Preprint of the paper which appears in:

European Conference on Mobile Robots (ECMR) 2021

Open-Source Tools for Efficient ROS and ROS2-based 2D
Human-Robot Interface Development

Stefan Fabian and Oskar von Stryk

Abstract— 2D human-robot interfaces (HRI) are a key com-
ponent of most robotic systems with an (optional) teleopera-
tion component. However, creating such an interface is often
cumbersome and time-consuming since most user interface
frameworks require recompilation on each change or the
writing of extensive boilerplate code even for simple interfaces.
In this paper, we introduce five open-source packages, namely,
the ros(2)_babel fish packages, the gml_ros(2)_plugin packages,
and the hector_rviz_overlay package. These packages enable
the creation of visually appealing end-user or functionality-
oriented diagnostic interfaces for ROS- and ROS2-based robots
in a simple and quick fashion using the QtWidget or QML
user interface framework. Optionally, rendering the interface
as an overlay of the 3D scene of the robotics visualization
tool RViz enables developers to leverage existing extensive data
visualization capabilities.

I. INTRODUCTION

Since its introduction by Quigley et al. [7], the robot
operating system (ROS) has become the de facto standard
middleware in the robotics community. ROS is used by a
large variety of robotic systems from stationary to robots
moving autonomously over land, air, and sea. Despite the
fundamentally different applications, almost all of these share
the necessity of having a human-robot interface (HRI). These
HRIs can take vastly different forms. In service related
fields, the focus is usually on natural interaction, e.g., using
spoken language and gestures to communicate [3]], and 2D
interfaces are mainly used for diagnostics. However, in other
areas where the robot is not seen as a separate entity
but the safe extension of a human controller to a remote
and possibly dangerous environment, 2D interfaces are an
integral component of a robotic system’s operation. While
there have been some recent advances in augmented and
virtual reality HRIs [10, 9], the current standard method in
the field of rescue and inspection robotics — which this paper
is focusing on — are 2D applications. Please note that we do
not want to imply that AR/VR and 2D interfaces are mutually
exclusive. In our opinion, robotic interfaces in the future will
combine the advantages of these methods to maximize the
situational awareness and reduce operator errors and the tools
presented in this paper can not only be used for standalone

Stefan Fabian and Oskar von Stryk are with the Technical University of
Darmstadt, Computer Science Department, Simulation, Systems Optimiza-
tion and Robotics Group, Germany.

{fabian, stryk}@sim.tu-darmstadt.de

Research presented in this paper has been supported in parts by the
LOEWE initiative (Hesse, Germany) within the emergenCITY center and
by the German Federal Ministry of Education and Research (BMBF) within
the subproject ”Autonomous Assistance Functions for Ground Robots” of
the collaborative A-DRZ project (grant no. 13N14861).
978-1-6654-1213-1/21/$31.00 ©2021 IEEE

2D interfaces but also for 2D components of an AR/VR
interface.

A common consensus across all of the mentioned applica-
tion fields regarding HRIs — and human-machine interfaces
in general — is that an HRI should be designed around the
user [[1]. In [4] Murphy and Tadokoro divide the users of
HRIs into three groups: end-users, developers, and stake-
holders / general public. These three groups have different
requirements for the user interface. Currently, however, in
the field of rescue robotics, the diagnostic interface used by
the developers to control and debug the robot is often the
same that the end-user is given to operate the robot during
a mission which — according to Murphy and Tadokoro —
the designers mistake as being satisfactory. The third group
requires an interface to visualize and explain the robot’s
actions as well as the underlying scientific achievements.

Results from the DARPA Robotics Challenge (DRC) fi-
nals [5] attribute the success of competing teams to sev-
eral characteristics which include limited human operator
interaction, more robot autonomy for simple tasks, and
having multiple specialized operators. Hence, the end-user
group may even require multiple interfaces depending on
the variety of tasks they will encounter. These results are
not directly applicable to rescue force robot operators since
participants in the DRC were mainly experienced roboticists.
Nevertheless, it strongly indicates the necessity of easily
modifiable and quickly creatable, capable HRIs to address
(new) tasks with accessible, preferably autonomous, behav-
iors in research environments.

In the ROS community, the open-source visualization tool
RViz is one of the major diagnostics and to a limited extent
also control interfaces. RViz provides 3D visualizations for
numerous types of sensor data and can be extended with
visualizations for custom representations. However, it has
neither been intended nor is it suited as an end-user control
interface. For such purposes, it is highly complicated to use
even for simple tasks. For example, changing the displayed
camera costs the operator a significant amount of valuable
time during deployment.

In order to create a custom HRI, for every widely-used
programming language there exist numerous frameworks en-
abling the development of human-machine interfaces (HMI)
— of which HRIs are a subset. There are platform-dependent
toolkits such as Windows Forms, Windows Presentation
Foundation, Universal Windows Platform (Windows / C++
/ C# / VB), Cocoa (macOS / Objective-C), Android (Java /
C++) and platform-independent toolkits such as GTK (C++
/ C#), Swing (Java), QtWidget, QML (C++ / Python / C#),

default.rviz* - RViz

File Panels Help
.

=D

T I |

0%

Reset

Behaviors

Explore Arm

125 fps

Fig. 1.

An example of a human-robot interface created using the packages presented in this paper. The HRI is divided into two major parts: the virtual

3D scene (top) and a dashboard (bottom). The virtual 3D scene shows the robot and a colored pointcloud |]§|] Overlaid are the current time at the top left
and buttons to select the currently active RViz tool. The dashboard contains from left to right, top to bottom: controls for the view controller, an emergency
stop button, a visualization of the robot’s orientation and flipper positions, the currently active operating mode (autonomous, supervised, safe), the battery
status, two multi-camera views, and a tab view with tabs for the mission if the robot is driving autonomously, the behaviors which is a collection of buttons

that will trigger FlexBE [8]] behaviors using ROS actions when clicked, and a third tab with general operating settings for the robot.

Web-based (JavaScript) and many more. In the robotics con-
text, this number is only limited by the availability of ROS
client libraries for the programming language. Officially,
ROS supports C++ and Python but there exist community-
developed client libraries for other languages such as Java
and JavaScript. Most of these HMI frameworks require
compilation for every change, rendering them unsuitable for
rapid prototyping, and/or require large amounts of boilerplate
code which inhibits quick visualizations, e.g., for diagnostics.
Others, such as web-based applications are still lacking the
performance and 3D rendering libraries available for native
applications.

The Qt Modeling Language (QML) aims to bridge this
gap as a high-performance GPU-accelerated alternative to
HTML-based HMIs. QML is a runtime-compiled declarative
language based on the composition of primitive controls and
layouts implemented in C++ and supports inline logic using
a JavaScript engine that also supports interoperability with
C++ code.

In this paper, we introduce five software packages to
facilitate rapid prototyping of end-user, diagnostic, and pre-
sentation HRIs using QML and RViz (see Fig. [T). First,
we introduce the ros_babel fish and ros2_babel_fish packages

which allow communication with ROS and ROS2 respec-
tively using message definitions that don’t need to be known
at compile time. Then, we introduce gml_ros_plugin and
gml_ros2_plugin which provide a QML module to connect
QML-based HRIs to ROS and ROS2-based robots. Finally,
we introduce hector_rviz_overlay, a package that enables the
rendering of Qt-based (QtWidget and QML) HRIs on top of
the 3D scene in RViz. Combined, these open-source pack-
ages will allow the robotics community to quickly develop
visually appealing visualizations and performant control or
diagnostic interfaces for their robotic demonstrators.

II. HUMAN-ROBOT-INTERFACE TOOLS

In this section, we introduce the packages presented in this
paper. The tools consist of three separate components which
will be introduced in detail in the following subsection.
Bridging the connection from ROS to runtime evaluated
languages such as the Qt Modeling Language (QML), the
ros(2)_babel fish packages enable the communication with
messages, services, and actions that are not known at compile
time. Based on these packages, the gml_ros(2)_plugin pack-
ages connect the HMI framework QML to the ROS frame-
work, allowing ROS communication to be used in visually

TABLE I
FEATURES OF THE CURRENTLY AVAILABLE OPEN-SOURCE ROS
COMMUNICATION INTROSPECTION PACKAGES.

Subscribe Publish ~ Services Load
ros_babel _fish (Ours) v v v v
ros_msg_parser v
variant_topic_tools v v

rich HRIs. While this is already sufficient to build standalone
HRIs, the hector_rviz_overlay package enables the integration
of such interfaces directly on top of the 3D scene rendered by
the popular open-source robot and sensor data visualization
application RViz, giving access to the numerous proprietary
or publicly available 3D data visualizations created by the
robotics open-source community.

A. ros_babel fish

The ros_babel_fish package is an introspection and runtime
generation package for ROS communication written in C++.
It supports messages, services, and actions both as a listener
(or subscriber in ROS terms) and a broadcaster (publisher).
Since ROS sends the message definition — which specifies
the message’s structure — with the message, it can decode
any received message and will return it in the form of
the tree structure depicted in Fig. [2] and explained in more
detail at the end of this subsection. Messages sent using
ros_babel_fish do not need to be known at compile time.
If a message of the type that is being sent has been received
earlier, the message definition does not need to be available
on the host machine, otherwise, ros_babel_fish will look up
the message definition from the ROS workspace and fail
if it is not available. In contrast to other external solutions
such as the rosbridge_suite, ros_babel_fish parses the message
directly in the node with a lazy copy mechanism which
results in a significantly reduced overhead in both inter-
process communication and memory usage. To achieve this,
ros_babel_fish parses the message definition and creates a
template for the message. When a message is received, this
template is used to determine the location of each message
member in the raw buffer of the received message. While
trivial values are copied, arrays only store the information
necessary to access the message content in the buffer and
will only copy the data if it is modified.

The existing available open-source C++ introspection

Instantiate

Message <

Inherit
N

ValueMessage ArrayMessage J CompoundMessage

Fig. 2. The structure of the message representation in ros_babel_fish

packages such as rosmsg,parse and variant,topic,tool
are compared to our package in Table [Il While all solutions
can subscribe to unknown messages, only variant_topic_tools
and our package can publish messages. Unique features of
ros_babel_fish include the ability to call and provide services
and publish at compile time unknown messages by loading
their definition from disk at runtime.

The text definition in the ROS message description spec-
ification format is parsed using regular expressions to build
a hierarchical template that converts messages to the tree
structure depicted in Fig. 2] where each node is one of the
following:

1) ValueMessage: This is always a leaf of the tree built
from the three message types. It is used to represent a primi-
tive value of a ROS message, e.g., a string or numeric mem-
ber. For example, the members x, y, z of geometry_msgs/Point
will be represented as ValueMessage<double>.

2) ArrayMessage: This may be a leaf if the values in the
array are primitive types, otherwise, it will be an array of
Message. Arrays of primitives such as the byte array member
data of sensor_msgs/Image are extracted using the previously
described lazy-copy mechanism, allowing the introspection
into large image messages with minimal overhead.

3) CompoundMessage: The CompoundMessage repre-
sents the composite ROS message. It has a mapping of
string keys representing the names of the message members
to Message values. For example, the geometry_msgs/Point
message would be represented as a CompoundMessage with
the keys x, y, and z each mapping to a ValueMessage with
the value for each member.

To publish a message, this tree structure is serialized
back into a raw memory buffer which can be sent using a
standard ROS publisher. For more information and examples
to help in getting started, we refer to the GitHub project for
rosl;abelﬁs}ﬂ

B. ros2_babel fish

Analogous to ros_babel fish, ros2_babel fish provides in-
trospection and runtime generation for ROS2. In contrast
to ROS, ROS2 does not specify a serialization method and
instead leaves this to several middleware implementations
using a middleware abstraction layer. These implementations
differ greatly in the protocol and serialization format they are
using. The only other C++ introspection library available
for ROS2 to the authors knowledge is ros2_introspection’}
ros2_introspection is the ROS2 version of ros_msg_parser
and is limited to the subscription of messages serialized
using the Fast-CDR serialization used by the Fast-DDS
middleware.

To avoid this strong dependency on the used middleware,
ros2_babel_fish makes use of the message introspection pack-
ages introduced in ROS2 that allow introspection directly

Uhttps://github.com/facontidavide/ros_msg_parser
Zhttps://github.com/ANYbotics/variant
3https://github.com/StefanFabian/ros_babel fish
4https://github.com/facontidavide/ros2_introspection

https://github.com/facontidavide/ros_msg_parser
https://github.com/ANYbotics/variant
https://github.com/StefanFabian/ros_babel_fish
https://github.com/facontidavide/ros2_introspection

into the deserialized C++ message class instances. The mes-
sage type is either provided or determined from the adver-
tised topic. Once the type is known, ros2_babel fish dynami-
cally loads the type introspection support from the respective
message library. This means as opposed to the behavior
in ROS1, we need the message binaries to be available at
runtime not only for publishing but also for subscribing to
advertised topics. The benefit of this approach is that it keeps
us independent of the middleware that is being used since we
are operating on the layer above the middleware abstraction.
In theory, this would also allow using ros2_babel fish with
zero-copy shared memory middlewares or intra-process com-
munication since it wraps the message class directly. This is
not yet implemented, however. Essentially, this means that
the memory wrapped using ros2_babel_fish’s introspection
structure — that is largely the same as in ros_babel fish, with
the addition of fixed length and bounded arrays which were
introduced in ROS2 — can be casted directly to an instance
of the actual C++ message class.

The main differences to ros_babel _fish are that ArrayMes-
sages do not wrap a raw buffer but an instance of a C++
container class, the type of which depends on whether it
is a fixed-length, bounded or unbounded array. Also, since
ros2_babel fish operates on a layer above the serialization, it
is not necessary to convert the message before publishing.

For more information and examples to help in getting
started, we refer to the GitHub project for rOSZJ)abel,ﬁs}El

C. gml_ros_plugin and gml_ros2 _plugin

Existing QML modules such as ROS QML Plugirﬂ and
ros,qmﬂ only offer limited ROS support. The ROS QML
Plugin does not support general message publishing and
subscription but only a fixed subset which is limited to TF,
geometry_msgs/Pose, std_msgs/Empty, std_msgs/String, and
displaying a ROS image topic as a QML image. While
it theoretically can display a live video feed from a ROS
camera, it uses a hack to reload the source of an image
at a fixed refresh rate. This leads to additional latency and
wastes computation resources as frames are not presented as
they are received but at a fixed rate and reloaded even if no
new message has been received. The ros_gml plugin supports
publishing and subscribing to any message type but it does
not support services, actions, or include methods to allow the
displaying of image messages which would require special
handling. For ROS2, to the authors knowledge, there exist no
publicly available modules offering any ROS2 integration.

Our contribution, the gml_ros_plugin package and the
gml_ros2 _plugin package support all features of the exist-
ing modules except ROS QML Plugin’s ability to publish
QML items as ROS images. Additionally, it can also be
interfaced with JavaScript to call services (both synchronous
and asynchronous) or actions using the previously introduced
ros_babel_fish and ros2_babel fish packages. To interface

Shttps://github.com/LOEWE-emergenCITY/ros2_babel fish
Shttps://github.com/severin-lemaignan/ros-qml-plugin
7https://github.com/bgromov/ros_qml

- o
Flashlight: Off | /

Fig. 3. The remote control user interface declared in Listingm It displays
a camera feed, a grey joystick area that can be used for steering with mouse
or touch input, and a button to toggle a flashlight using a ROS service.

with QML, the message introspection tree-structure is con-
verted to a QML compatible representation. ValueMessages
are converted to QVariants (Qt’s implementation of variant
types), CompoundMessages to QVariantMaps which repre-
sent a mapping from string keys to QVariant values, and
ArrayMessages are wrapped using a custom wrapper type
implementing a lazy-copy abstraction only converting values
when requested.

ROS camera streams are handled separately and do not
use a type introspection library. Instead, an ImageTrans-
portSubscriber takes a QAbstractVideoSurface which allows
the camera frames to be rendered using a standard QML
VideoOutput item. The ImageTransportSubscriber subscribes
to the camera using the default ROS method provided
by the image_transport package and converts the received
image to an image format that is compatible with the used
VideoOutput if necessary. This allows the stream to update
whenever (and only once) a new image is received. The
ImageTransportSubscriber also provides statistics that can
be read from QML such as the received framerate, the
processing latency introduced by the potentially necessary
conversion and the network latency. The latter requires the
clock of the robot and the computer running the user interface
to be synchronized.

To reduce the network load when displaying previews of
many cameras, our image subscribers can be configured to
refresh only at a specified interval — e.g., 5 seconds — and
use a simple load-balancing algorithm to ensure that the
updates of the camera images do not occur at the same
time which would result in large network usage spikes.
Multiple ImageTransportSubscribers for the same camera
share a single subscription reducing the CPU load caused
by the required image format conversions.

To illustrate how quickly a standalone robot control user
interface can be built using QML and the presented module,
we provide the 36 lines of code in Listing [I] that create a
minimal remote control user interface for a ground robot.
The resulting application is shown in Fig. 3] and features a
video stream and a gray circle that can be used to steer
the robot with the mouse or touch. To steer the robot,
while pressing the left mouse button on the circle at the
bottom center, movement along the vertical axis results in

https://github.com/LOEWE-emergenCITY/ros2_babel_fish
https://github.com/severin-lemaignan/ros-qml-plugin
https://github.com/bgromov/ros_qml

a forward/backward movement whereas movement on the
horizontal axis results in a rotation around the yaw axis.
The movement commands are published directly to the
/cmd_vel topic as a geometry_mgs/Twist message.

Listing 1. A quite minimal remote control user interface
import QtQuick 2.2
import QtQuick.Controls 2.5
import QtMultimedia 5.10
import Ros 1.0
Item {
Component.onCompleted: Ros.init(’qml_example_node’)
ImageTransportSubscriber {
id: imageSubscriber
topic: ”/camera360/pinhole_front/image_rect_color”

VideoOutput { anchors.fill: parent; source: imageSubscriber }
Rectangle {
anchors.horizontalCenter: parent.horizontalCenter
anchors.bottom: parent.bottom
width: 120; height: 120
radius: 60
color: ’#aaaaaa’
MouseArea {
anchors.fill: parent
property var pub: Ros.advertise(”geometry_msgs/Twist”,
”/cmd_vel”, 1)
onPositionChanged: {
var X = —mouse.x / (width / 2) + 1
var y = —mouse.y / (height / 2) + 1
pub.publish({linear: {x: y}, angular: {z: x}})

}

Button {
anchors.bottom: parent.bottom
property bool isOn: true
text: "Flashlight: > + (isOn ? *On’ : "Off”)
onClicked: Service.call(’/flashlight’, *std_srvs/SetBool’,
{data: (isOn = !isOn)})

Additional short getting started examples, as well as doc-
umentation, are available on the respective GitHub projectﬂ

D. hector_rviz_overlay and hector_rviz_plugins

HRIs for end-users and, even more, diagnostic HRIs re-
quire the visualization of the robot’s acquired and aggregated
data. Building such visualizations is time-consuming, hence,
for prototypes and internal diagnostic HRIs it is preferable
to build upon existing highly configurable software such as
RViz for which many data visualizations are freely available.
However, the rendering capabilities of RViz are mostly lim-
ited to 3D visualizations and while it is possible to add 2D
components such as text or buttons that trigger autonomous
behaviors, they will be outside of and take away screen space
from the 3D view. The hector,rviz,overlayﬂ package enables
GPU-accelerated rendering of QML- and QtWidget-based
HRIs overlayed on top of the RViz 3D scene. It injects itself

8https://github.com/StefanFabian/qml_ros_plugin
https://github.com/StefanFabian/qml_ros2_plugin
9https://github.com/tu-darmstadt-ros-pkgs/hector_rviz_overlay

into the rendering pipeline to ensure that the overlay is drawn
after each frame of the 3D view is rendered, and filters the
input events received by RViz to support interaction with the
rendered overlay(s).

For QML overlays the hector_rviz_overlay package also
supports live reloading which automatically reloads the over-
lay if one of the QML files changed. In addition, it provides
an interface that can be used to interact with RViz directly.
For example, retrieve and change the currently active tool,
add properties for the user to modify that will be saved to and
restored from the RViz configuration, and to track the position
of a 3D coordinate in the 2D viewport, e.g., to display hints
or context-based popups for an object in the 3D scene.

RViz 2 ports of the presented packages are not available
at the time of writing.

ITII. APPLICATIONS

Applications for the packages presented in this paper are
manifold and include standalone or RViz based end-user
HRIs such as the one depicted in Fig. [I] This interface
example provides a virtual 3D view of the robot and its
environment, its camera streams, status visualizations, and
buttons to control the robot’s behavior and the view controller
for the 3D view. The latter has been released as part of our
open-source hector,rviz,pluginﬂ package. Using the view
controller’s ROS interface and the gml_ros_plugin package,
the interface can move the camera to different positions
relative to the robot and lock it on to the robot which keeps
the camera at the same location relative to the robot. The
rendering of the QML interface in Fig. [T] takes on average
10.88 ms (CPU time: 3.07 ms) with a standard deviation of
2.85ms (1.61ms) on a 15W i7-8550U notebook processor
with integrated graphics. For comparison, a 60 Hz refresh
rate requires a frame time of at most 16 ms.

In the scientific context, a less obvious but equally impor-
tant application is in quickly creating visualizations for the
demonstration or debugging of algorithms. An example of
such an application is depicted in Fig. 4 where it is used to

10https://github.com/tu-darmstadt-ros-pkgs/hector_rviz_plugins

80
n: 1.0000, 00000, 0.0000, 0.0000
0.00°,0.00%,0.00°

ion: 1.265,-0.623, 0,058
n: 0.9951, 00312, 0.0937, 0.0000.
5,034

10
~Valid: true

Stability Cost: 0.7750409841537476.

Fig. 4. A basic interactive visualization of an iterative pose prediction.
The iteration can be selected using a slider. For the selected iteration, the
input and output orientation and the stability value are displayed.

https://github.com/StefanFabian/qml_ros_plugin
https://github.com/StefanFabian/qml_ros2_plugin
https://github.com/tu-darmstadt-ros-pkgs/hector_rviz_overlay
https://github.com/tu-darmstadt-ros-pkgs/hector_rviz_plugins

@) Face detection result image LEFT ARM IN MOTION

=

RIGHT ARM IN MOTION

Viewing direction mode:

(idle () Look straight ahead
Select language:

(@) english

Enter text

Welcome Introduce Tia...

Fig. 5.
using the tools introduced in this paper.

investigate and visualize the iterative geometric robot pose
prediction method developed in [2]. Commonly, iterative
methods are investigated by logging relevant data and either
using console commands or using start parameters to set
the iteration that is investigated. While these methods can
be implemented quickly, they are cumbersome to use and
need to be well documented to avoid confusion. Using these
packages, an overlay can be quickly constructed that displays
information, such as the orientation and stability published
using ROS messages, and allows to change the displayed
iteration, using a slider that upon change will call a service
requesting the selected iteration.

Another important application is the demonstration of the
robotic system to important stakeholders such as politicians
or research funding commission members. Especially, if
a new platform that is not yet fully integrated with the
software stack or the scientific achievements are not yet in a
presentable state, the packages introduced in this paper can
be used to quickly create a basic user interface to demonstrate
some of the robot’s skills. An example of such a user
interface is depicted in Fig. [5] In approximately 500 lines
of QML code written by a researcher without any previous
experience in QML, it allows controlling the robot’s state,
trigger gestures and custom speech output, and visualize the
robot’s sensors and motor state.

IV. CONCLUSION

In this paper, we have presented a novel software frame-
work that allows ROS and ROS2 users to efficiently create
capable and visually rich HRIs for a very general range of
robotic systems and applications that can run with high re-
fresh rates even on weak hardware. The existing capabilities
of RViz can be utilized and easily extended with custom ROS
data visualizations and interactive triggers for autonomous
behaviors.

) Lok to point (@) Look to face

() german

Choose text to be spoken by the robot:

Hand over spe...

| g;,&\

STOP MOTION !

Happygesture — 100 Sadnessgesture — 30 +

Feargesture — 100 Disgustgesture — 100

Neutralgesture — 100 Welcome gesture — 100

Introduce gesture — 100 Grabgesture — 100

Handover gesture — 100 Handoverspeech — 100

Goodbye — 100 Follow me — 100

Predefined motions:

Sendtexttoro... Open Left Close Left Open Right Close Right

Follow me

Home Wave

A demonstration interface for a new robot platform for research in interaction of humans with humanoid service robots that was quickly created

V. ACKNOWLEDGMENT

We would like to thank all members of Team Hector for
their support in testing the user interface framework. Espe-
cially, we thank Karim Barth for his help in designing and
implementing our user interfaces with the presented tools.
We also thank Jérome Kirchhoff for creating an application
example and his help in creating the demonstration video.

REFERENCES

J. Adams. “Critical Considerations for Human-Robot Inter-
face Development”. In: 2002.

Stefan Fabian, Stefan Kohlbrecher, and Oskar Von Stryk.
“Pose Prediction for Mobile Ground Robots in Uneven
Terrain Based on Difference of Heightmaps”. In: 2020 IEEE
International Symposium on Safety, Security, and Rescue
Robotics (SSRR). DOI: [10.1109/SSRR50563.2020.9292574.
Thomas Kollar et al. “A Multi-modal Approach for Natural
Human-Robot Interaction”. In: Social Robotics. 2012.
Robin R. Murphy and Satoshi Tadokoro. “User Interfaces
for Human-Robot Interaction in Field Robotics”. In: Dis-
aster Robotics: Results from the ImPACT Tough Robotics
Challenge. DOI: 10.1007/978-3-030-05321-5_11|

Adam Norton et al. “Analysis of human-robot interaction
at the DARPA Robotics Challenge Finals”. In: The Interna-
tional Journal of Robotics Research 36 (2017).

Martin Oehler and Oskar von Stryk. “A Flexible Framework
for Virtual Omnidirection Vision to Improve Operator Situ-
ation Awareness”. In: 2021 European Conference on Mobile
Robots (ECMR). 2021.

Morgan Quigley et al. “ROS: an open-source Robot Operat-
ing System”. In: ICRA Workshop on Open Source Software.
Philipp Schillinger, Stefan Kohlbrecher, and Oskar von
Stryk. “Human-Robot Collaborative High-Level Control
with an Application to Rescue Robotics”. In: IEEE Inter-
national Conference on Robotics and Automation. 2016.
Daniel Szafir. “Mediating human-robot interactions with
virtual, augmented, and mixed reality”. In: International
Conference on Human-Computer Interaction. 2019.

Veiko Vunder et al. “Improved Situational Awareness in
ROS Using Panospheric Vision and Virtual Reality”. In:
2018 11th International Conference on Human System In-
teraction (HSI). IEEE. DOI: |10.1109/HS1.2018.8431062.

(1]
(2]

(3]
(4]

(5]

(6]

(7]
(8]

(9]

(10]

https://doi.org/10.1109/SSRR50563.2020.9292574
https://doi.org/10.1007/978-3-030-05321-5_11
https://doi.org/10.1109/HSI.2018.8431062

	INTRODUCTION
	HUMAN-ROBOT-INTERFACE TOOLS
	ros_babel_fish
	ValueMessage
	ArrayMessage
	CompoundMessage

	ros2_babel_fish
	qml_ros_plugin and qml_ros2_plugin
	hector_rviz_overlay and hector_rviz_plugins

	APPLICATIONS
	CONCLUSION
	ACKNOWLEDGMENT

