
Pose Prediction for Mobile Ground Robots in Uneven Terrain Based on
Difference of Heightmaps

Stefan Fabian, Stefan Kohlbrecher, and Oskar von Stryk

Abstract— For traversing uneven terrain in degraded envi-
ronments, determining the static stability and consequently the
tip-over risk of a mobile ground rescue robot is fundamental
for planning and evaluation of paths. This paper presents a
novel iterative geometric method that reduces the problem
of robot pose prediction to two-dimensional image-processing
operations by introducing the concept of a robot heightmap.
The presented method requires only geometrical and mass
information extracted from the widely used unified robot
description format (URDF) to compute the robot heightmap,
which makes it transferable to a wide range of mobile robot
platforms without modification. We demonstrate that the ap-
proach accurately predicts the real robot’s 6D pose at the input
x-y-coordinates. Runtimes allowing the evaluation of poses in
the order of ten thousand poses per second show that the
method is computationally efficient enough to be used in online
path planning.

I. INTRODUCTION

Catastrophic events such as the recent chemical explosion
in Beirut, Lebanon, August 2020, can lead to hazardous
environments where exposure poses a high risk to human
rescue forces. Deploying rescue robots can help mitigate
the risk by allowing remote exploration and manipulation
reducing the time human rescue forces are exposed to these
high-risk environments. However, the deployment in such
environments is highly challenging as robot hardware and
software need to account for the challenging conditions,
e.g. unstructured, uneven terrain with high tip-over risk and
limited radio connectivity.

In these environments, robot-terrain interaction becomes
increasingly relevant. Algorithms that take the terrain struc-
ture as well as the robot configuration into account are
essential for the deployment of (semi-)autonomous rescue
robots to become viable.

One particularly active field of research where the robot-
terrain interaction is receiving increased attention is the
field of UGV path planning for robots deployed in rescue
scenarios or extra-planetary missions. Generally, in mobile
robot path planning, the objective is to find a traversable path
from a start position to a goal position. In rescue scenarios,
this search is subject to a soft real-time requirement due
to the exploratory nature of rescue missions where the
terrain is previously unknown and mission time is critical.
A high number of potential locations and orientations on

Stefan Fabian and Oskar von Stryk are with the Technical University
of Darmstadt, Computer Science Department, Simulation, Systems Opti-
mization and Robotics Group, Germany.
{fabian, stryk}@sim.tu-darmstadt.de
Stefan Kohlbrecher is with Energy Robotics GmbH, Germany.
kohlbrecher@energy-robotics.com

a discretized or sampling-based graph have to be evalu-
ated to plan an (approximately) optimal path. Hence, for
online planning, the evaluation of a single location has
to be computationally cheap on mobile robot computing
hardware. As computer hardware advances, the algorithms
have moved on from efficient methods such as planning on
occupancy grids[4], which greatly simplify the problem by
using a binary classification into free and blocked cells in
a fixed-resolution 2D grid, to using handcrafted statistics as
a heuristic to estimate whether a surface is traversable or
not [3][7], or using statistics to label sections into predefined
classes such as stairs, floor, wall, surmountable obstacle etc.
[6][8]. Both the traversability estimates and the predefined
classes can not capture scenarios where a robot may traverse
an obstacle in one configuration or orientation but not in
another and represent a generally conservative limit in the
actions the robot may take.

Brunner et al. divide the models for robot-terrain interac-
tion into four major approaches [2]: machine learning, full
dynamic physics simulation, quasi-static physics simulation,
and iterative geometric methods (IGM). Of these four, only
the last two do not require a training phase and suitable
terrain features that can represent a variety of terrain struc-
tures (machine learning) nor accurate mechanical models of
the robot and the terrain (full dynamic physics simulation).
Brunner et al. propose an iterative geometric method to
efficiently compute the pose and support polygon – which is
defined as the convex hull of the robot’s supporting ground
contacts. The proposed algorithm fits a plane to the local
ground, computes the lowest point in each relevant geometry
– e.g. each flipper or wheel – as contact candidates, and finds
the configuration of three contact candidates where the pro-
jection of the center of mass (COM) is closest to the triangle
formed by the contact candidates with the condition that the
other contact candidates must be above the plane formed by
the three selected candidates. The proposed approach was
evaluated against a quasi-static physics simulation using the
Open Dynamics Engine (ODE). It was demonstrated to be
capable of predicting around twenty-thousand robot poses
per second compared to ten poses per second with ODE
showing that usage in online path planners is possible.

Efficient and accurate algorithms for the estimation of
robot-terrain interaction are crucial for the employment in
online path planning but the application is not limited to
path planning. Other relevant areas of research include but
are not limited to whole-body control – where the trajectory
for all joints along a given input path, e.g., across an
obstacle, is optimized with regard to the robot’s stability and

ground contact points – and operator assistance functions,
e.g. to visualize the currently estimated static stability or the
predicted static stability along the current path extrapolated
from the current operator inputs.

In [10], an optimization-based IGM is used to predict the
robot pose and ground contacts in the context of whole-
body control. Since whole-body control optimizes both the
ground contact using reconfigurable tracks if available and
the location of the COM if possible, e.g. using a heavy multi-
dof arm, the performance and accuracy greatly depend on
the method employed to predict the robot’s pose and ground
contacts.

In this paper, we introduce a novel iterative geometric
approach to efficiently compute the robot pose and contact
points on a terrain heightmap using only information ex-
tracted from the robot’s Unified Robot Description Format
(URDF) making it applicable to a wide range of mobile
robots without modification. The presented approach reduces
the dimensionality of the problem to two-dimensional image-
processing operations that can be performed efficiently on
modern consumer-grade robot hardware. In contrast to [2],
the approach computes both the support polygon and all
contact points enabling the usage for traction estimates
and makes no assumptions about the terrain structure. To
obtain ground truth contact points and heightmaps from the
Gazebo simulator for evaluation purposes, two plugins were
developed and are available as open-source contributions on
GitHub.

The paper is structured as follows: In Section II, the
concept of a robot heightmap is introduced and the algo-
rithms we have developed to efficiently compute the robot
heightmap for a robot described using a URDF file are
presented. Section III details how this robot heightmap can
be used to compute the robot’s pose and ground contacts.
Subsequently, in Section IV, the presented method is evalu-
ated on the real robot depicted in Fig. 1 on a set of ramps
of varying inclination with different orientations and while
crossing a set of ramps on a 22 cm step.

II. ROBOT HEIGHTMAP

Heightmaps are a compact two-dimensional representation
of the local terrain where each discretized grid cell contains
a single value representing the maximum elevation above
a ground plane. A particularly attractive property, in the
context of this work, is that single cell and submap access
can be achieved in O(1).

To efficiently predict the robot pose on a terrain height-
map, we introduce the concept of a two-dimensional height-
map of the robot as HM(N ,N)→ R to reduce the dimen-
sionality of the problem. Each cell in the robot heightmap
represents the minimal distance from a plane parallel to
the x-y-plane, e.g. the bottom of the robot’s axis-aligned
bounding box, to a part of the robot. Fig. 1 visualizes the
heightmap for the robot platform used in the evaluation of
the pose prediction approach proposed in this paper as a
point cloud. Subtracting the terrain heightmap from the robot
heightmap yields the contact map where each cell represents

the distance from the ground to the robot. From the contact
map, we extract the contact points and the support polygon
as the convex hull of the contact points. For an unstable
pose, the rotation axis can be determined by using a stability
measure to identify the unstable axis of the support polygon
and the necessary rotation can be estimated from the contact
map.

The heightmap of the robot is generated by iterating
through the components of the robot and for each component
computing the distance to the bottom of the robot’s axis-
aligned bounding box and if that distance is smaller than
the currently stored value, the value is updated with the new
minimal distance.

A. Coordinate Transform

While the robot is given in the URDF coordinate system,
the heightmap spans in the x-y-plane from [0, 0, 0]T to
[dBBx/ρe, dBBy/ρe, 0]T where BBx/y are the dimensions
of the bounding box BB in x- and y-direction and ρ is the
resolution - i.e. the quadratic cell width - of the heightmap.
Since the heightmap represents the bottom of the bounding
box, the robot has to be transformed such that the center
of the bounding box’s bottom is moved to the center of the
heightmap. Since the rotation of the robot is done before
the computation of the bounding box, this simplifies to a
translation tHM

tHM = cHM − cBB =

dBBx/ρe · ρ/2
dBBy/ρe · ρ/2

0

− cBB

where cHM is the center of the heightmap and cBB is the
center of the bounding box.

B. Heightmap Generation

The heightmap is generated based on the three primitives
that are commonly used in the URDF’s collision model:
spheres, boxes, and cylinders. Extending the algorithm to
meshes is straight-forward but due to the significantly higher
computational cost, it is not recommended to use meshes in
the collision model.

1) Sphere: Due to the rotation-invariance, the sphere is
the most simple form of the three primitives. Given a sphere
with center ~c and a radius r, the orthogonal projection to the
x-y plane of the heightmap is a circle with radius r. This
can be used to efficiently compute the values for each cell

Fig. 1. Left: The robot platform used in this work. A tracked robot with
two chassis tracks and four reconfigurable flippers. Right: The URDF model
and the generated heightmap with a resolution of 5 cm converted to a point
cloud for visualization.

in the heightmap. We iterate y in discrete steps from ymin to
ymax which are computed as

ymin =

⌊
(~cy − r)

ρ

⌋
ymax =

⌈
(~cy + r)

ρ

⌉
Using the circle equation r2 = x2 + y2, we can compute

xmin and xmax using the effective radius in x-direction rx
for each yi ∈ [ymin, ymax].

yr =


yi · ρ+ ρ

2 , yi · ρ ≤ ~cy − ρ
2

yi · ρ− ρ
2 , yi · ρ ≥ ~cy + ρ

2

~cy , otherwise

rx =
√
r2 − (yr − ~cy)2

xmin =

⌊
(~cx − rx)

ρ

⌋
xmax =

⌈
(~cx + rx)

ρ

⌉
Here, yr is snapped to the cell border closest to the

center of the sphere or the center itself in the discretized
grid because that is where the distance to the x-y plane is
the smallest. In the next step, the same is done for each
xk ∈ [xmin, xmax] and the minimal distance dz is computed
using the sphere equation r2 = x2 + y2 + z2 as

xr =


xk · ρ+ ρ

2 , xk · ρ ≤ ~cx − ρ
2

xk · ρ− ρ
2 , xk · ρ ≥ ~cx + ρ

2

~cx , otherwise

dz = ~cz −
√
r2 − (yr − ~cy)2 − (xr − ~cx)2

2) Box: The computation of the heightmap for a box
requires processing one to three discrete sides depending on
the orientation.

Based on

N = |Cb| = |{~c : ~cz ≤ zmin + δ;~c ∈ C}|

where C is the set of corners of the box and N is the
number of corners with z equal to the minimum value of z
among all corners plus a small delta δ for numerical stability,
we split the computation into three cases of increasing
complexity: N = 4, N = 2, and N = 1.

For N = 4, there is only one constant height difference
across the entire box which was calculated before as zmin.
Thus, the calculation of the heightmap values simplifies to
efficiently iterating an arbitrarily rotated (around the z-axis)
rectangle.

In our case, the y-axis is iterated1 and we compute
the minimum and maximum value for x using a scanline
approach. We store the corners of the rectangle (counter-)
clockwise as [a, b, c, d] and determine the corner imin with
the smallest y-value resolving conflicts with the smaller x-
value. Then we obtain the highest corner as imax = (imin+2)
mod 4, and the left and right corner by computing which one
is left of the line connecting the lowest and highest corner.

1Which one is more efficient depends on the memory storage order.

l0

l1

r0

r1

Fig. 2. An example projection for N = 4 and the contour lines.

The problem of computing the minimum and maximum
value of x for each y now simplifies to following two sets of
two lines. From lowest via left to highest and from lowest
via right to highest. Based on the bottom ~pb, top ~pt, left ~pl,
and right ~pr corner we compute the line gradients

l0 =
~pl,x − ~pb,x
~pl,y − ~pb,y

r0 =
~pr,x − ~pb,x
~pr,y − ~pb,y

l1 =
~pt,x − ~pl,x
~pt,y − ~pl,y

r1 =
~pt,x − ~pr,x
~pt,y − ~pl,y

Using these gradients, we can compute the value of the
rectangle borders for each y switching between r0 / l0 and
r1 / l1 when we pass the relevant corner. As illustrated in
Fig. 2, the row centers may not coincide with the minimum
x-value for that row. Hence, a correction term is added

ol,0 = −|l0|
2

ol,1 = −|l1|
2

or,0 =
|l0|
2

or,1 =
|l1|
2

To use this simple form of offset, the start of the lines
has to be adjusted such that they start at the center of a row.
Special handling has to be employed for the start and end of
each line.

For N = 2, we have two sides facing downwards that need
to be identified. We propose indexing the corners as in Fig. 3.
Using this structure, three indices of the form {n, n+1, n+2}
always form a side of the rectangle. The same holds for three
indices of the form {n, n+2, n+4}. The two missing corners
to constrain the relevant sides are split into two cases. If the
two bottom corners have increasing indices of the first form
(d = 1), the two missing corners are given as the highest
index ±2. If the indices are of the second form (d = 2),
they are given as the highest index +2, and −1 if the highest
index is odd and +1, otherwise.

Analogous to the algorithm in N = 4, we can traverse the
rectangle using the rectangle representation

~pr = ~pa + α · ~u+ β · ~v 0 ≤ α, β ≤ 1

~u = ~pb − ~pa ~v = ~pd − ~pa
to compute the value for each cell of the robot heightmap

HM (xk, yi) = ~pa,z + αi,k · ~uz + βi,k · ~vz

where αi,k and βi,k are a linear interpolation from αi,min

to αi,max and βi,min to βi,max obtained by solving

~ci,·,x = ~pa,i,x + α̂i,· · ~ux + β̂i,· · ~vx
~ci,·,y = ~pa,i,y + α̂i,· · ~uy + β̂i,· · ~vy

for ~ci,min and ~ci,max which are the cells with minimal and
maximal x for a given y.

To obtain αi,min, αi,max, βi,min and βi,max, an offset has
to be added to α̂ and β̂ in order to represent not the center
but the minimum of the cell. The offset is obtained as a
constant independent of x or y using

min
αo,βo

αo · ~uz + βo · ~vz

s.t. |αo · ~ux + βo · ~vx| ≤ 0.5

and |αo · ~uy + βo · ~vy| ≤ 0.5

αi,· = α̂i,· + αo βi, · = β̂i, ·+ β

Since the objective function is linear and the constraint space
is rectangular, at least one of the corners is part of the
solution space. At the start or end of a row, the offset may
be outside of the rectangle. In that case, the solution is one
of the intersections of the rectangle with the cell border or
the corner of the rectangle.

For N = 1, we have three sides facing downwards. Using
the structure of the indices, if the index m of the lowest
corner is odd, the sides are given by the combinations {m−
2,m,m+2}, {m−2,m,m−1}, and {m−1,m,m+2}. If
the index of the lowest corner is even, the combinations are
{m−2,m,m+2}, {m+1,m,m+2}, and {m−2,m,m+1}.
Iteration of the rectangles and determination of the minimal
z-value for each cell is done analogously to N = 2.

3) Cylinder: A cylinder is given by its radius on the x-y-
plane and the length or height in z-direction.

The points on the surface of a cylinder with the center at
the origin are given by

r =
√
x2 + y2 , if − l

2
≤ z ≤ l

2

z = ± l
2

, if
√
x2 + y2 ≤ r

where r is the radius and l the length in z-direction.
Depending on the cylinder’s orientation, the projection is

either a circle of constant height, a rectangle of varying
height, or a combination of two ellipses and a rectangle.
The case can be determined using the projected length in
z-direction of the unit z-vector.

7

5

4

0

2

1

3 5 3

4

7

Fig. 3. Left: Corner indices. Right: Projection for N = 2.

If the projected length is 1, the projection is a circle
with constant z-value. The computation simplifies to the
iteration of a circle analogously to the algorithm described
for the sphere shape in II-B.1 without the need to compute
a location-dependent z-value.

If the projected length is 0, the projection is a rectangle
with the z-value dependent on the distance to the projected
central axis. The length of the rectangle is given by the
length of the cylinder and the width by twice the radius.
The rectangle is given by the projection of the bottom and
top center points ~cb = [0, 0,−l/2] and ~ct = [0, 0, l/2]. Using
~v = ~ct−~cb we can obtain the other line of the rectangle ~u as
the one perpendicular to ~v with the constraint that ~uz = 0.
The corners can then be obtained as:

~a = ~cb − r · ~u ~b = ~cb + r · ~u
~c = ~ct + r · ~u ~d = ~ct − r · ~u

The iteration can be done analogously to the rectangle
iteration for the box in II-B.2. It is extended by a line from
~cb to ~ct which is used to determine the minimal distance
dmin of a cell to this central line. The heightmap value can
then be obtained as:

dz = ~cz −
√
r2 − d2min

For the third case, a projected length between 0 and 1
results in two ellipses connected by a rectangle with height
values computed analogously to the rectangle projection case
with an additional z-gradient along the central axis.

Extending the formula for angled cylinders (see Fig. 4)
gives

h (x, y) =

√
r2 − d (xk, yi)2

sin γ

HM (xk, yi) = ~cb,z +

~vx,y ·
([
xk
yi

]
− ~cb

)
|~vx,y|22

· ~vz − h (xk, yi)

This equation contains both a linear and a non-linear
term, hence, computing the minimum is highly expensive and
we incur a small error by only approximating the minimal
distance by using a fixed position in the cell constrained to
be inside the cylinders bounds.

r

γ

h

Fig. 4. Cylinder with an angle of γ degrees to the z-axis and radius r.

For the top ellipse, the heightmap values are computed
with the same equations as the rectangle and we only need
to iterate the ellipse row-wise. Using the ellipse equation
Ax2 + Bxyi + Cy2i = 1 with the center at the origin, we
obtain xmin and xmax for each yi as

A =

(
cos2 α

a2
+

sin2 α

b2

)
C =

(
sin2 α

a2
+

cos2 α

b2

)
B = 2 cosα sinα

(
1

a2
− 1

b2

)

x = − B

2A
yi ±

√(
B

2A

)2

y2i −
C

A
y2i +

1

A

where a and b are computed using that the projection of
the central axis ~v is the minor axis and the perpendicular
vector ~u is the major axis with a length of r. The length of
the minor axis is given by the cosine of the angle γ between
the untransformed and the transformed z-unit vector êz . The
angle α is obtained as the angle between the x-axis and the
major axis ~u.

γ = cos−1 êz a = r b = cos γ · r α = cos−1 ~ux
|~u|

The ymin and ymax for the ellipse are obtained as the
extrema of a different formulation of the ellipse equation
with the center of the ellipse at (cx, cy)

x = cx + a · cosα · cos t− b · sinα · sin t
y = cy + a · sinα · cos t+ b · cosα · sin t

tx = tan−1

(
− b
a
· tanα

)
+ n · π

ty = tan−1

(
b

a
· cotα

)
+ n · π

The bottom ellipse is excluded from the rectangle and
instead, the value for each point in the bottom ellipse is
computed using that the position projected onto the vector
~w – which is obtained by rotating ~v by 90 degrees around
~u – is the height value:

HM (xk, yi) =

([
xk
yi

]
− ~cb/t,x,y

)
· ~wx,y

|~wx,y|22
· ~wz + ~cb/t,z

where ~cb/t is either ~cb or ~ct depending on which has a
smaller z-value.

III. POSE PREDICTION

Using the previously generated robot heightmap, the
pose is predicted in two alternating steps: First, the robot
heightmap is computed, and the contact points and the
resulting support polygon are estimated, then, the stability
for each axis of the support polygon is calculated. If one
of those is unstable, in the second step, the rotation around
that axis is predicted and we go back to the first step. This

process is repeated until all axes of the support polygon are
stable.

1) Contact Map: Contact points are estimated using the
contact map Mcontact which is obtained by subtracting the
terrain heightmap map representing the robot’s surroundings
from the robot heightmap. The contact points are the cells
which have a value smaller or equal to the minimum of the
contact map plus a contact delta which represents a trade-
off between the accuracy of the contact point estimation
and robustness against errors in the terrain heightmap due
to sensor noise present in the sensor data used to compute
the map.

µcontact = minMcontact

{p : (x, y) ∈ p,Mcontact(x, y) ≤ µcontact + δcontact}

If there is only one contact point, the rotation axis is
orthogonal to the line from the contact to the projected COM.
If there are two, they form the rotation axis. Otherwise,
using Andrew’s monotone chain algorithm [1], the convex
hull of the contact points is computed to obtain the support
polygon. The static stability can be estimated with any
stability measure capable of binary stability classification.
In this work, the force-angle stability measure (FASM) by
Papadopoulos et al. [11] is used which computes the angle
between the robot’s COM and each axis of the support
polygon. If the angle is negative, the robot is unstable and
would tip over that axis, otherwise, the algorithm terminates.
The process of computing the contact map and subsequently
the contact points, support polygon, and tip-over axis is
illustrated in Fig. 5

2) Rotation Estimation: If the currently predicted pose is
not stable, we estimate how far the robot would tip over the
unstable axis until it makes ground contact.

0 5 10

0

5

10

(a)

0 5 10

0

5

10

(b)

0 5 10

0

5

10

(c)

0 5 10

0

5

10

(d)

Fig. 5. (a) The robot heightmap with the projection of the COM. Colored
from small cell values in dark blue to high values in yellow. White cells
have no value. (b) The ground heightmap at a step. (c) The contact map
obtained by subtracting the ground from the robot. (d) The contact points
in yellow, the support polygon in blue, and the axis of rotation in red.

α

hground

dheightmap

Fig. 6. Rotation on a ramp with slope α.

The rotation angle is obtained by building a triangle
between the rotation axis and each cell in the heightmap.
We obtain the angle as the minimum over all cells

α̃ = atan2 (hground, dheightmap)

Please note that this simplification has a small systematic
error as indicated by the dashed line in Fig. 6. Since the
rotation axis in effectively all cases does not pass through
the origin, the origin of the robot has to be moved as well
to clear the rotation-induced translation.

IV. RESULTS

The accuracy of the introduced method for predicting the
robot pose was evaluated on the real robot in the scenarios
depicted in Fig. 7 and the stability predictions were evaluated
in a simulated scenario depicted in Fig. 9.

a) Real Robot Scenarios: The ramp scenario was re-
peated for three inclinations at 5°, 12°, and 20°. For each
inclination, the robot was rotated 360° in steps of 22.5° and
the pose was recorded. In the elevated ramp scenario, the
robot was driven across the elevated ramps manually while
using the reconfigurable flippers to test how the approach
handles complex poses where the robot is only supported by
its flippers. The robot was stopped several times along the
path and the pose and joint states were recorded to minimize
the influence of dynamic effects on the pose.

Ground truth poses were obtained using an HTC Vive
tracking system. As stated in [9], the sample-to-sample RMS
of the tracking system is in the sub-millimeter and 0.01°
range but there is a systematic offset in both position and
orientation due to a slanted reference plane that changes after
loss of tracking. However, the pointcloud data used to create

Fig. 7. Evaluation scenarios. Left: A ramp with an inclination of 20°.
Right: Elevated ramps with a step height of 22 cm.

the map was also recorded in the localization frame canceling
out possible errors due to systematic offset and experiments
were constrained to a small area which should minimize the
risk of tracking loss.

The heightmap required for the pose prediction was gen-
erated using the pointcloud from a rotating Velodyne VLP-
16 and the open-source elevation mapping software [5]. It
should also be noted that the presented approach predicts
the pose in which the robot would fall if dropped at a given
location without non-linear dynamic effects. Since we do
not know the input positions that would fall to the recorded
positions, we instead do not update the origin after the
rotation step and instead keep the x-y position fixed at the
cost of possibly requiring more iterations to converge or not
converging at all.

For each of the 16 orientations in each ramp scenario and
28 poses that were collected while traversing the elevated
ramps, the input pose was generated as the x-y-coordinates
of the recorded pose and the extracted rotation around the
z-axis. Fig. 8 shows the distribution of the angular error –
here defined as the minimal rotation required to get from the
predicted orientation to the ground truth orientation – for
each scenario in three different resolutions using a contact
threshold of 0.5 cm. Because the ramp is a flat surface
and the robot ground contact surfaces can be approximated
as a plane, different resolutions are not expected to have
a big influence on the accuracy of the pose prediction in
this scenario. The difference in angular error for the ramp
scenarios at different resolutions can largely be explained by
map inaccuracies.

In Table I, the mean and maximum angular error is given
for different contact thresholds. Pose predictions that did not
converge to a stable support polygon within 10 iterations
were stopped prematurely. This occurred for less than 4%
of the 225 input poses at a contact threshold of 0.25 cm
and decreased steadily to 0% at 2 cm. As mentioned before,
this is caused by keeping the x-y-coordinates fixed which
can result in the prediction algorithm rotating forth and
back between two unstable configurations due to the implicit
translation when ignoring the rotation induced translation.

Smaller thresholds reduce the error in the rotation angle
estimation because hground is computed from the minimum
value but the rotation axis may be up to the contact threshold
above the minimum value. However, if the threshold is
chosen too small, the error in the estimation of the rotation
axis increases as the contact points become more susceptible

TABLE I
POSE PREDICTION ANGULAR ERROR AND CONVERGENCE RATE.

Contact threshold Mean Std. Dev. Max
0.25 cm 1.45° 0.96° 8.17°
0.50 cm 1.34° 0.65° 3.64°
0.75 cm 1.49° 0.86° 6.23°
1.00 cm 1.46° 0.78° 3.89°
1.50 cm 1.83° 1.05° 9.37°
2.00 cm 2.12° 1.23° 9.37°

Ramp 20°
1.0 cm

Ramp 20°
2.5 cm

Ramp 20°
5.0 cm

Ramp 12°
1.0 cm

Ramp 12°
2.5 cm

Ramp 12°
5.0 cm

Ramp 5°
1.0 cm

Ramp 5°
2.5 cm

Ramp 5°
5.0 cm

Elev. Ramp
1.0 cm

Elev. Ramp
2.5 cm

Elev. Ramp
5.0 cm

0

1

2

3
A

ng
.e

rr
or

(°
)

Fig. 8. The angular error plotted for each scenario and the specified heightmap resolutions. The top and bottom bar mark the minimal and maximal
angular error. The middle bar represents the mean error and the width represents the density of the error distribution at that value.

to noise in the terrain height values.
Another point to consider is that the ±3 cm range error

of the VLP-16 specified in the sensor’s datasheet does
not provide precise enough data for the map error to be
within the small threshold that is necessary for an accurate
rotation angle estimate. Hence, we found that it is generally
preferable to use a small threshold for rotation estimation
and a higher threshold as a stopping criterion and to compute
the final support polygon and stability. With this adaptation,
after the first iteration, the support polygon is computed
for the higher threshold and only if it is not stable, the
support polygon for the smaller rotation contact threshold
is computed and the rotation is estimated. This results in
a more accurate support polygon and faster computation at
the cost of a slightly higher angular error. For example,
using a contact threshold of 0.5 cm for the first iteration and
rotation estimation and a threshold of 2.0 cm for the stopping
criterion, the mean error is at 1.54° ±1.08°.

b) Simulated Scenario: As capabilities to obtain ground
truth contact points to test the stability estimates of the pre-
sented approach were not available, it was evaluated with the
physics simulation engine Open Dynamics Engine (ODE)
used in the robotics simulator Gazebo 9 as a reference.
The simulation scenario depicted in Fig. 9 features a step,
rough terrain made of boxes of varying height, and a ramp.
The path of the robot straight across the set of obstacles
was simulated and the poses, contact points, and a ground
truth heightmap of the scenario were obtained using the
open-source package hector ground truth gazebo plugins 2

developed in the context of this work.
Fig. 10 shows the predicted and simulated roll and pitch,

and the stability calculated using the FASM for a map

2https://github.com/tu-darmstadt-ros-pkg/hector_
ground_truth_gazebo_plugins

Fig. 9. Simulation scenario consisting of a pallet, rough terrain, and a
ramp.

resolution of 5 cm. While the angular error is low with a
mean of 1.93° and a std. dev. of ± 2.33° (angular error on
flat grounds excluded) except for the rough terrain which is
the worst case due to the existence of multiple valid poses
with low stability, the stability plot is of greater interest as it
expresses whether the stability of the robot can be accurately
assessed.

The stability graph contains an additional third line with
the estimated stability. This is due to the contact points
obtained from the simulation being limited to points that
are exactly in contact with a surface which leads to the
robot often having only three contact points despite being on
flat ground which leads to jumps in the stability. Hence, an
estimate of the stability was added which uses the presented
method to compute only the contact points for the simulated
pose. The extremum of the estimated stability at step 98 in
Fig. 10 is caused by the simulated robot being off the ramp
on flat ground but the contact estimation still overlapping
with the ramp. To make the stability values comparable, they
are normalized to the stability value on flat ground.

The prediction ran single-threaded on a 6th generation
Intel i7 6700K (released in 2015) running at 4.2GHz. The
prediction of the entire path with a length of 5m took
between 5ms at a resolution and step length of 5 cm and
50ms at a resolution and step length of 1 cm. At a rate
of 10.000 to 20.000 poses per second depending on the
heightmap resolution and the complexity of the terrain, the
approach is sufficiently efficient to be used in local online
path planning. Detailed timings of the individual predictions
are given in Table II.

The timings are in the same order of magnitude as the IGM
method presented in [2] where the authors also measured the
average time to estimate a single pose for an iRobot Packbot
and a Telerob Telemax using ODE at 100ms–300ms. While
the timings are not directly comparable as they were not
obtained on the same machine, the difference can be expected
to be less than one order of magnitude. The robot used
for the evaluation is comparable in the complexity of the

TABLE II
TIMING RESULTS OF HEIGHTMAP POSE PREDICTION.

Resolution Positions Mean Std. Dev. Maximum
1.0 cm 520 81.33 µs ±86.13 µs 537.24 µs
2.5 cm 208 45.06 µs ±44.69 µs 268.23 µs
5.0 cm 104 47.73 µs ±40.36 µs 157.18 µs

0 10 20 30 40 50 60 70 80 90 100

−10
0

10
A

ng
le

in
°

pred. roll
sim. roll
pred. pitch
sim. pitch

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

Step

St
ab

ili
ty predicted

simulated
estimated

Fig. 10. The top graph plots the predicted roll (dashed blue) and pitch (dotted green) against the simulated roll (solid orange) and pitch (solid red) for
each 5 cm increment along the simulated path (Step). The bottom graph plots the predicted stability (dashed blue) against the stability calculated from the
simulated contact points (solid orange) and estimated contact points for the simulated pose (dotted green).

geometric model to the Telemax and the processing was not
further optimized by limiting the heightmap computation to
the components that are most likely to have ground contact.
However, the computed heightmaps were cached to allow
reusing heightmaps for the same (discretized) orientations.

V. CONCLUSIONS

In this paper, the concept of a robot heightmap and algo-
rithms to efficiently compute the robot heightmap from the
robot’s URDF have been introduced. Based on the concept
of a robot heightmap, a novel iterative geometric method for
the prediction of the robot pose on a heightmap has been
introduced. From the difference between a robot heightmap
and the terrain heightmap, the pose and ground contact
points are computed iteratively. Our experiments show that
the presented method significantly outperforms a common
simulation-based approach in terms of computation time
while providing for local online path planning sufficiently
accurate estimations of the robot’s static stability. While
similar in terms of performance to the IGM presented by
[2], our approach does not assume the local terrain to be flat
and provides the means for a traction estimate as it returns
all discretized contact areas. The usage of image-processing
operations allows further performance optimizations by mak-
ing use of graphics accelerators and the usage of the defacto
standard robot description format URDF enables the support
for a wide range of robot platforms using tracked or wheeled
locomotion without adaptation. Furthermore, we provide the
Gazebo plugin package hector ground truth gazebo plugins
used to obtain ground truth data in the simulation as open
source. In future work, we intend to apply the developed
method in online path planning and both active and feedback
operator assistance functions where the approach may be
used to predict the pose and stability of the robot at future
positions extrapolated from the current control inputs and
give an early warning if the predicted stability falls below a
safety threshold.

VI. ACKNOWLEDGEMENT

This work has been co-funded by the LOEWE initiative
(Hesse, Germany) within the emergenCITY centre. Research
presented in this paper has been supported in parts by
the German Federal Ministry of Education and Research
(BMBF) within the subproject ”Autonomous Assistance
Functions for Ground Robots” of the collaborative A-DRZ
project (grant no. 13N14861).

REFERENCES

[1] A.M. Andrew. “Another efficient algorithm for convex hulls in
two dimensions”. In: Information Processing Letters 9.5 (1979),
pp. 216–219.

[2] Michael Brunner et al. “Design and comparative evaluation of
an iterative contact point estimation method for static stability
estimation of mobile actively reconfigurable robots”. In: Robotics
and Autonomous Systems 63 (2015), pp. 89–107. DOI: https:
//doi.org/10.1016/j.robot.2014.09.003.

[3] F. Colas et al. “3D path planning and execution for search and
rescue ground robots”. In: 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Nov. 2013, pp. 722–727.

[4] A. Elfes. “Using occupancy grids for mobile robot perception and
navigation”. In: Computer 22.6 (1989), pp. 46–57.

[5] Péter Fankhauser, Michael Bloesch, and Marco Hutter. “Probabilis-
tic Terrain Mapping for Mobile Robots with Uncertain Localiza-
tion”. In: IEEE Robotics and Automation Letters (RA-L) 3.4 (2018),
pp. 3019–3026. DOI: 10.1109/LRA.2018.2849506.

[6] F. Ferri et al. “Point cloud segmentation and 3D path planning for
tracked vehicles in cluttered and dynamic environments”. In: Proc.
of the 3rd IROS Workshop on Robots in Clutter: Perception and
Interaction in Clutter. 2014.

[7] Tobias Klamt and Sven Behnke. “Anytime hybrid driving-stepping
locomotion planning”. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2017, pp. 4444–4451.

[8] M. Menna et al. “Real-time autonomous 3D navigation for tracked
vehicles in rescue environments”. In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2014, pp. 696–702.

[9] D. C. Niehorster, L. Li, and M. Lappe. “The accuracy and precision
of position and orientation tracking in the HTC vive virtual reality
system for scientific research”. In: i-Perception 8.3 (2017).

[10] M. Oehler, S. Kohlbrecher, and O. von Stryk. “Optimization-
based planning for autonomous traversal of obstacles with mobile
robots”. In: International Journal of Mechanics and Control (Jo-
MaC) (2020), pp. 33–40.

[11] EG Papadopoulos and Daniel A Rey. “A new measure of tipover
stability margin for mobile manipulators”. In: Proceedings of IEEE
International Conference on Robotics and Automation. Vol. 4. 1996,
pp. 3111–3116.

