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Abstract— We address the problem of robust simultaneous
mapping and localization in degraded visual conditions using
low-cost off-the-shelf radars. Current methods often use high-
end radar sensors or are tightly coupled to specific sensors,
limiting the applicability to new robots. In contrast, we present
a sensor-agnostic processing pipeline based on a novel forward
sensor model to achieve accurate updates of signed distance
function-based maps and robust optimization techniques to
reach robust and accurate pose estimates. Our evaluation
demonstrates accurate mapping and pose estimation in indoor
environments under poor visual conditions and higher accuracy
compared to existing methods on publicly available benchmark
data.

I. INTRODUCTION

To perform missions within unknown, GNSS-denied and
degraded environments, autonomous mobile rescue robots
need to localize themselves and create a map of the en-
vironment using a Simultaneous Localization and Mapping
(SLAM) approach. The ability to create such a map and
locate the robot’s pose in it are a key prerequisite for many
higher-level autonomous functions such as navigation or
exploration.

Current SLAM systems typically strongly depend on accu-
rate visual sensors, e.g. Light Detection and Ranging (lidar)
[1] or cameras [2]. However, these sensors are prone to fail
under visually degraded conditions such as smoke, dust, or
fog, leading to failure in both localization and mapping.
These conditions are common in disaster scenarios, such as
dense smoke in a burning building or dust after a building
collapse. Therefore, being able to localize under visually
degraded conditions is a crucial capability to efficiently
support first responders.

In contrast to lidar and camera, radio detection and ranging
(radar) sensors are mostly unaffected by visually degraded
conditions and therefore well suited for applications in
such environments. However, they typically have an overall
reduced data accuracy and density, which makes localization
and mapping challenging. Current methods [3, 4] often use
high-end sensors or are tightly coupled to specific sensors.

We propose a holistic approach that covers the aspects
of sensor setup, low-level data processing, and SLAM. To

All authors are with the Simulation, Systems Optimization and
Robotics Group, Technical University of Darmstadt, Hochschulstr.
10, 64289 Darmstadt, Germany {torchalla, schnaubelt,
daun, stryk}@sim.tu-darmstadt.de

This work has been co-funded by the LOEWE initiative (Hesse, Germany)
within the emergenCITY center. Research presented in this paper has been
supported in parts by the German Federal Ministry of Education and Re-
search (BMBF) within the subproject “Autonomous Assistance Functions for
Ground Robots” of the collaborative A-DRZ project (grant no. 13N14861).

Fig. 1: The tracked evaluation platform ”Asterix” carrying
the navigation module with rotating radar, IMU and lidar.
The lidar is only used for evaluation purposes.

reach a high sensor coverage, we mount the radar sensor on
an actuated axis. The raw Multiple Input Multiple Output
(MIMO) radar measurements are processed by Fast Fourier
Transformations (FFTs), to reach accurate distance and ve-
locity profiles of the environment. The data is then filtered
by Constant False Alarm Rates (CFARs), to achieve a robust
estimation of 2D range observations, similar to a pointcloud
from lidar sensors, which we use as input for the SLAM sys-
tem. Our SLAM approach builds upon the truncated signed
distance functions (TSDF)-based lidar SLAM approach by
Daun et. al [5] which is based on Cartographer [6], an open-
source SLAM system that implements scan-to-map matching
and loop closure detection. We extend the Cartographer
TSDF approach with a novel forward sensor model to enable
building TSDF maps from radar data and introduce robust
scan matching algorithms to handle sparse, noisy, and outlier-
rich radar range measurements. The key contributions are

• Design of an actuated system for optimal sensor cover-
age

• Novel forward sensor model to generate TSDF from
radar data

• Robust scan matching method for sparse, noisy and
outlier-rich radar range measurements

We evaluate our approach in room-scale indoor environ-
ments, demonstrating accurate mapping and pose estimation.
On publicly available benchmark data, our approach yields
higher accuracy compared to existing methods. Our imple-



mentation and experimental data is publicly available1.

II. RELATED WORK

To support first responders with rescue robots in disaster
scenarios, Kim et al. [7] propose the fusion of Frequency-
Modulated Continuous Waves (FMCW) radar and stereo
infrared (IR) cameras as both sensors operate well in smoke-
filled environments. Their approach however only fuses the
radar range measurements with the IR cameras for a better
depth perception, no pose estimation is performed. O’Toole
et al. [8] presented a novel 3D sensor combining a low-power
laser projector and a rolling-shutter camera that can penetrate
smoke thanks to its energy efficiency.

Mandischer et al. [9] developed a custom 2D radar sen-
sor and SLAM method for localization in heavily dusted
environments using a probabilistic Iterative Correspondence
(pIC) approach combined with a clustering-based radar point
filter.

Lu et al. [10] overcome the sparsity of radar data by
using a conditional Generative Adversarial Networks (GAN)
supervisedly trained using lidar data. The GAN generates
dense patches and grid maps from low-cost off-the-shelf
radar scans, comparable to the ones generated using lidar
scans. Instead of performing scan matching, accurate odom-
etry is used for pose estimation, which will cause a drift over
time.

Kramer et al. [11] created a millimeter-wave radar data set
that is focused on evaluating robotic perception in visually
degraded environments. It includes dense, high-resolution
millimeter-wave radar scans from two FMCW, 3D lidar,
IMU, and highly accurate ground truth data.

Besides small indoor approaches, there is also an increas-
ing number of contributions for large-scale radar SLAM,
especially in the automotive sector due to the robustness
of radar in changing environmental conditions. More recent
work shows the capabilities of radar-based SLAM in large-
scale environments utilizing a static automotive radar sensor
[4]. Keenan Burnett [12] investigated the effect of motion
distortion on radar-based navigation created by spinning
radar sensors.

III. METHOD

Our method for radar-based SLAM in degraded visual
conditions covers three aspects: design of a sensor module
for optimal sensor coverage, processing of raw radar data,
and the robust SLAM approach.

A. Sensor Module

The rotating radar module is equipped with a Texas
Instruments (TI) IWR1443BOOST radar sensor that streams
the raw Analog-to-Digital Converter (ADC) data in real-time
via Ethernet using a TI DCA1000EVM module. The radar
measurements are supplemented for the 2D SLAM method
by an Xsens MTi-G-710 inertial measurement unit (IMU).
For better coverage and more accurate angle estimation, the

1https://github.com/tu-darmstadt-ros-pkg/
cartographer/tree/tsdf_radar-noetic

Fig. 2: Detailed view of the rotating radar module compo-
nents.

radar is continuously rotated at 1Hz by a Robotis Dynamixel
XM430-W210 servo, gigabit Ethernet, and supply voltage are
transmitted via a slip ring. For a direct qualitative comparison
of radar and lidar SLAM methods and future multi-modal
sensor data fusion, the module is equipped with a Hokuyo
UTM-30LX-EW 2D lidar.

B. Radar processing

The quality of the radar data processing in terms of
accuracy and number of detections is crucial for accurate
and robust SLAM. An high-level overview of our pipeline
is provided in Figure 3.

The streaming of the raw data enables the use of more
complex methods and algorithms when compared to the more
limited on-chip processing, and makes fine-tuning of the pro-
cessing chain for SLAM possible. Also, different algorithms
can be compared with one another in a reproducible manner.
We base our implementation on the open-source framework
OpenRadar2 which implements the basic MIMO processing
algorithms. We extend the framework by implementing a
better performing CFAR algorithm and adding several post-
processing methods, as well as optimize the processing chain
to stream and process the raw data in real-time with more
than 60 Hz.

1) Low-level processing: To calculate a detection thresh-
old in range direction, the Cell Averaging Statistic Hofele
(CASH)-CFAR [13] method is applied. Considering the
current velocity, the number of computations can be greatly
reduced by only calculating the thresholds for all points
within a certain velocity around the current platform speed.
After applying a training-based phase compensation for the
receive (RX) channels and removing Doppler-induced phase
shift, the angle is estimated for every detection. A total of
two time-multiplexed transmit (TX) in combination with four
RX antennas are used, resulting in an array of eight virtual
antennas, with an angular resolution of 15°.

2https://github.com/PreSenseRadar/OpenRadar
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Fig. 3: Overview of the raw radar data processing pipeline: The reflected radar chirps are received, mixed with the transmitted
signal, and streamed as raw data to the host. Next, two separate FFTs are applied to get a distance and velocity profile of
the environment. Peaks in these signals correspond to true detections, which are filtered by combining two CFAR thresholds
in range and Doppler direction. Finally, for every filtered detection the angle is estimated, resulting in 2D spacial points,
including velocity, ready for post-processing.

Two Angle of Arrival (AoA) methods were investigated,
Minimum Variance Distortionless Response (MVDR) beam-
forming (also known as Capon beamformer [14]) and a FFT-
based method. Both assume a planar wavefront in their un-
modified formulation, which breaks for near-field detections,
reducing accuracy. For the latter method, however, the phase
error between the virtual antennas arrays was minimized
for detections in near-field by taking the antenna geometry
into account. With that, the FFT-based angle estimation
achieved overall higher accuracy at about five times the speed
when compared to the Capon beamformer. The accuracy was
measured with lidar as a reference and computing the average
distance of all radar detections to the nearest lidar scan points
while moving through different environments.

2) High-level processing: Since radar penetrates certain
objects, this causes multiple consecutive detections in the
range direction. These linear features are removed in the
first post-processing step by only keeping the most intense
point within a cluster of multiple range detections. Clusters
are determined by defining a maximum thickness of objects,
which equals to a maximum distance in the range directions
for objects in the same cluster.

To increase the density of the radar scans, multiple scans
are accumulated and then filtered for outliers. Assuming
a low speed of the platform (about 1 m per second), the
relative motion of two consecutive scans is small in relation
to the sensor resolution and therefore negligible and not
considered. After accumulating n scans, the detections are
clustered by applying a Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [15] on the polar
coordinate representation of the points in 2D-space. All
clusters with a size less than a set number m are considered
as outlier candidates. Assuming that the outliers are caused
by multipath reflections or noise, they will have a relatively
low intensity, when compared to other points in the scan.
Therefore all outlier candidates that have intensities below
the threshold Imin = µ− λnσ will be discarded, with λn ∈
{1, 2, 3} being a scaling factor, σ and µ being the standard
deviation and mean of all intensities in the accumulated
scans.

C. TSDF-based SLAM for object-penetrating sensors with
noisy data

To create a map and localize within it, we build upon the
TSDF-based lidar SLAM approach by Daun et. al [5] which
is based on Cartographer [6], an open-source SLAM system

that implements scan-to-map matching and loop closure
detection. The TSDF grid produces larger gradients around
the surfaces when compared to probability grids, resulting
in a more robust and accurate scan matching for lidar-
based SLAM [5]. Therefore, we extend the Cartographer
TSDF approach with a novel forward sensor model to enable
building TSDF maps from radar data and introduce robust
scan matching algorithms to handle sparse, noisy, and outlier-
rich radar range measurements.

1) Sensor model for map update: Instead of assigning
each grid cell a probability of being occupied, the TSDF grid
representation assigns each cell the distance to the nearest
surface, as displayed for two spatial dimensions in Figure 4a.

(a) TSDF grid visualization. [5] (b) Map update for multiple de-
tections in range.

Fig. 4: TSDF grid and proposed update method for two
different environments. Figure 4a: Numbers indicate the
distance to surfaces (dotted lines). In Figure 4b multiple de-
tections, as viewed from the robot (black dot) are displayed.
Space up to the first hit (red cells) is assumed empty (white
cells), second hits are colored green with unknown space
colored grey.

To update the TSDF from range data, a common method
is the Projective Distance Update [16] where all cells along
a ray from the sensor to the observations are updated with
truncated signed distance to the observation.

For lidar-based scans, it is feasible to update the cells
between a hit, and the sensor, by assuming these cells
are empty. This method however is not suitable for radar,
since it penetrates various objects and has a certain Field
Of View (FOV) in elevation, resulting in either multiple
detections in range or detection of larger, elevated objects
behind smaller ones. Empty space between every hit and the
sensor origin can therefore not be guaranteed. Nonetheless



updating possible empty cells can improve the SLAM result
by removing outliers, that otherwise would accumulate in the
map.

Therefore only space up to the first detection for a fixed
angle is assumed free in the following approach, outlined in
Figure 4b: First, every hit is converted to the corresponding
pixel in the grid and saved with the corresponding pixel polar
representation as a pair in an array. Next, for every hit, a ray
from the detection to the sensor origin is also converted to a
pixel mask list. If one of the other hits is present in this pixel
mask, no free space update is performed. For faster lookup,
only the other hits within a certain angular window around
the current hit are selected using a fast binary search and
then compared to the pixel ray. For every other hit occurring
behind a previously hit cell, only the TSDF is updated.

The approach in comparison to existing update methods
is displayed in Figure 5. With this proposed method, a free
space update for both lidar and radar scans is possible,
without differentiating the source of the scans.

2) Robust optimization for scan registration: To align a
new scan into the current submap, the 2D-pose ξ = [x, y, θ]
is directly optimized on the TSDF by a non-linear least
squares problem:

argmin
ξ

N∑
i=1

(ΦI(Tξhi))
2, (1)

where ΦI is the bi-linear interpolation of the TSDF grid
map, Tξ a 2D-transformation (translation and rotation) for
the current pose and hi a 2D-scan point, as proposed in
[17]. Outliers can greatly worsen the quality of this non-
linear least-squares problem, especially when dealing with
radar scans a sub-optimal solution is often found. Therefore,
we perform robust scan matching by applying Graduated
Non-Convexity (GNC) as proposed by Yang et al. [18] and
extend the Ceres Solver for outlier rejection. However, the
optimization requires an initial guess for the pose. Odometry
is used for an initial pose, refined with correlative scan
matching, and then optimized using GNC with Ceres solver,
using the Geman McClure (GM) as a robust cost function.
Instead of directly defining a robust cost function ρ, GNC
introduces a control parameter µ that alters the cost function
ρµ(·), so that the original shape of the function is recovered
for the limit of µ (typically µ→ 1 or infinity), otherwise, the
function will be convex. Starting with a certain convexity, a
first solution is then computed and µ is gradually changed
to increase the non-convexity until the original shape is
recovered. To extend the solver, the optimization process is
split up into two steps: a variable update is performed by
Ceres, followed by a weight update after each Ceres iteration.
Using the Black-Rangarajan duality as described in [18], the
optimization problem stated in Equation 1 with a robust cost
function can be written as:

min
ξ∈R3,wi∈[0,1]

N∑
i=1

[wir
2(hi, ξ) + Φρ(wi)], (2)

with a weight wi for every residual r(hi, ξ) and a penalty
function Φρ(wi) depending on the robust cost function ρ(.),
which is independent of ξ).

For the variable update every iteration t, this can be written
as

ξ(t) = argmin
ξ∈R3

N∑
i=1

[w
(t−1)
i r2(hi, ξ)], (3)

which is solved using the Levenberg-Marquardt method
with automatic differentiation. The weight update for every
iteration t for the GM-function is then solved in closed-form:

w
(t)
i =

(
µtc

2

µtc
2 + r(hi, ξ(t))

)2

, (4)

where the given parameter c determines the shape of the GM
function. Finally, after every iteration t, the convexity of the
GM function is decreased by updating µt ← µt−1/kµ with
a given parameter kµ > 1.

IV. EVALUATION

To evaluate the robustness of the system in degraded visual
conditions and in different environments, our detailed eval-
uation is presented in the following section. We benchmark
our approach with artificially created data in a controlled
environment to demonstrate the robustness of GNC-based
TSDF registration method. Afterward, we investigate the
performance of the presented method in both good visual
conditions and under smoke with poor visibility. Finally, the
results are compared to another publicly available dataset
by commonly used metrics. All processing regarding the
evaluation was performed on a laptop with an Intel i7-
9750H CPU at 2.6 GHz and 16 GB RAM, without GPU
acceleration.

A. Robust scan matching on artificial data

To assess the effectiveness of the modified robust scan
matching in presence of outliers, we use simulated point-
clouds as seen in Figure 5. For every iteration, the TSDF
grid is filled with training data consisting of ninlier = 100
scan points, simulating an empty, rectangular room. The
data is subject to random zero-mean Gaussian noise, with
a standard deviation of σ = 0.01 and a sensor resolution
of 0.025 m. To simulate the outliers present in radar scans,
randomly generated points noutlier twice the side length of
the rectangular room are added to the training set, resulting
in the outlier rate o = noutlier/ninlier. A matching pointcloud
test set is distorted with the same number of outliers, trans-
formed by applying a random rotation and translation and
matched against the grid using both the unmodified TSDF
cost function and the extended one by GNC. The translation
and rotation errors for the test set were empirically set to
0.1 m and 0.1 rad for each pointcloud since correlative scan
matching, which is applied beforehand, usually provided a
first estimate from the reference in that range. The results
per Ceres iteration for 100 matched pointclouds for both the
normal TSDF and robust scan matching with 33 % outliers
are shown in Figure 6. All simulations were solved using



(a) No free space update, update only TSDF. (b) Update free space up to every detection. (c) Proposed method: update only free space
up to first detection.

Fig. 5: Simulated free space update methods. Black lines represent detected surfaces, cells are colored as follows; white:
free space, red-blue gradient: TSDF, Grey: unknown cells. In Figure 5a, no cells except the hits will be updated. When
performing a free space update for every detection, the gradient of first detections is getting overwritten, as seen in Figure 5b.
For the proposed approach (Figure 5c), the TSDF gradient for multiple detections in range will not get overwritten.

Fig. 6: Mean translation error for GNC scan matching (Blue)
compared to unmodified approach (Red) for 100 matched
pointclouds. The left plot shows the translation error per
iteration for 33 % outlier, the right plot shows the translation
error for increasing outliers. Shaded region displays the
errors within two std. deviations.

the GM function with a shape of c = 7 and kµ = 1.2. For
both methods, the same convergence criteria were used. After
approx. 10 iterations, the unmodified approach converges and
does not find a significantly better solution. However, the
proposed optimization finds a significantly better solution
after approx. 25 iterations, once changing the convexity of
the cost function sufficiently for outlier rejection.

The same test was performed with an increasing outlier
ratio from 0 to 100 % with a step size of 10 %, again with
100 simulated pointclouds per outlier step. The results are
displayed in Figure 6.

With the proposed method, both the error for translation
and rotation were on average 3 and 2 times smaller, while
the additional time and the number of iterations needed for
solving the problem did only increase by 42 % and 14
% respectively. For outlier rates greater than 40 %, which
usually occur for dense radar scans, the number of iterations
for GNC scan matching was always lower. With the higher
accuracy in presence of outliers as well as the relatively
low additional computational effort due to smaller radar
pointcloud sizes, the proposed GNC scan matching proved
to be better performing for radar scans, which for our sensor
contained outlier rates in the range of 80 % to 90 %.

B. Evaluation approach radar-SLAM

For evaluating the quality of the radar-based SLAM, lidar
is used as a reference because an accurate ground truth
system was not available for all different test scenarios.
The quality of the SLAM is measured based on the created
trajectories and not on the created maps since the environ-
ment perceived by radar varies greatly in comparison to the
environment captured by lidar and is heavily dependent on
the radar sensor used, e.g. the number of available antennas.
Two metrics, the mean absolute errors (MAEs) of both the
Relative Pose Errors (RPEs) and Absolute Trajectory Errors
(ATEs) are calculated to evaluate both the local respectively
global consistency of the SLAM. To estimate the RPE,
for each pose xt created by the radar SLAM at time t,
one reference pose x∗

t nearest in time t′ is considered. By
only taking one nearest reference pose into account, local
mismatches are weighted more. The relative errors for the
translation and rotation are evaluated separately. By defining
the relative transformation δi,j = xj⊖xi between two poses
xi and xj , the RPEs in translation and rotation can be written
as [19]:

di(δ) = di =
∥∥∥trans(δt,t+1 ⊖ δ∗t′,(t+1)′

)∥∥∥
2

(5)

ri(δ) = ri = rot(δt,t+1 ⊖ δ∗t′,(t+1)′). (6)

The ATE is determined by calculating the displacement
for the last radar pose to the last lidar SLAM pose. Since
the pose update rate for lidar-based SLAM with 4 Hz usually
is faster than for radar-based SLAM with around 1 Hz, we
interpolate two nearest lidar poses in time assuming linear
motion, before calculating the RPEs.

All data sets were recorded on a compact tracked rescue
robot called Asterix, which was developed and built at the
”Simulation, System Optimization and Robotics” group of
Technical University of Darmstadt (TUDA).

C. TUDA Lab with lidar reference

For a first evaluation regarding the accuracy of pure
radar-based SLAM, a total of 4 test runs were performed



(a) lidar map and trajectory in-
cluding odometry for run 3.

(b) Radar map and trajectories
for run 3.

(c) lidar map and trajectory including odometry for run 4.

(d) Radar map and trajectories for run 4.

Fig. 7: Maps created by lidar- and radar-SLAM including
trajectories: Pink: lidar trajectory, Green: odometry, Blue:
radar trajectory. One square corresponds to 1 m2.

under normal visual conditions without smoke. The first
experiments took place in an approx. 12 by 15 m cluttered
laboratory with almost no straight, empty walls present and
people walking by. One half of the room consists of a work
area with tables and chairs, on the other half a small arena
with uneven terrain is present, inducing motion in pitch and
roll. Additionally, the last data set was captured while driving
through a long, small corridor.

In Figure 7, both maps and trajectories of the reference
lidar and radar SLAM for the last two runs are shown. In
run 3, the robot starts in the middle of the map, drives
down to the right, one lap around the working area back
to the starting position, and another lap through the arena.
For the last run, the robot starts on the left side of the
map, drives down a small ramp, and approx. 22 m to the
right, turns on the spot, returns to the starting position, and
drives into the laboratory, back to the starting position of
run 3. For this run, a small angular drift was present when
visiting a separate section of the corridor. This area was
previously unobserved due to the small angle of incident of
radar detections. Therefore, when only detecting two straight
walls opposite of each other, without constraining the scan
matching by observing other, more distinct features, the scan
matching becomes more error-prone in rotation due to noise
and inaccurate odometry, which in turn is subject to the same
angular drift.

The average scores for all 4 runs are listed in Table II.
Even for long runs, the ATE for the finale pose could be

(a) First run. (b) Second run.

Fig. 8: Map and trajectories created by the proposed system
from the radar perspective for the first run provided by
[3]: Black: Ground Truth, Green: Odometry, Blue: Radar
trajectory, Pink: lidar trajectory. One square corresponds to
1 m2.

kept small and stayed under 7 cm and 2.75 deg. Both the
radar and lidar maps contain small details of the environment,
preserving walls and even corners. Also, the observed area
along the radar trajectory is correctly marked as free space.
Only indirectly or briefly observed areas are marked as
unknown, as can be seen in the left section of Figure 7b.

D. Comparison on Mielle data-set

To the authors’ best knowledge, no standardized dataset
containing comparable radar data was available. To assess
the performance of the proposed approach, the data provided
by Mielle et al. [3] was used for comparison, since they
offer comparable data with a detailed evaluation utilizing
the same metrics. Similar to this work, Mielle et al. also col-
lect lidar measurements, odometry data, and measurements
from a fast rotating, but custom-built radar sensor (called
Mechanically Pivotal Radar (MPR)) with a robotic platform
to perform SLAM. Additionally, they also provide accurate
localization by a positioning system used as a ground-truth
reference. In their evaluation, they use two different SLAM
frameworks to perform radar SLAM, gmapping [20], and
normal distribution transform occupancy maps (NDT-OM)
fuser [21], to calculate the RPE and the ATE of the last
poses in comparison to ground truth.

To estimate the accuracy of our proposed system, the
radar and odometry data provided by Mielle et al. were
used to perform SLAM using the extended Cartographer
framework. The resulting trajectory is then compared to the
ground-truth reference and the error scores are calculated as
described above. Unfortunately, the third run in the data set
was incomplete, so only the first two runs were considered.

The created maps including trajectories are displayed in
Figure 8, the results for radar SLAM in comparison to the
averaged scores provided by Mielle are listed in Table I. With
the proposed method, the scores for the RPE were lowered
approx. by a third for translation and halved for rotation
with a significantly smaller standard deviation. Especially the
global consistency could be improved, resulting in an ATE
approx. 6 and 3 times smaller when compared to NDT-OM
respectively gmapping.



TABLE I: Average scores over run 1 and 2 with MPR, in comparison to scores provided by [3]. Best results are written in
bold.

related to ground truth related to lidar trajectory
Metric proposed method NDT-OM [3] gmapping [3] proposed method
d / m 0.018 ± 0.008 0.027 ± 0.030 0.028 ± 0.026 0.061 ± 0.058

r / mrad 33.02 ± 18.13 75.50 ± 105.5 68.50 ± 145.0 36.04 ± 21.38
D / m 0.289 1.962 1.097 0.363

R / mrad 77.81 (4.458 deg) 456.3 (26.16 deg) 215.5 (12.35 deg) 69.10 (3.959 deg)

Since an accurate ground truth system was not available in
the previous evaluations and to get error scores for this data
set that are comparable to our evaluation approach, the same
evaluation method as previously was used by creating both
the lidar and radar trajectories with our proposed approach
and use lidar as a reference, instead of the positioning
system. Since the scores of the lidar trajectory created by
our approach compared to the provided positioning system
were all lower than the scores by Mielle et al., it is valid to
compare the created radar to the lidar trajectory instead of
ground truth. The scores are also listed in Table I and are in
the same order of magnitude as the results of the previous
runs, but with a higher ATE in translation.

E. Deutsches Rettungsrobotik Zentrum (DRZ) Challenge
with smoke

To validate the system in degraded visual conditions, a
total of 8 runs, with and without smoke were recorded. The
recorded environment can be completely filled with smoke
and consists of a small S-shaped corridor with a total size
of 4 m by 2 m formed by thin plasterboard walls. These
walls are easily penetrated by the radar, resulting in multiple
detections in range direction. The smoke is created by
evaporating distilled water containing polyethylene glycol,
using a conventional disco fog machine.

The error scores for the first 3 runs without smoke and
using lidar as reference are listed in Table II. For the last runs,
the area was completely filled with dense smoke, resulting
in zero visibility rendering lidar-based SLAM approaches
ineffective.

The radar detections however were less or not at all
effected by smoke, as can be seen when comparing the radar
map in Figure 9b to the radar map created under smoke,
displayed in Figure 9c. For the latter, the lidar pointcloud for
one frame, as viewed from the smaller axes, is also pictured,
showing almost only false detections near the robot caused
by smoke. The radar pointcloud also shows some outliers,
which accumulate in unobserved areas, due to not updating
the free space there.

However, the longer those areas are observed, the confi-
dence of each cell being occupied or free increases. This
effect can be seen when comparing Figure 9b and Figure 9c.
The velocity of the platform was lowered in run 6 from
approx. 1m/s to 0.5m/s due to the smoke, resulting in
longer observations, making the lower map less fuzzy and
the walls darker shaded.

The small angular resolution of about 15° and the FOV in
elevation affects the map in the left section of Figure 9b and

(a) lidar map and trajectory including odometry for run 3.

(b) Radar map and trajectories for run 3, without smoke.

(c) Radar map and trajectories for run 6, with smoke and overlapped
pointclouds.

Fig. 9: Maps and trajectories created by lidar and radar
SLAM. Green: Odometry, Blue: Radar trajectory, Pink: lidar
trajectory. One square corresponds to 1 m2. Figure 9c shows
the pointclouds for lidar and radar for one scan, Rainbow:
lidar pointcloud, Orange: radar pointcloud.

Figure 9c. On the lidar map, an open door can be seen, which
is not recognizable on the radar map, most likely because the
top of the door frame is detected from further away and the
whole area is only observed for a short period of time.

Due to optimized odometry and a simpler environment
compared to the first runs, all scores listed in Table II except
the absolute rotation error were lowered. The RPE stayed
under 3.3 cm and 1.2 deg, the ATE D under 3.3 cm. The
increased final ATE for rotation R is caused by ambiguous
scan matching at the end for the second run (as seen in
Figure 9b), which resulted in a high absolute error of 17
deg. Additionally, the average ATE for translation along
the trajectory, based on corresponding timestamps, was also
calculated and was as low as 3.8 cm.

For the last runs, no lidar reference data could be created
due to smoke. However, since the radar was less or not
at all effected by smoke, similar quality and accuracy in
terms of the error scores can be expected for the last runs.
This shows the suitability for using the proposed radar-based
SLAM method in situations with poor visibility.



TABLE II: Averaged scores over all runs for TUDA Lab and
DRZ challenge, with lidar as reference.
d and r: MAE of the RPE for translation respectively rota-

tion with averaged std. dev., D and R: Absolute translation
respectively rotation error for final pose.

Metric TUDA Lab (4 runs) DRZ challenge (3 runs)
d / m 0.0563 ± 0.0483 0.0323 ± 0.0301

r / mrad 26.534 ± 25.06 17.433 ± 20.173
D / m 0.0348 0.0199

R / mrad 21.186 (1.635 deg) 137.75 (7.892 deg)

V. CONCLUSION AND FUTURE WORK

In this paper, we presented and evaluated specific methods
to perform accurate real-time radar SLAM using TSDF maps
in degraded visual conditions, where conventional optical
sensors fail to operate.

Special radar processing methods were investigated and
fine-tuned for both accuracy and number of detections. By
taking the radar sensor model into account, the advanced
SLAM framework Cartographer was extended by radar spe-
cific map update rules, as well as a robust scan matching
approach in the presence of outliers, both leading to a more
detailed map and higher accuracy for pose estimation.

The extensive evaluation presented demonstrates the ro-
bustness of the system in varying environments, as well
as under zero visibility while creating a rich map and
accomplishing localization accuracy with an average RPE
of 4.6 cm and 1.3 deg comparable to lidar SLAM.

Evaluation on other data sets showed that the proposed
approach can also be used for different radar sensors while
achieving higher accuracy when compared to other SLAM
frameworks.

Future work already in progress is aiming to replace
the rotating radar assembly with two statically mounted
sensors, to maintain data density while reducing mechanical
components and space requirements. Finally, the accuracy of
the new system may be further evaluated by a more accurate
ground truth system.
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