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Abstract— Autonomous mobile robots for industrial inspec-
tion can reduce cost for digitalization of existing plants by
performing autonomous routine inspections. A frequent task
is reading of analog gauges to monitor the health of the
facility. Automating this process involves capturing image data
with a camera sensor and processing the data to read the
value. Detection algorithms deployed on a mobile robot have
to deal with increased uncertainty regarding localization and
environmental influences. This imposes increased requirements
regarding robustness to viewing angle, lighting and scale
variation on detection and reading. Current approaches based
on conventional computer vision require high quality images
or prior knowledge. We address these limitations by leveraging
the advances of neural networks in the task of object detection
and instance segmentation in a two-stage pipeline. Our method
robustly detects and reads manometers without prior knowl-
edge of object location or exact object type. In our evaluation
we show that our approach can detect and read manometers
from a distance of up to 3m and a viewing angle of up to 60° in
different lighting conditions with needle angle estimation errors
of ±2.2°. We publish the validation split of our training dataset
for manometer and needle detection at https://tudatalib.ulb.tu-
darmstadt.de/handle/tudatalib/2881.

I. INTRODUCTION

Autonomous mobile robots play an essential role in future
inspection tasks, especially in potentially hazardous environ-
ments such as oil and gas platforms. The use of robots not
only helps to keep humans out of harms way. Moreover,
they can collect consistent and high quality inspection data
using numerous sensors, such as cameras, thermal imaging
and gas sensors. Since many existing industrial plants are not
digitized it is a necessity for those robots to be intelligent
enough to also read analog gauges, with manometers being
the most common. This task can be performed via tele-
operation by streaming robot camera data, but this requires a
continuous high bandwidth wireless connection to the robot
and poses high burden and stress on remote operators for safe
navigation in narrow environments. A much bigger benefit
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Fig. 1: Gauges in existing facilities are often not equipped
with digital read-out capabilities. The ability to detect and
read such dial indicators enables mobile robots to au-
tonomously perform inspection tasks.

is unlocked if the robots can autonomously navigate and
process sensor data, alleviating humans from permanently
steering and monitoring them and allowing robots to carry
out inspection tasks fully autonomously as shown in Fig. 1.

Autonomous mobile robots that are deployed on existing
industrial plants operate in environments subject to a range
of environmental conditions, resulting in challenging re-
quirements on robustness of detections. Perfectly positioning
the robot for inspection is not always possible, making it
necessary to be robust against variations in viewing angle and
scale. As the location of manometers might not be previously
known, false detections have to be avoided.

Existing approaches rely on prior knowledge about the
manometer in form of a reference image [1] or the manome-
ter location. Other methods [2] make use of a circle detection
with Hough transform which lacks robustness to different
lighting conditions or mirror artifacts and therefore are error
prone. These restrictions limit application where such prior
knowledge may not be given or a high robustness is needed.

This work presents a new solution for dynamic detection
and reading of manometers ready to use for real world
applications. We only assume common properties found in
industrial manometers. These are a circular shape, minimum
and maximum values at 45° and 315° with the rotational axis
of the needle at the center and a needle with a thinner tip
than end.

We divide the problem into two steps: Detection of the
manometer and read-out of the value. The detection step
is solved by a Mask Region-based Convolutional Neural
Network (R-CNN) implementation, which also generates
object masks. These masks are then used in a post-processing
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step to deskew the image and determine the needle angle.

II. RELATED WORK

Our method builds on previous work performed in the
fields of object detection and instance segmentation which
we briefly discuss in this chapter.

A. Reading of Gauges

Relevant research concerning both, detection and reading
of pointer gauges, has mainly been done for robotics chal-
lenges such as the Autonomous Robot for Gas and Oil Sites
(ARGOS) Challenge. Hutter et al. [3] have addressed the
detection of a manometer using a sliding window approach
and Histogram of oriented gradients (HOG) features which
get classified by a Support-vector Machine (SVM). They
use a reference image of the manometer and match Scale-
invariant feature transform (SIFT) features to estimate a
homography for warping the image. To read the value a circle
and line detector is used to detect the center point and needle
line of the manometer. Merriaux et al. [1] follow a similar
approach. Having a reference image of the gauge they use
SIFT descriptor matching to detect it in the image taken by
the robot. Next, a homography is estimated to deskew the
image and line detection is applied to find the needle and
read the manometer. More recently Hilario et al. [2] used
a circle detector to detect manometers and a line detector
to detect the needle and read the value. Dumberger et al.
[4] use a neural network based on You Only Look Once
(YOLO) [5] to detect manometers. Further, they detect the
needle and dial of the gauge with circle and line detectors
and then convert the image to polar coordinates to finally
read the value. They also apply optical character recognition
to find the minimum and maximum values of the gauge.
Their pipeline is missing the step of deskewing though as it
is work in progress. An end-to-end deep learning approach
is proposed by Lin et al. [6] which uses a Convolutional
Neural Network (CNN) to detect a pointer gauge and classify
its value. Further research that concentrated on automatic
reading of a pointer gauge was conducted by Chi et al. [7]
and Ye et al. [8]. [7] only consider upfront, high quality
images and use a region growing method to first obtain the
dial of the gauge. Subsequently, the image is transformed
to polar coordinates with the dial center as its origin and
the scale is extracted. Using line detection to find the needle
the gauge can then be read. [8] take a different approach
by subtracting two images of a gauge with different pointer
position to determine its origin. The needle is detected after
preprocessing with a line detector and then the value is read.

B. Object Detection and Instance Segmentation

The problem of localizing and categorizing objects is
very important to gain knowledge from images. The task is
usually to find and classify a bounding box (x, y, w, h) that
encapsulates the object contained in an image. Instance seg-
mentation is an even finer task as it aims to predict the pixel
mask of an object. Much research has been done to solve
these tasks and benchmarks such as the Common Objects

in Context (COCO) [9] challenge or PASCAL Visual Object
Classes (VOC) [10] have been created. These benchmarks
are nowadays dominated by Deep Neural Network (DNN)
solutions which can mostly be divided into one- and two-
stage approaches.

One stage approaches see object detection as a pixel-
wise classification task or a regression problem. Liu et al.
[11] use a fully convolutional approach with their Single
Shot Detector (SSD) network and add several feature layers
after a backbone network which predict offsets to predefined
template boxes. Redmon et al. [12] propose the YOLO
network whose basic idea is to divide the input image into a
s×s sized grid and then each cell predicts the object centered
in it as well as b bounding boxes along with their confidence
scores. They implement this with a fully convolutional DNN
achieving a high inference speed. The network has been
further refined in the following years up to the current
version 3 which introduced a better backbone classifier and
multi-scale predictions [5]. You Only Look at Coefficients
(YOLACT) was introduced by Bolya et. al [13] in 2019 with
the goal to be able to do instance segmentation in real-time.
They propose a fully convolutional architecture that does
two tasks in parallel: Generation of mask prototypes and
prediction of mask coefficients, which subsequently produce
the final masks by linear combination.

Two stage approaches usually first search Regions of In-
terest (ROIs) which then get classified. The most prominent
detectors in this category are the family of R-CNN. First
introduced by Girshick et al. [14] in 2014 the R-CNN
uses selective search [15] to obtain ROIs and then extracts
feature vectors using a CNN which finally get classified.
In following years further improvements have been made
with Fast R-CNN [16] by generating feature maps from the
whole image through a CNN and using feature pooling to
generate a single feature vector. Faster R-CNN added the
Region Proposal Network (RPN) to the architecture which is
a small CNN that is used in a sliding window over the feature
map of the input image to generate ROIs. This approach
allows for an end-to-end training of the entire network and
achieved state of the art on PASCAL VOC and COCO [17].
For instance segmentation, Mask R-CNN replaces the ROI
pooling layer with a new ROI align operation to enable pixel-
to-pixel alignment of ROI features and the input image. An
additional mask head then predicts the mask. Further im-
provements to Mask R-CNN have been made by introducing
a separate scoring of the masks [18].

C. 6D Pose Estimation

The goal of 6D pose estimation is to determine the rigid
transform from the object coordinate system to the camera
coordinate system, consisting of the object orientation in
3D and its 3D translation. If the 6D pose of a manometer
is known, it is possible to transform an image of it so
that it is seen upfront. Peng et al. [19] propose a network
called PVNet that regresses unit vectors pointing to possible
keypoints for each pixel in an image. Keypoints are derived
with a Random Sample Consensus (RANSAC) voting and are



Fig. 2: The proposed pipeline for manometer detection and reading.

subsequently used for solving a perspective-n-point problem
to obtain the 6D pose.

Another approach is brought forward by Xiang et al. [20]
with PoseCNN. It is a multi-task CNN that predicts the
semantic labels, estimates the 3D translation by detecting the
object center and regresses the 3D orientation to a quaternion
representation. To estimate the translation, known camera
intrinsics are assumed.

Sundermeyer et al. [21] make use of autoencoders to learn
implicit representations of object orientations from sample
images of an object, handling symmetries well. They propose
a pipeline that uses an object detector for localization of
the object and subsequent estimation of the 6D pose by the
autoencoder.

III. METHOD

This chapter presents the design of the developed ap-
proach. A two stage pipeline is proposed for improved
transparency and modularity. The first stage is realized with a
Mask R-CNN network for instance segmentation. The mask
is then used in the second stage to deskew and read the
manometer.

A. Two Stage Detection and Reading Pipeline

The two main parts of our pipeline are the detection and
segmentation of manometers and the subsequent reading of
the manometer value as visualized in Fig. 2. The pipeline is
constructed as follows: Images from the robot’s camera are
sent to an instance segmentation DNN. The network creates
pixel-wise masks for each detected manometer and its needle.

Viewed from an angle, the round shape of a manometer
is projected to an ellipse. We use this relationship to fit
an ellipse to the detected manometer mask and deskew the
image by warping it to a circle.

In the final step, the angle of the needle and manometer
value is determined by fitting a line to the needle mask.

The advantages of this design are twofold. Firstly, one
can replace the instance segmentation network and method
depending on the desired speed/accuracy trade-off or when
new methods show large improvements. Secondly, trust in the
results is increased as intermediate steps can be inspected.
This adds transparency compared to end-to-end solutions.
The following sections explain each step in more detail.

Fig. 3: Schematic view of finding point correspondences.
The marked border is a quadratic bounding box around the
ellipse.

B. Manometer Detection

For the detection of the manometers and their needle,
Mask R-CNN as detailed in [22] is used since it promises
very accurate predictions while maintaining a reasonable
inference speed. With the usage of ResNet-101 [23] in a
Feature Pyramid Network (FPN) [24] backbone architec-
ture an even higher robustness to scale variation can be
achieved. In contrast to approaches used in the ARGOS
challenge [3] [1] a manometer detection with a DNN does
not need prior knowledge about the manometer or its position
and also promises a higher robustness to scale and view
angle variation than classic feature descriptors. If multiple
manometers are detected in this step the subsequent reading
step is performed for each of them.

C. Manometer Reading

The assumption that manometers have a circular geometric
shape when seen upfront is used to deskew the image.
Viewed from an angle, the circular shape projects to an
ellipse. Using least squares regression an ellipse is fitted
onto the instance mask of the manometer. Given the ellipse
the goal is to stretch the minor axis of the ellipse to the
length of the major axis so that it becomes a circle. The
necessary scaling is an affine operation and can be expressed
by warping the image with an affine transformation matrix
T ∈ R2×3.



To determine the transformation matrix, three point corre-
spondences are needed as it has 6 Degrees of Freedom. One
set of points is formed by the ellipse center and the end points
of the major and minor axis. The correspondences are the
center of the quadratic bounding box and the closest points
intersecting its sides in horizontal and vertical direction in
rmajor distance as visualized in Fig. 3. Using these point
correspondences also results in a rotation of the image if the
ellipse is rotated. We rotate it back by first multiplying the
transformation matrix with a rotation matrix of the inverse
ellipse angle.

Next, the image and the needle mask are warped with
T resulting in a deskewed view. Then a line is fitted onto
the points of the needle mask with least squares regression.
The line end points are obtained by using the maximum and
minimum coordinates of the mask points depending on the
needle orientation. To determine the tip of the needle we
make the assumption that the part of the needle opposite to
the tip is thicker than the tip. Therefore, we count the mask
pixels in the neighborhood of the two end points in a window
of size s × s where s is a configurable parameter. The end
point with less needle mask pixels in its neighborhood is
assumed as tip of the needle.

Finally, the needle angle is calculated as follows:

angleneedle = atan2(yend − ytip, xend − xtip) (1)

We assume the angle of the minimum and maximum value
(anglemin, anglemax) to be 45° and 315° respectively to
determine the manometer value in percent:

valuepct =
(angleneedle − anglemin)

anglemax − anglemin
(2)

Optionally, if the minimum and maximum values
(valuemin, valuemax) are known the numeric value of
a linear scale can be calculated:

value = valuemin

+ valuepct ∗ (valuemax − valuemin)
(3)

IV. IMPLEMENTATION

This chapter briefly discusses our implementation. First, a
dataset is created which subsequently is used for training of
the Mask R-CNN implementation.

A. Creating a Dataset

For training a supervised machine learning algorithm
the most important asset is a sufficiently large amount of
high quality ground-truth data. There are already multiple
large scale datasets for instance segmentation available like
COCO [9], Open Images [25] or Pascal VOC [10]. After
examination of various datasets, none have been found with a
class for manometers or gauges. Therefore, a new dataset has
been created with images of manometers. Manometers have
been photographed in different positions and backgrounds
with different cameras to ensure a high variance in images.

After first training experiments, the dataset has been
extended with background-only images containing round

objects to reduce false positives. To produce ground-truth
information, the images have been annotated by hand.

The final dataset consists of 175 labeled images and 63
background-only images. Since this still is only a small
amount of data compared to the needs of deep learning
algorithms, image augmentation is used. Each image is aug-
mented with gaussian noise, motion blur, fog, compression
and clouds as implemented in the Python library imgaug
[26], extending the dataset to a total of 1050 labeled images
and 378 background only images.

B. Training

We use the Mask R-CNN implementation Detectron2 [27]
by Facebook AI Research (FAIR) which has built-in support
for learning from background only images. Due to the dataset
still being comparatively small the network is initialized with
pre-trained weights on the COCO dataset provided by FAIR.
The first 2 stages of the ResNet FPN backbone are frozen
so that they keep their learned feature extraction abilities.
All other layers are then fine tuned on the manometer
dataset. We split our dataset into a training and validation
set at a ratio of approximately 80/20 and additionally use
random flipping and rotation of the input images. Training
is performed with Stochastic Gradient Decent for 270 000
iterations. The learning rate is set to 2.5× 10−4 and lowered
after the 210 000th and 250 000th iterations to 2.5× 10−5

and 2.5× 10−6 respectively. Additionally, momentum of 0.9
is used. Training is performed on a Nvidia RTX 2080 Ti
which has capacity for a mini batch size of four images.

C. Reading

The reading step has been implemented in Python 3 for
the Robot Operating System (ROS) framework. We filter
manometer detections that have no needle detection con-
tained in their bounding box as an additional false positive
safeguard and implement an option called zoom onwards.
If this option is enabled, manometers without an associated
needle are cropped out of the image and reevaluated by Mask
R-CNN. Otherwise they are ignored. This improves detection
accuracy of manometer images taken from a large distance
as the cropped image gets upscaled before being passed to
Mask R-CNN. For reading we assume the manometer to be
upright in the image. The robots Inertial Measurement Unit
(IMU) or Simultaneous Localization and Mapping (SLAM)
can be used for correction of the image orientation.

V. EVALUATION

Our processing pipeline is composed of two separate steps,
detection and reading. We evaluate each step individually.
Due to a missing benchmark for manometer detection and
reading we describe the setup of our evaluation and the ana-
lyzed parameters. Lastly the results are shown and discussed.

A. Manometer Detection

To evaluate the detection step of our pipeline we use the
validation split of our dataset. This verifies that our approach
works with manometers in different environments. We use



(a) The manometer is mounted on a neu-
tral background. (b) Angles are marked on the floor by

hand.
(c) The camera is positioned on the mea-
suring points using a lead.

Fig. 4: The setup used for evaluation.

the COCO evaluation metrics and report average precision
(AP)@[IoU=0.5:0.95] (averaged over IoU thresholds in 0.05
steps) averaged over all classes and per class for the detection
and segmentation task respectively - see Table I.

The relatively low AP on the bounding box prediction is
due to the training with random rotation which increases
the size of bounding boxes. Our validation split is available
at https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2881
for future comparison with other research.

B. Manometer Reading

To our best knowledge there is no existing benchmark on
manometer detection and reading as this is a very specific
task. Therefore we create our own evaluation benchmark.
The main parameters which make a reliable reading chal-
lenging for mobile robots have been identified by us as
lighting, view angle and distance to the gauge. In order to
test the capabilities of the presented approach systematically
against these variables and to determine their influence on the
measurement result the following controlled test environment
as shown in Fig. 4 has been created. A manometer model
which has not been part of our training data is installed
on a neutral background (see Fig. 4a) at a height of 94 cm
(measured at its mounting screw) and the camera is mounted
on a tripod at 1m height and aligned with one foot of the
tripod. Then the angles are marked on the floor in a resolution
of 10° as shown in Fig. 4b and lines are drawn for each angle
up to a distance of 3m. Due to the radial symmetry of the
manometer it is sufficient to evaluate 90° on one side to show
the influence of the perspective on the measurement result.
Measuring points are marked on the lines in 0.5m steps for
each angle resulting in 60 measuring points total (6 points
per angle). Images are taken with the camera by positioning
it on a measuring point with the help of a lead as shown in
Fig. 4c and placing the camera-aligned tripod foot on the line
as well. The parameter of lighting is difficult to standardize.

TABLE I: Results on the validation split. AP is averaged
over IoU thresholds [0.5:0.95] in 0.05 steps.

AP APmanometer APneedle

Segmentation 43.306 63.351 23.261

Detection 35.940 53.024 18.856

Therefore only 2 different lighting scenarios have been used
for the evaluation. One set of images has been taken during
daylight and another set during night with artificial lighting.
All images are taken with a Panasonic Lumix DMC-GX80
with a 12mm wide-angle lens and automatic settings at a
resolution of 4592× 3448 pixels.

Due to the manual marking of angles and lines an angle
error of ±0.5° has been measured at 2m distance. The
total measurement error resulting from manual marking,
positioning of the camera and alignment of the camera with
the tripod foot is expected to be < 1.5° and < 5 cm. The
ground-truth manometer value is determined as 13.6 bar.
All images from the measuring points are passed into our
ROS implementation. We use the zoom option since the
images have a high resolution which results in them being
resized to about 1/4 of their original size when fed into the
network. In images from a larger distance the manometer
is already small compared to the image size. Resizing and
interpolation has the effect that the needle and its features
are underrepresented in the image that gets analyzed by the
network so that the needle can’t be detected anymore which
is required for successful reading.

a) Results: We calculate the deviations from the
ground-truth manometer value as shown in Table II and
Table III for the different lighting conditions respectively. It
can be seen that manometer values can be read with a very
low deviation of maximum ±0.13 bar which is equivalent to
±2.2° needle angle from a view angle of up to 70° and a
distance up to 3m.

TABLE II: Deviations in bar from the ground-truth manome-
ter value for the artificial-lighting evaluation dataset.

Deviation in bar

Distance in m
0.5 1 1.5 2 2.5 3

A
ng

le
in

°

0 -0.06 -0.01 0.00 0.02 -0.02 0.02
10 -0.04 0.01 -0.00 -0.02 0.04 0.03
20 -0.09 -0.01 -0.01 -0.02 0.04 0.10
30 -0.03 0.06 0.07 0.05 0.09 0.09
40 0.00 0.05 0.07 0.08 0.05 0.05
50 0.07 0.10 -10.71 0.07 0.05 0.12
60 0.02 0.00 0.03 -0.01 0.02 -0.03
70 - - - - - -
80 - - - - - -
90 - - - - - -
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TABLE III: Deviations in bar from the true manometer value
of the daylight evaluation dataset.

Deviation in bar

Distance in m
0.5 1 1.5 2 2.5 3

A
ng

le
in

°

0 0.04 0.04 0.07 0.04 0.10 0.03
10 0.05 0.06 0.09 0.03 0.07 0.08
20 0.04 0.13 0.09 0.07 0.08 0.09
30 0.04 0.05 0.08 0.04 0.11 0.02
40 0.04 0.10 0.05 0.08 0.03 0.03
50 0.04 0.03 0.06 0.06 0.04 0.04
60 0.07 0.05 0.06 0.06 -0.01 0.05
70 0.11 - - 0.11 0.06 -
80 - - - - - -
90 - - - - - -

The reason for the large deviation at 50° in the artificial
lighting scenario is a very inaccurate needle mask, where the
tip of the needle is thicker than its end. We expect that this
kind of error can be minimized with a larger training dataset.
Overall we find that detection and reading worked well up
to an angle of 60° with up to 3m in both lighting scenarios.

b) Program runtime: The time needed for computation
of the different steps of the implemented pipeline is measured
with the timeit Python module. It is observed that more
than 98% of the computation time needed is consumed
by running inference with the Mask R-CNN network as
is shown by Table IV. On an embedded platform like the
Nvidia Jetson Xavier NX this takes about 1.13 s so that the
detection could run at 0.8Hz on a robot. Note that these
values are without any optimization and results may vary
through different CUDA versions. Also note that for these
measurements the zoom option was disabled. Using it will
add an additional runtime of detection & segmentation per
detected manometer without needle.

Program Component
Compute Platform detection &

segmentation reading
CPU only (Intel i7-7700K) 3.52 s < 0.1 s
Nvidia Jetson Xavier NX (CPU + GPU) 1.13 s < 0.1 s
AMD Ryzen 3960X + Nvidia RTX 2080 Ti 0.14 s < 0.1 s
Intel i7-7700K + Nvidia GTX 1060 0.2 s < 0.1 s

TABLE IV: Runtime of the different program components
on different platforms. GPUs use CUDA 10.2.

VI. CONCLUSION

We have presented a new approach for manometer detec-
tion and reading which meets the requirements of mobile
robots. Our approach leverages the advances in instance
segmentation by DNNs and has shown to be very robust to
viewpoint changes in terms of distance and angle as well as
to different lighting conditions with a remarkably low reading
error. Our benchmark implementation is ready to run on an
embedded system with a frequency close to 1Hz making it
ready to be used on mobile robots.
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