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HectorGrapher: Continuous-time Lidar SLAM with Multi-resolution
Signed Distance Function Registration for Challenging Terrain
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Abstract— For deployment in previously unknown, unstruc-
tured, and GPS-denied environments, autonomous mobile res-
cue robots need to localize themselves in such environments and
create a map of it using a simultaneous localization and map-
ping (SLAM) approach. Continuous-time SLAM approaches
represent the pose as a time-continuous estimate that provides
high accuracy and allows correcting for distortions induced by
motion during the scan capture. To enable robust and accurate
real-time SLAM in challenging terrain, we propose HectorG-
rapher which enables accurate localization by continuous-time
pose estimation and robust scan registration based on multi-
resolution signed distance functions. We evaluate the method in
multiple publicly available real-world datasets, as well as a data
set from the RoboCup 2021 Rescue League, where we applied
the proposed method to win the Best-in-Class ”Exploration and
Mapping” Award.

I. INTRODUCTION

To perform missions within unknown, degraded, and GPS-
denied environments, autonomous mobile rescue robots need
to localize themselves in such environments and create a
map of it using a simultaneous localization and mapping
(SLAM) approach. The capability to create accurate maps
and precisely locate the robot’s pose in the map are key
prerequisites for many higher-level autonomous functions
such as navigation or exploration.
During search and rescue missions, the motion characteristics
can be highly challenging, e.g., traversing obstacles induces
aggressive roll-pitch motions and poor odometry estimates as
tracks/wheels slip. Environments are typically unstructured
and might contain narrow indoor transits in addition to wide,
open outdoor spaces with translucent vegetation. These char-
acteristics make both state estimation and mapping highly
challenging.
Continuous-time SLAM (CT-SLAM) approaches, such as
LIO-SAM [1], the lidar odometry approach by Quenzel et
al. [2] or Elastic LiDAR fusion [3] represent the estimate of
the trajectory by a continuous function, defined by a discrete
set of control points. In contrast to discrete approaches,
continuous approaches natively are able to fuse high frequent
data as the dimensionality of the state only depends on the
number of control points and is independent of the frequency
of the sensor data. Furthermore, the continuity of the pose

All authors are with the Simulation, Systems Optimization and
Robotics Group, Technical University of Darmstadt, Hochschulstr.
10, 64289 Darmstadt, Germany {daun, schnaubelt,
stryk}@sim.tu-darmstadt.de

Research presented in this paper has been supported in parts by the
German Federal Ministry of Education and Research (BMBF) within the
subproject ”Autonomous Assistance Functions for Ground Robots” of the
collaborative A-DRZ project (grant no. 13N14861) and by the LOEWE
initiative (Hesse, Germany) within the emergenCITY center.

Fig. 1: To enable robust and accurate real-time SLAM in
challenging terrain, such as the RoboCup Rescue League
Elevated Ramps lane, we propose HectorGrapher which
enables accurate localization by continuous-time pose esti-
mation and robust scan registration based on multi-resolution
signed distance functions.

estimation allows to correct for motion distortions during
lidar scan acquisition [4] as well as rolling shutter effects
for cameras [5]. Thereby, CT-SLAM approaches are well
suited for the application in mobile rescue robots.

We propose HectorGrapher, a robust continuous-time
framework for mobile rescue robots. The framework is
developed for the needs of robust and efficient 3D SLAM for
the mobile ground robots used for urban search and rescue
research at Team Hector1 and the German Center for Rescue
Robotics2.
We fuse IMU and wheel odometry3 as wheel-inertial odom-
etry to reach a low latency prior estimate of the trajectory.
Slippage, sensor noise and model errors induce drift which
is further reduced by the lidar-inertial odometry which reg-
isters lidar data in a continuous time framework and gains
robustness by performing scan-to-map registration in a multi-
resolution signed distance function (SDF) map. To achieve
global consistency, we maintain a global pose graph with
efficient branch-and-bound-based loop-closure detection.

We base our work on Cartographer[6], an open-source
SLAM system that implements occupancy grid-based scan-
to-map matching and loop closure detection. The project
contained an early version for batch optimization of range

1https://www.teamhector.de/
2https://rettungsrobotik.de/en/
3For readability, we only refer to wheel odometry although it also covers

odometry of tracked robots.



data, odometry and IMU that was discontinued4, which we
use as a basis of our implementation. This paper builds on
the findings of our previous work on large-scale 2D SDF
SLAM [7]. The main contributions of this paper are:

• Optimization-based odometry and inertial fusion
• Continuous-time, multi-resolution SDF-based lidar-

inertial odometry
• Quantitative and qualitative evaluation with ground-

truth annotated benchmark data for ground robots in
challenging terrain.

Our implementation and benchmark data is publicly avail-
able5.

II. RELATED WORK

The SLAM problem covers two aspects – estimating the
robot trajectory and mapping the environment. This requires
suitable techniques to model the trajectory and the environ-
ment, which influence the choice of methods to optimize the
trajectory and the map.
Continuous-time SLAM (CT-SLAM) approaches represent
the estimate of the trajectory by a continuous function,
defined by a discrete set of control points. In contrast to
discrete approaches, continuous approaches easily enable
fusing high-frequency data as the dimensionality of the
state only depends on the number of control points and is
independent of the frequency of the sensor data. Early work
towards CT-SLAM approaches was introduced by Bosse and
Zlot [4], who propose a linear interpolation-based registration
scheme to estimate the continuous trajectory of spinning 2D
lidars, by matching the geometric structure of local point
clusters. Thereby, they are able to compensate distortions
in the scan cloud induced during the scan acquisition.
Following up, LOAM [8] proposes a two-fold approach,
one part continuously performs a low accuracy registration
to achieve a high-frequency velocity update while another
part performs a less frequent higher accuracy registration
to correct for drift and update the map. Point clouds are
matched by extracting edge and plane features to perform
efficient scan registration. LeGO-LOAM [9] extends the
LOAM approach by separating the ground for scan matching
and gain further efficiency by splitting the optimization in
solving different components of the six degree-of-freedom
transformation separately. LIO-SAM [1] applies the LOAM
registration scheme in a smoothing and mapping context,
which fuses preintegrated IMU measurements [10] and lidar
registration jointly in a pose graph framework.
Instead of linear interpolation various works leverage more
complex trajectory representations such as B-Splines [2, 5,
11]. Nüchter et al. [12] apply a global continuous time
formulation to improve the registration results of Cartogra-
pher [6].

Aiming to provide robust localization in uncertain settings,
LOCUS [13] proposes to leverage a multi-stage scan match-
ing scheme fusing multi-modal odometry sources to achieve
robust SLAM in cave exploration scenarios.

4https://github.com/cartographer-project/cartographer/pull/368
5https://github.com/tu-darmstadt-ros-pkg/hectorgrapher

Representing the environment using TSDFs, a volumet-
ric environment representation storing the truncated signed
distance to the next surface in each cell was introduced in
the seminal work of Curless and Levoy [14]. TSDF gained
further attention by the introduction of KinectFusion [15]
a method for live 3D tracking and mapping of room-scale
environments. Performing a point-to-plane iterative closest
point algorithm (ICP) optimized for efficient usage of GPU
parallelization they were able to generate high-resolution 3D
maps in real-time. Bylow et al. [16] propose an alternative
optimization scheme by directly minimize the depth error
of the RGB-D image on the TSDF. Thereby, improving the
accuracy of the tracked pose. Complementing the previous
works, Slavcheva et al. [17] propose directly representing
the RGB-D Image as TSDF and performing direct TSDF to
TSDF registration. This yields further improvements in the
size of the convergence basin, rotational motion estimation
and reconstruction quality.
LiDAR systems differ from RGB-D cameras, as range and
field of view are significantly are larger, leading to more
measurements with steep incident angles which induce pro-
jection errors in TSDFs. To correct these errors Fossel et
al. [18] compute regression lines in the scan. Daun et al. [7]
estimate scan normals to approximate the Euclidean distance.
Conventional TSDF approaches suffer from overwriting ar-
tifacts when objects are thinner than the truncation distance.
Splietker et al. [19] overcome this issue by storing the SDF
value for multiple surface orientations separately.

An established technique to improve scalability and ro-
bustness of grid-based methods are multi-resolution ap-
proaches. Hector SLAM [20] performs robust 2D scan-
to-map matching against a pyramid of occupancy grids,
starting at the coarsest resolution, forwarding each result as
initialization for the next finer resolution. Quenzel et al. [2]
apply an adaptive resolution selection scheme to perform
efficient surfel-based scan registration. Chen et al. [21]
leverage a hierarchical data structure reconstruction of large-
scale scenes with fine geometric details from depth cameras
on GPUs. Vespa et al. [22] adaptively choose the octree-
resolution based on depth image resolution and the distance
to the object for SLAM in room-scale environments and
demonstrate up to six-fold execution speed-ups to single
resolution grids.

III. METHOD

Our pipeline for solving the SLAM problem consists
of three main components: wheel-inertial odometry, lidar-
inertial odometry and the pose-graph back-end with loop
closure detection. In the wheel-inertial odometry, we fuse
wheel odometry and IMU observations to gain a low latency
and high frequency pose estimate. The result is forwarded to
lidar-inertial odometry, where lidar pointclouds are registered
in multi-resolution TSDF submaps to achieve an accurate and
robust lidar-inertial odometry. Lidar-inertial odometry still
induces small errors, leading to drift in the pose estimate
over time. To maintain global consistency of the map, the
poses from the lidar-inertial odometry are stored in pose-



graph, where we perform loop-closure detection and global
optimization. Optimizing the global pose-graph yields a
globally consistent map and pose estimate.

A. Wheel-Inertial Odometry

Track and wheel encoders enable a high-frequency, low-
latency estimate of the current robot motion state. Due to
slippage and model errors, this estimate is only a rough ap-
proximation. Such errors are particularly strong for rotational
motions in slippage-based drive kinematics such as skid-
steer-kinematics. Inertial sensors provide high-frequency es-
timates of the linear acceleration and the rotational velocity.
Estimating the position requires a double integration of the
acceleration, which strongly amplifies even small errors and
induces unbound drift after short periods of time. In contrast,
integration of the angular components only induces small
drift.

To reach an accurate motion estimate at a high frequency
we fuse inertial and wheel odometry measurements in an
optimization problem which can be stated as a pose-graph,
as shown in Fig. 3. Given the last known state xi =
{pi, vi, Ri, bi}, with the position vector pi, linear velocity
vector vi, orientation matrix Ri and the imu biases bi, and the
unknown state xj we apply the IMU preintegration method
introduced in [10] to estimate the changes in state ∆vpreij ,
∆ppreij and ∆Rpre

ij to define the residuals:

rvij = RT
i (vj − vi − g∆tij)−∆vpreij (1)

rpij = RT
i (pj − pi − vi∆tij −

1

2
g∆t2ij)−∆ppreij (2)

rRij = ∆Rpre
ji RT

i Rj (3)

rbij = bj − bi (4)

Additionally, we directly add the estimated linear velocity
from the track/wheel odometry vencj as unary constraints

rvj = vencj − vj (5)

The residuals of Eq. (1) - Eq. (5) are added to a non-linear
least squares problem which we solve using the Levenberg-
Marquardt implementation in GTSAM6. Furthermore, we
assume to be in an steady state when both, IMU and
odometry indicate no motion, which improves the estimate
of the biases.

B. Lidar-Inertial Odometry

1) Notation: We model the robot state as a time continu-
ous trajectory, similar to the formulation in [3]. The trajectory
is represented by a linear Lie-group valued spline, which
is defined by a set of timestamped control points C. Each
control point ci = [Ti, τi] is given by a rigid transformation
Ti ∈ SE(3) = [R|p] at time τi, which transforms from
the robot body frame into the map frame. For simplicity,
we assume that the IMU frame, robot body frame and lidar
frame coincide. Poses at time τ between two consecutive

6https://gtsam.org/

control points ci and cj with τi < τ < τj are evaluated by
linear interpolation

α = (τ − τi)/(τj − τi) (6)
p = (1− α)pi + αpj (7)

R = slerp(α,Ri, Rj) (8)

with the spherical linear interpolation operator slerp. We
denote the interpolated transform as T (τ) = [R|p].

We denote the observations of single structured lidar scan
H = {hi}i=1,...,N consisting of N timestamped range
observations h = (hx, hy, hz, ht) in the scan coordinate
frame with the sensor pose as the origin of the scan frame.

2) Environment representation: We model the map as a
multi-resolution TSDF. In the following, we first outline the
the principle of a single-resolution TSDF and then extend it
to the multi-resolution formulation in the next section.
The Signed Distance Function Φ : R3 → R maps from for
each position in space to the scalar, signed distance to the
nearest surface . Φ is positive outside of objects and negative
inside of objects. Therefore, object surfaces are encoded as
the zero isocontour (Φ = 0). As an exhaustive evaluating Φ
quickly becomes computational intractable, TSDFs evaluate
Φ only close to the surface. Each evaluation of a position
further away from the closest surface than the truncation
distance τ is truncated

Φτ (x) =


−τ, if Φ(x) < −τ

Φ(x), if |Φ(x)| ≤ τ

τ, if Φ(x) > τ.

(9)

To represent a 3D scene as a TSDF, space is discretized in
a regular grid. Each grid cell c contains the current estimate
of the TSDF MΦ(c), and a scalar weight Mw(c) indicating
the confidence in the TSDF value.

As estimating the Euclidean distance for every cell is com-
putationally intense, most approaches approximate it. Most
common are projective approaches [15] from the context of
depth image integration. They update the the cells along a
ray from the origin towards the observed scan point. The less
orthogonal the viewing angle becomes, the more inaccurate
are the update distances. Especially for sparse, long-range
lidar sensors, this significantly reduces the quality of the
resulting map. To compensate for the distance biases induced
by using the projective distance, we showed in [7] that the
use of scan normals to approximate the Euclidean distance
improves the accuracy of the resulting map for long range
sensors.

We update cells around a range observation hi which are
on the ray in the direction of the scan normal ni

v(u) = hi − uni. (10)

with the interpolation parameter u.
All cells c along the ray v(u) within the truncation

distance (u ∈ [−τ, τ ]) are updated by taking a weighted
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Fig. 2: SLAM System Overview
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and linear velocity estimates vencj from track or wheel
encoders in a small factor graph to compute a high-frequency,
low-latency estimate of the robot motion.

Fig. 4: We maintain two grids a high-resolution grid and
a low-resolution grid with the same relative truncation dis-
tance. During scan matching, for each point we evaluate the
SDF at the highest resolution providing a valid interpolation.

moving average of the distance measurements

MΦ(c) :=
MW (c)MΦ(c) + ω(u)Φτ (u)

W (c) + ω(u)
(11)

MW (c) := MW (c) + ω(u) (12)

with the update weighting function ω(u). We apply constant
weighting function ω(u) = const.

3) Optimization: We register the lidar scans and wheel-
inertial odometry in a joint optimization. For registering
scans in TSDF, two paradigms are prevalent: ICP based
registration [15] and direct optimization of the pose on
the TSDF [16]. As [16] indicates benefits in accuracy and
efficiency for the direct optimization, we use the direct
formulation as a basis and extend it by the mult-resolution
registration and wheel-inertial odometry terms.

For the original direct optimization approach the conver-
gence basin is limited by the truncation distance, as outside
the truncation distance the gradient is constant. Furthermore,
it requires an interpolation of the discrete TSDF grid to
compute gradients, which might not be possible if the

scan data is sparse. Finally, expressiveness and thereby the
accuracy depends on the grid resolution.

To leverage the precision of the high grid resolution and
the robustness of a lower resolution we apply a multi-
resolution scan matching approach (see Fig. 4). We maintain
two TSDF grids with different resolutions, a high resolution
grid Mhigh

Φ and a low resolution grid M low
Φ , but both with

the same relative truncation distance with respect to the
resolution. For scan matching we evaluate SDF at the highest
resolution providing a valid gradient. This leads to coarse and
robust gradients in large area around the surface and precise
gradient close to the surface.

Following the derivations in [16], we phrase the registra-
tion as a Nonlinear Least Squares Problem

min
C

N∑
i=1

(
ΦMR

I (T (τi)hi)
)2

+

|C|−1∑
i=1

(r(T−1
i+1Ti∆T odom

i;i+1 ))
2,

(13)
r(Ti) := [p|RPY (R)] (14)

ΦMR
I is the tri-linear interpolation of the highest resolution

grid available providing a valid interpolation. We consider an
interpolation to be valid, when none of the eight neighboring
cells is uninitialized. RPY (R) is the extraction of the
Cardanian angles from the rotation matrix R. We solve the
optimization with the Levenberg-Marquardt method using
the Ceres Solver [23] and compute gradients with Automatic
Differentiation.

C. Loop Closure and pose-graph

Scan matching induces small registration errors, resulting
in an accumulation of errors over large distances. Thereby,
it yields global inconsistencies in the pose estimate and the
map.
To correct these errors, Cartographer generates many small,
locally consistent submaps connected in a pose-graph. Op-
timizing the pose-graph for its constraints yields a globally
consistent map if sufficient constraints have been found. The
algorithm uses an efficient branch-and-bound based approach
[6] to compute loop closure constraints for occupancy grids.
By adapting the scan matching problem and bounding func-
tion for the method can be generalized for SDFs as shown
in [7].

IV. EVALUATION

In this section, we give an evaluation of the performance in
various settings, from small isolated tests up to a large-scaled
mixed indoor-outdoor scenario. We perform the evaluation



(a) The Asterix robot. (b) The EC scout robot.

Fig. 5: The rescue robots used in the evaluation are equipped
with lidar, IMU, onboard compute and various use-case
specific sensors.

with two different ground robots, each with a different sensor
configuration (see Figure 5).
We demonstrate the capability to accurately estimate the
robot motion while traversing complex obstacles and NIST
test methods for mobility and maneuvering [24] and quantify
the accuracy by comparing against the reference of a motion
capture system. Furthermore, we demonstrate the capability
to map a larger complex environment with various obstacles
on the ground with a data-set from RoboCup Rescue League
2021. Finally, we demonstrate the capabilities to map a large-
scale mixed indoor-outdoor scenario with multiple loops.

A. System

In the following, we shortly present the robotic systems
used to evaluate the SLAM approach. The tracked robot
Asterix shown in Figure 5a is equipped with a continuously
rotating Velodyne VLP16 lidar, a LORD MicroStrain
3DM-GX3-45 IMU and performs the onboard computing
on a Intel NUC with an i7-10510U hexacore processor.
The lidar is mounted on a pitched rotating mount to
achieve comprehensive geometry data acquisition coverage,
increasing the effective vertical FOV from 30° (in case of
fixed mounting) to 120°. For high mobility in challenging
terrain, the robot is equipped with adjustable flippers, see
[25] for more details. EC Scout, shown in Figure 5b, is a
4-wheel drive platform targeted at urban environments. It
carries an autonomy module containing an Ouster OS0-128
lidar and a Xsens MTi-G-710 IMU. For onboard-processing
of the data, an AMD Ryzen 9 5950X CPU with 16 cores is
used.

B. Terrain Sequences

To evaluate the performance of our approach in challeng-
ing terrains, we captured four sequences with challenging
terrain, each tracked with with a high-performance Qualisys
optical motion capture system. The four sequences (see
Figure 6) contain 1) double pitch ramps, which induce
a fast pitch motion when traversing 2) a loose woodpile
which slips when traversed 3) the RoboCup Rescue League
”Maneuvering 3 - Traverse” lane which contains a 2.4m long
30° incline and 4) the the RoboCup Rescue League ”Mobility

4 - Elevated Ramps” lane containing a diagonal hill terrain
consisting of 60 cm ramps with sloped tops. The sequences
are between 59 s and 149 s in duration.

We compare the accuracy of HectorGrapher and Cartog-
rapher[6] with reference to the measurements from a visual
motion capture system. Other state-of-the-art systems such as
LIO-SAM[1] are not included as, to our best knowledge, they
do not support the spinning lidar configuration. We use the
odometry benchmark measure suggested in [26], splitting the
motion capture trajectory in 0.5 s sequences and comparing
the errors for the translation and rotation component of each
sequence. Both, HectorGrapher and Cartographer are able to
generate qualitatively comparable maps of the environment.
The error metrics are shown in Figure 7.

For the rotation component both methods achieve com-
parable results, with outliers in the same value region.
HectorGrapher performs slightly worse for small errors.
In contrast, for the translation significant differences are
notable. The median error of Cartographer is more than two
times the median error of Hectorgrapher in the woodpile
and elevated ramps scenarios, and even in the continuous
ramps and traverse scenario 40%- 60% larger. Notable are
also the outliers with high errors with 12 cm-14 cm in three
scenarios, whereas the errors for HectorGrapher are no larger
than 6 cm. The improved localization accuracy can also be
observed in the scan registration quality. Figure 8 shows the
registered pointclouds for the ”Continuous ramps” scenario.
While the Cartographer result shows shift artifacts at the
pallet stack and the wall, such artifacts are less notable in
the HectorGrapher result.

Runtimes for HectorGrapher were 4-5.5 times higher than
for Cartographer, which seems reasonable as the optimization
problem becomes significantly larger and the update of the
TSDF require more computation than the update of the
occupancy grid in Cartographer.

C. RoboCup Rescue League 2021
We applied the proposed method for the RoboCup Rescue

League 2021, winning the best-in-class ”Exploration and
Mapping” award. Each team had to setup a scenario fol-
lowing the same rules, following the NIST guidelines for
evaluation of rescue robots7, distributing 10 barrels at two
different heights as visual fiducials. The fiducials appear as
circles in the 2D projection of the map and are utilized to
measure accuracy and completeness. To make the terrain
challenging, every 4.8m had to contain a small obstacle
(see Figure 9a) such as a wooden bar or a ramp. As part
of the scenario we traversed the RoboCup German Open
- ”EXP 1 Map on Continuous Ramps” Arena (see Figure
9b) which is a narrow, 1.2m wide corridor in wave form
in a 7.2m×2.4m area continuously paved with ramps. The
ramps induce fast roll-pitch motions. In combination with the
narrow environment, both tasks - navigation and mapping -
are challenging.

The data set covers 622 s of data. As the data set is rather
small in scale and does not cover large loops we only perform

7https://rrl.robocup.org/forms-guides-labels/



(a) Continuous ramps (b) Woodpile (c) RoboCup Rescue League:
Maneuvering 3 - Traverse

(d) RoboCup Rescue League:
Mobility 4 - Elevated Ramps

Fig. 6: Overview of the evaluation scenarios with ground truth data.
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Fig. 7: Quantitative Error Comparison of Cartographer
(Carto) and HectorGrapher (Hector) in the four evaluation
scenarios.

the lidar odometry part and do not need to check for loop
closures.

The resulting map, trajectory and pointcloud are shown in
Figure 10. The map overall shows a high consistency, even
in the narrow parts such as the EXP1 arena. The fiducials
are clearly visible in the 2D projection and demonstrate the
accuracy and coverage. On a desktop computer with an AMD
Ryzen 9 3900X processor, computations took 193.4 s wall
time and 191.9 s CPU time on a single core with a peak
memory usage of 321.39MB yielding a real-time factor of
3.24. The low computational cost makes the approach well
suited for localization and mapping on mobile robots with
limited hardware.

D. Scout DRZ Loop

To evaluate large-scale mapping capabilities we captured
a mixed indoor-outdoor dataset with three loops at the DRZ
Living Lab in Dortmund with the EC Scout platform. In
contrast to the previous evaluations, this dataset also covers
three loops and outdoor terrain, including an unpaved path

through a scrapyard and an unpaved trail through a small
forest. The unstructuredness and translucency of these en-
vironments makes scan registration challenging. The dataset
covers 704 s of data and a distance of approx. 920m.

As the data set is large in scale, we run the full SLAM
pipeline with lidar odometry, loop closure detection and
pose-graph optimization. As the EC Scout is equipped with
an Ouster OS-0 128 scanner capturing data at more than
10x the rate of the Velodyne VLP-16, we downsample the
pointcloud and only insert 10% of the points in the TSDF
to keep computations manageable.

The resulting map, trajectory and pointcloud are shown in
Figure 11. The map overall shows a high consistency, with all
three loops closed accurately. Geometry inside the building
and outdoors on the scrapyard are sharp and the forest
track is mapped consistently. Minor registration artifacts are
notable in the lower left side of the DRZ Living Lab building
indicating indicating a small angular offset in the submap
registration.
While setting up the configuration for the data set we noted
the tendency of the lidar odometry to erroneous rotational
motions in the forest part leading to a warping of the map.
This issue could be resolved by increasing the weight of
the wheel-inertial odometry rotation component in lidar-
odometry optimization.
We performed the computations with an AMD Ryzen 7
3800X processor, taking 648.7 s wall time and 1832.6 s CPU
time. In comparison the the RoboCup dataset, the increased
pointcloud data lead to increased time of the map update,
while the loop closure detection is executed in seperate
threads and therby mainly increased the CPU time but not
the wall time. The peak memory usage was 2.03GB and the
real-time factor 1.09. The approach is thus capable to operate
in real-time with current hardware.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented and evaluated a full 3D SLAM
framework based on accurate localization by continuous-
time pose estimation and robust scan registration based on
multi-resolution signed distance functions. Our evaluation
showed that the proposed approach achieves high accuracy
in challenging USAR and large scale mixed indoor-outdoor
environments with real-time performance. The proposed
method has been published as open source.

For new lidar sensors, such as the Ouster OS-0 128, the
map update is a performance bottleneck. Therefore, paral-



(a) Cartographer (b) HectorGrapher

Fig. 8: Comparison of the registered pointclouds (colored by height) in the ”Continuous ramps” scenario. The Cartographer
result shows shift artifacts at the pallet stack and the wall (marked by the black boxes), which are less notable in the
HectorGrapher result.

(a) Every 4.8m the scenario con-
tains an obstacle such as a pallet,
ramp or wooden bar. (b) Aerial Photo of the EXP1

Arena with barrel fiducials. Im-
age: Hartmut Surmann

Fig. 9: The RoboCup Rescue League 2021 scenario contains
multiple small obstacles and the EXP1 exploration arena.

lelization schemes such as GPU-utilization appear promising.
Currently, there is no feedback from laser odometry and
pose-graph optimization to the wheel-inertial component.
Aiming for a tighter coupling, similar to IMU integration
in LIO-SAM[1], could further improve results as e.g. biases
can be better compensated.
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