%, but worse at the other speeds. The velocity-
based step detector showed mixed results. While jogging it
provided best results with the accuracy of 65%. At the speed
of 1 km.h−1 it was second best with the result of 94.1%. At
all other speeds it performed inferior to the other detectors.

None of the step detector approaches show satisfactory
results when the gait was changed to jogging as the movement
pattern does not fit the detector data model. Therefore, the
developed step detector approaches are not applicable for
jogging movements in the current form. The velocity-based
detector was the only one that did not suffer significantly while
jogging, though it performed on a low level. For all speeds in
walking gait, the position-based step detector performed best.
For jogging the velocity-based step detector performed best.
As different detectors performed best in the different gaits, it
should be considered to detect the current gait and change the
detector type accordingly.

Although many steps are not recognized properly or are
overlooked, the animation synchronization works sufficiently
well in many scenarios. For the synchronization it is not crucial
if some steps are overlooked. When no new steps are detected,
the animation will simply continue to play the step motion. It
is much more significant that false positives are detected in
order to interpolate the animation smoothly. In the case of
false positives, it looks for the user as if he is stumbling.

The main reason for false recognized or overlooked steps is
due to the interdependence between head rotation represented
by angular velocity and the linear sensor measurements. With-
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Fig. 9: Flow chart for Gaussian filtered step detection.
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Fig. 10: Accuracy of the step detection algorithms in various
scenarios. The error bars indicate the accuracy in the best and
worst trials.

out head rotation, the error of all step detector algorithms
is reduced noticeably. Improved versions of the algorithms
should consider the angular velocity. Since the step detector
works very well when looking forward, the it can be used to
synchronize stepping sounds with the heel strikes to further
improve the experience for the user.

IV. CONCLUSION

This research examined the development of four different
algorithms for real-time step detection using the integrated
sensors of a HMD. Based on a brief analysis of the related
work as well as the observed sensor data, it could be ascer-
tained that gait detection is realizable using current widely
becoming available head-mounted sensors. The developed step
detection algorithms can be used for applications in entertain-
ment, education, science and healthcare. Correctly identified
steps can be used to animate and synchronize a virtual avatar
and to integrate other effects like stepping sounds. This further
improves the experience of agency and body ownership over
the avatar while moving in a virtual environment.

The acceleration-based step detection algorithm occasion-
ally detects steps where actually no steps occur, while the
velocity-based step detection algorithm overlooks many steps
especially if the user is looking around. Even though the
Gaussian filtered step detection was designed with regard
to robustness against disturbances, such as head movements,
it does not surpass the accuracy of the position-based step
detection algorithm. Thus, the position-based step detection
algorithm performs best with a median accuracy of over 92%
across all considered test scenarios. As outlined before, the
design of the position-based step detector is very simple and
easy to implement. This also implies a good performance
regarding computation time.

To make the step detection even more robust and reliable,
the interdependence of angular velocity and linear sensor

measurements needs to be considered. Since the velocity-
based algorithm outperformed the position-based algorithm for
the jogging motion, it might be advisable to switch between
different approaches by detecting the current type of gait.

ACKNOWLEDGMENT

The authors would like to thank the involved psychology
students from Technische Universität Darmstadt for the good
collaboration and for providing research results which were
incorporated in the development of the virtual environment.

REFERENCES

[1] C. Cruz-Neira, J. Leigh, M. Papka, C. Barnes, S. M. Cohen, S. Das,
R. Engelmann, R. Hudson, T. Roy, L. Siegel, C. Vasilakis, T. A. DeFanti,
and D. J. Sandin, “Scientists in Wonderland: A Report on Visualization
Applications in the CAVE Virtual Reality Environment,” in Proc. of the
Sym. on Research Frontiers in Virtual Reality, 1993, pp. 59–66.

[2] R. Pausch, D. Proffitt, and G. Williams, “Quantifying Immersion in
Virtual Reality,” in Proc. of the Conf. on Computer Graphics and
Interactive Techniques, 1997, pp. 13–18.

[3] “Immersion and Sense Of Presence,” http://w3.uqo.ca/cyberpsy/en/pres_
en.htm, [Online; last visited on April 26, 2016].

[4] D. A. Bowman and L. F. Hodges, “User Interface Constraints for Immer-
sive Virtual Environment Applications,” Georgia Institute of Technology,
Atlanta, Tech. Rep. 95-26, 1995.

[5] W. Steptoe, A. Steed, and M. Slater, “Human Tails: Ownership and
Control of Extended Humanoid Avatars,” IEEE Trans. on Visualization
and Computer Graphics, vol. 19, no. 4, pp. 583–590, 2013.

[6] B. J. Darter and J. M. Wilken, “Gait Training With Virtual Reality–Based
Real-Time Feedback: Improving Gait Performance Following Trans-
femoral Amputation,” Physical Therapy, vol. 91, no. 9, pp. 1385–1394,
2011.

[7] D. H. Gates, B. J. Darter, J. B. Dingwell, and J. M. Wilken, “Comparison
of Walking Overground and in a Computer Assisted Rehabilitation
Environment (CAREN) in Individuals with and without transtibial
Amputation,” Journal of NeuroEngineering and Rehabilitation, vol. 9,
no. 1, pp. 1–10, 2012.

[8] K. E. Laver, S. George, S. Thomas, J. E. Deutsch, and M. Crotty, “Virtual
Reality for Stroke Rehabilitation,” in Cochrane Database of Systematic
Reviews, 2011, pp. 308–318.

[9] L. H. Sloot, M. M. van der Krogt, and J. Harlaar, “Effects of Adding a
Virtual Reality Environment to Different Modes of Treadmill Walking,”
Gait & Posture, vol. 39, no. 3, pp. 939–945, 2014.

[10] Jää-Aro and Kai-Mikael, “Virtual Reality - State of the Art,” Royal
Institute of Technology, Stockholm, Tech. Rep., 1993.

[11] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-screen
Projection-based Virtual Reality: The Design and Implementation of the
CAVE,” in Proc. of the Conf. on Computer Graphics and Interactive
Techniques, 1993, pp. 135–142.

[12] A. S. Mathur, “Low Cost Virtual Reality for Medical Training,” in Proc.
of the Int. Sym. on Virtual Reality, 2015, pp. 345–346.

[13] C. Donalek, S. G. Djorgovski, A. Cioc, A. Wang, J. Zhang, E. Lawler,
S. Yeh, A. Mahabal, M. Graham, A. Drake, S. Davidoff, J. S. Norris,
and G. Longo, “Immersive and Collaborative Data Visualization using
Virtual Reality Platforms,” in Proc. of the Int. Conf. on Big Data, 2014,
pp. 609–614.

[14] H. Ying, C. Silex, A. Schnitzer, S. Leonhardt, and M. Schiek, “Automatic
Step Detection in the Accelerometer Signal,” in Proc. of the Int.
Workshop on Wearable and Implantable Body Sensor Networks, vol. 13,
no. 1, 2007, pp. 80–85.

[15] J. M. Jasiewicza, J. H. Allumb, J. W. Middletonc, A. Barriskilld,
P. Condiea, B. Purcella, and R. C. T. Lia, “Gait Event Detection using
Linear Accelerometers or Angular Velocity Transducers in able-bodied
and Spinal-Cord Injured Individuals,” vol. 24, no. 4, pp. 502–509, 2006.

[16] C.-C. Yang, Y.-L. Hsu, K.-S. Shih, and J.-M. Lu, “Real-Time Gait
Cycle Parameter Recognition Using a Wearable Accelerometry System,”
Sensors, vol. 11, no. 8, pp. 7314–7326, 2011.

[17] “Building a Sensor for Low Latency VR,” https://www.oculus.com/
en-us/blog/building-a-sensor-for-low-latency-vr/, [Online; last visited
on April 29, 2016].

http://w3.uqo.ca/cyberpsy/en/pres_en.htm
http://w3.uqo.ca/cyberpsy/en/pres_en.htm
https://www.oculus.com/en-us/blog/building-a-sensor-for-low-latency-vr/
https://www.oculus.com/en-us/blog/building-a-sensor-for-low-latency-vr/

	Introduction
	Approach
	Overview
	Step Detection Algorithm using Acceleration Signals
	Step Detection Algorithm using Velocity Signals
	Step Detection Algorithm using Position Signals
	Step Detection Algorithm using Gaussian Low-Pass Filter

	Evaluation
	Conclusion
	References

