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Abstract— The deployment of mobile robots in urban search
and rescue (USAR) scenarios often requires manipulation
abilities, for example, for clearing debris or opening a door.
Conventional teleoperated control of mobile manipulator arms
with a high number of degrees of freedom in unknown and
unstructured environments is highly challenging and error-
prone. Thus, flexible semi-autonomous manipulation capabil-
ities promise valuable support to the operator and possibly
also prevent failures during missions. However, most existing
approaches are not flexible enough as, e.g., they either assume
a-priori known objects or object classes or require manual
selection of grasp poses. In this paper, an approach is presented
that combines a segmented 3D model of the scene with grasp
pose detection. It enables grasping arbitrary rigid objects based
on a geometric segmentation approach that divides the scene
into objects. Antipodal grasp candidates sampled by the grasp
pose detection are ranked to ensure a robust grasp. The human
remotely operating the robot is able to control the grasping
process using two short interactions in the user interface. Our
real robot experiments demonstrate the capability to grasp
various objects in cluttered environments.

I. INTRODUCTION

Mobile ground robots provide remote presence to human
operators and enable them to perceive and act from a
safe distance. This allows the operator to perform tasks in
USAR missions which otherwise would pose high risks to
human response forces, e.g., due to radiation, toxic fumes,
dangerous materials or collapsing buildings. The deployment
of a mobile robot manipulator can strongly help to minimize
the involved risks. Search and rescue robots in disaster
scenarios are typically facing an a-priori unknown environ-
ment which might also be degraded. Frequently required
complex manipulation tasks include debris removal, closing
or opening valves as well as opening doors. Teleoperated
control of a remote mobile robotic manipulator with a high
number of degrees of freedom (DOF) under such challenging
conditions is slow, error-prone and also requires suitable
low-latency, high-bandwidth communication between robot
and operator. Thus, supporting the human operator via robot
onboard autonomous functions is desirable. On the other
hand, fully autonomous manipulation is also likely to fail
under such conditions. Therefore, the usage of autonomous
manipulation approaches under the supervision of the re-
mote human operator aims at increasing the quality and
speed of manipulation control while simultaneously reducing
the operator workload and interactions needed to control
the USAR robot. Furthermore, the flexibility and control

All authors are with the Simulation, Systems Optimization and
Robotics Group, Technische Universität Darmstadt, Hochschulstr. 10,
64289 Darmstadt, Germany. {schnaubelt, kohlbrecher,
stryk}@sim.tu-darmstadt.de

to handle a large variety of manipulation tasks including
previously unknown ones is maintained. This paper focuses
on the relevant use case of debris removal which requires the
ability to grasp previously unknown objects as most existing
approaches are not flexible enough. The contributions of this
paper include:

1) A method for grasping a-priori unknown objects with
an easy-to-use operator interface by combining a seg-
mented Truncated Signed Distance Function (TSDF)
representation of the scene with a CNN-based grasp
pose detection.

2) A geometric segmentation approach with increased
robustness compared to existing approaches.

II. RELATED WORK

Currently deployed mobile rescue robot manipulators
are teleoperated with direct joint control or end-effector
control in Cartesian space using inverse kinematics (IK).
Brüggemann et al. [1] introduce a more intuitive way of
control by coupling movements of the operator’s arm to
movements of the manipulator arm with the help of multiple
inertial measurement units (IMUs) mounted on the operator’s
arm. However, these approaches require an experienced
operator and are highly demanding due to limited situational
awareness. Klein et al. [2] support the operator by segment-
ing possible grasp objects in RGB images using a saliency-
based approach. The manual selection of a suitable grasp
pose in the 2D image for the automated grasp execution
requires the operator to have expert knowledge.
Romay et al. [3] use a semi-autonomous approach which
represents a-priori known objects using object templates
containing suitable grasp poses and affordance axes. Object
templates provide an efficient representation of robot ma-
nipulation capabilities. However, they need either an experi-
enced operator or a (semi-)automated fitting method to align
the template with the object using the sensor data provided
by the robot.
Klamt et al. [4] expand the concept of grasp templates
to a fully autonomous manipulation approach by using a
semantic segmentation for object detection supplemented
with an object pose estimation. Additionally, grasp poses
are transferred from the canonical model to novel instances
of the same category. This enables the manipulation of
known and similarly shaped objects, but the generalization
capabilities are limited.
De Gregorio et al. [5] grasp previously unknown objects
using an industrial robot arm by creating a 3D TSDF recon-
struction of the scene. Subsequently, the scene is segmented
into objects using a plane-based approach. Grasp points are
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Fig. 1: An overview of the components used to enable grasping of unknown objects. The robot operator is able to select
the object to grasp by selecting a segmented object. Blue objects denote data processors whereas yellow objects represent
data types.
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Fig. 2: (a) A 2D TSDF voxel grid. Each voxel stores the
truncated distance from the voxel center to the closest surface
(dotted lines). Undefined voxels are marked in gray. (b) The
neighborhood of v considered for ρmax = 3.

detected using a planar grasp algorithm that extracts slices
of the 3D object along the principal axis. Although this
approach enables the grasping of unknown objects and the
TSDF representation provides a reconstruction of the scene
that is robust to noise, the planar object segmentation renders
it unsuitable for generic usage in rescue scenarios.
Vezzani et al. [6] use superquadric functions to model
the object and volume that can be grasped by the hand
of the humanoid robot. By utilizing superquadrics fitted
to the sensor data, even occluded regions can be taken
into account. Afterwards, they solve a nonlinear constrained
optimization problem to find a suitable grasping pose while
ensuring obstacle avoidance by using constraints. However,
superquadrics lack appropriate distance functions and col-
lision detection algorithms which makes them unappealing
compared to other approaches, for example, TSDFs.
Instead of using a fully automated segmentation approach,
Butler et al. [7] combine a human-aided segmentation ap-
proach with autonomous grasp execution. While manually
segmenting the 3D sensor data is accurate, the process is
time-consuming and raw sensor data is noisy.
Pas et al. [8] present a model-free, autonomous approach for
grasping objects using data of an RGB-D camera. Antipodal
grasp poses are sampled in point clouds and classified using

a CNN. Using a heuristic, the best grasp sample is selected
and executed which leads to a stable grasp. There is no direct
control over the grasping process which renders the approach
unsuitable for the direct application in the field of rescue
robotics.

III. METHODS
In this chapter, we present our concept for assisted grasp-

ing of unknown objects in complex scenarios, which is
outlined in Figure 1. The approach combines the generation
of a 3D incrementally segmented scene model (ISSM) with
a grasp pose detection which classifies sampled grasp poses
under the supervision of the robot operator.
The robot operator initiates the multi-view object exploration
by selecting the area of interest in the user interface. Then,
based on multiple view poses, an ISSM is created. By
selecting an object segment in the 3D scene, the robot
operator can select the object which should be grasped.
The selected object is then extracted as a point cloud from
the ISSM and used to generate scored grasp candidates.
Subsequently, the grasp candidates are validated and all
valid grasps are ranked based on multiple criteria aiming
at providing a reliable grasp. Afterwards, the best possible
grasp is executed in the grasp execution stage.

A. Multi-View Object Exploration
As the environment around the robot is assumed to be un-

known and populated with arbitrary objects to be potentially
manipulated, the robot operator needs to initiate the robot’s
exploration of the area of interest. The operator is assisted
by a 3D visualization of the environment generated from the
robot’s sensors, primarily the lidar. Using the user interface,
the operator can place a 3D point in the environment which
marks the center of the area of interest. Now, several joint
configurations are autonomously planned for the arm such
that the depth camera captures the area of interest from
different viewpoints.

B. Incrementally Segmented Scene Model
The estimation of suitable grasp poses is based on a

segmented model of the scene which is created following an



approach by Tateno et al. [9]. First, a noise-robust 3D TSDF
map is built from depth data that implicitly describes object
surfaces by using a discretized voxel grid which stores the
truncated distance from the voxel center to the closest object
surface (see Figure 2a for a 2D example). Subsequently, to
update the ISSM, each depth image is segmented using a
geometric segmentation approach and the resulting segments
are propagated into the global ISSM. The segment labels are
propagated by matching the segment labels in the segmented
depth image with those in the ISSM to ensure consistent
segment labels in the ISSM. Finally, the segment update
stage updates the labels assigned to each voxel using a
confidence-based approach.

1) Depth Image Segmentation: Instead of using the seg-
mentation approach suggested by Tateno et al. [9], we extend
the segmentation approach used by Rünz et al. [10] with
increased noise robustness as proposed by Ückermann et al.
[11]. The edge image is computed by applying a threshold to
the sum of the depth-discontinuity term φd and the concavity
term φc

φd + λφc > τ, (1)

with the edge threshold τ and the depth-discontinuity weight
λ. In order to reduce the influence of noisy normal estima-
tions, we compute both terms by averaging over different
window sizes. The concavity term φc is given by

φc =
1

ρmax

ρmax∑
ρ=1

(
max
i∈Nρ

{
0, (vi−v)·n< 0

1−(ni · n), else

)
,

(2)
where Nρ is the neighborhood of the 3D point v with
maximal window size ρmax and n denotes the corresponding
normal while vi and ni are the i-th neighboring point
and normal. The neighborhood is composed of eight pixels
along the vertical, horizontal and diagonal directions with a
distance of ρ steps from the center point, see Figure 2b for a
visualization. The depth-discontinuity term φd is computed
using

φd =
1

ρmax

ρmax∑
ρ=1

(
max
i∈Nρ

{
|(vi − v) · n|

})
. (3)

After the edge map is computed, the segments are extracted
from the binarized edge image by using a connected compo-
nents algorithm. Additionally, the unsegmented border pixels
are assigned to adjacent segments by searching the pixel with
minimal Euclidean distance to the respective border point
[12].

C. Segment Selection

Thanks to the segmented 3D scene model, the robot
operator can be provided with an immersive view of the
objects in the scene. Then, the operator can choose an object
segment which should be grasped by selecting it in the 3D
visualization of the segmented scene. Finally, a point cloud
of the selected object is extracted from the ISSM.

D. Grasp Pose Detection

Suitable grasp poses are detected by sampling grasp poses
in the point cloud and scoring the resulting samples encoded
as multi-channel images using a CNN as presented by Pas et
al. [8]. The detected grasp poses are antipodal grasps which
can guarantee a stable force-closure grasp for two-fingered
hands [13].

E. Grasp Candidate Validation and Ranking

The available grasp candidates are validated by checking
if the grasp pose has an IK solution that is free of collisions
with itself and the environment of the robot. Afterwards,
the score given by the grasp pose detection is augmented
by additional grasp quality metrics in order to find the best
grasp. Given the set of grasp pose candidates, we want
to select the grasp which maximizes the proposed grasp
quality metric Qgrasp consisting of three additional metrics
that augment the grasp score QGPD estimated by the grasp
pose detection. For each grasp pose candidate x, we compute
an IK solution q = {q1, q2, . . . qn} such that the robot gripper
reaches the grasp pose. The first metric applies a linear L1
loss to the Euclidean distance between the center of mass
(COM) and the base link of the robot

QCOM(q) = ‖COM(q)‖2 , (4)

where the function COM(q) computes the COM of the robot
resulting from the joint angle configuration q. A COM that
has a larger distance from the robot’s base link is potentially
less stable and therefore not desired. This is caused by the
fact that the robot arm with the lifted object creates a torque
which needs to be compensated by the base of the mobile
robot. If the torque exceeds a limit, the robot might start
tilting during the grasp resulting in possible damage to the
robot.

Additionally, we seek for maximal joint range availability
[14] in order to minimize the possibility that a joint will reach
a mechanical limit. Therefore, we introduce a Lorentzian
penalty

Qlim(q) =
1

n

n∑
i=1

log

(
1

2

(
qi − ai

c(ai − qi,max)

)2

+ 1

)
, (5)

with ai =
qi,max + qi,min

2
, (6)

for joint angles deviating from the center between the i-th
joint’s limits qi,min and qi,max, i = 1, . . . n. Here, c is used
to scale the penalty. Finally, we want to avoid grasps near
singularities because of the risk of losing one or more DOF.
Thus, we introduce the distance to kinematic singularities

Qsing(q) =
√
det
(
J(q) J>(q)

)
=

n∏
i=1

|σi| . (7)

The distance Qsing is the product of the singular values of
the Jacobian matrix J(q) of the robot manipulator and can
be regarded as a measure for the distance from a kinematic
singularity [15]. This yields the final grasp quality metric

Qgrasp = Qsing(q)
[
QGPD(x)−λ1QCOM(q)−λ2Qlim(q)

]
, (8)



(a) Overview over a scene composed of
multiple stacked pipes and a traffic cone.

(b) As a first step, the center of the area of
interest for the exploration process is marked
by moving an interactive marker.

(c) The resulting segmented scene after the
completed multi-view exploration.

(d) The operator can select the object to be
grasped by clicking on a segment.

(e) The selected object is meshed and used
for grasp pose detection.

(f) Valid grasp candidates for the selected
segment.

Fig. 3: The process of grasp object selection is controlled via two operator inputs, one to mark the area of interest using
the lidar data and one to select the object to grasp.

which is used to rank the grasp candidates. Here, λ1 is the
relative weight for QCOM and λ2 is the relative weight for
Qlim. By factoring out Qsing(q), grasps near singularities are
circumvented.

F. Grasp Execution

Finally, for each ranked and valid grasp candidate, we
compute the corresponding approach vector. In descending
ranking score order, a collision-free trajectory is planned for
each grasp candidate using Moveit! [16]. The planned trajec-
tory moves the gripper into the pre-grasp pose, approaches
the object along the approach vector and then grasps the
object.

IV. RESULTS

In this section, we present the resulting grasping procedure
including the operator interface, compare category-agnostic
instance segmentation performance with two baseline meth-
ods on RGB-D images and test the proposed method for
grasping in clutter.

A. Grasping Procedure & Operator Interface

In the following, we present the procedure for grasping an
arbitrarily shaped object using an exemplary scene (Figure
3a) in detail. As shown in Figure 3b, the robot operator can
start the grasping procedure by marking the center of the
area of interest with a 3D interactive marker. The robot then
explores the area by moving the arm into several view poses
that point the RGB-D camera at the center of the area of
interest. Using the view poses, the 3D ISSM (see Figure
3c) is created. The segmented scene representation augments

the scene understanding of the robot operator obtained by the
image of the RGB camera. Eventually, the robot operator can
select the object which should be grasped by selecting the
segment in the user interface (see Figure 3d). The selected
segment is highlighted as shown in Figure 3e and passed
to the grasp pose detection which returns a set of antipodal
grasps. Subsequently, the best grasp of all valid grasps (see
Figure 3f) is selected for the grasp execution using the grasp
quality metrics.

B. Segmentation Comparison

In the following, we compare the geometric segmentation
approach proposed in Section III-B.1 with two alternative
segmentation approaches on depth images produced by an
Intel D435 RGB-D camera. The first alternative segmentation
approach is a region growing approach [17] that operates on
a point cloud and is implemented in the Point Cloud Library
[19]. The algorithm clusters points by checking a smoothness
constraint that compares the angles between the normals
of the points. The second alternative approach is the SD
Mask R-CNN segmentation [18], a neural network trained for
category-agnostic instance segmentation. The segmentation
quality of the approaches is evaluated and compared using
four example scenes shown in Figure 4. As can be seen, the
segmentation quality of the proposed approach is comparable
to the region growing approach but shows better robustness
to noise in the last scene. Yet, the approach tends to over-
segment objects, for example, the red rope in the last scene.
However, the resulting segmentation quality is sufficient to
command the grasp pipeline accurately.
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Fig. 4: Exemplary results generated by the compared segmentation approaches for four different scenes.

Figure 5 depicts the runtimes of the different segmentation
approaches divided into preprocessing time and segmentation
time which were measured using an Intel Core i7-6700HQ
mobile processor. The preprocessing of the proposed seg-
mentation algorithm consists of subsampling the image by a
factor of 2 followed by inpainting the missing depth values
and a cross-product based normal estimation. For the region
growing approach, the preprocessing needed is a normal
estimation that fits a plane in the local neighborhood of each
point. As SD Mask R-CNN was trained on inpainted depth
images, we inpaint each depth image.

In summary, the proposed segmentation performs well in
comparison with the two other approaches while being more
than one order of magnitude faster. However, SD Mask R-
CNN is able to segment some of the more complex scenes,
for example, the jar standing on the adhesive tape roll in the
third scene even without retraining the neural network for our
specific RGB-D camera including its noise characteristics.
Hence, retraining the neural network on our own data might
yield even better segmentation performance.

C. Grasp Experiments

For testing and evaluating grasping in clutter, the scene
shown in Figure 6 consisting of a pipe laying on a rope
and a wooden block, an adhesive tape roll, and a metal
carrier is used. The experimental platform is equipped with
a 6 DOF manipulator arm and has an Intel D435 RGB-D
camera mounted on the wrist. First, the operator selects the
metal carrier to be grasped. The robot approaches the object
from above and safely extracts the object. Subsequently, the
operator commands to extract the rope. Again, the planned

100 101 102 103 104

Total Time [ms]

SD Mask R-CNN
segmentation

Region growing
segmentation

Proposed
segmentation

Preprocessing Segmentation

Fig. 5: Average runtimes for the different segmentation
approaches composed of the preprocessing of input images
with size 640×480 and the segmentation itself averaged over
four images.

grasp is successful after an additional object exploration. The
segmentation quality is sufficient for the extraction of the
objects, yet the grasping of the tape roll is not possible due
to an oversegmentation of the object. Additionally, the TSDF
reconstruction of the adhesive tape roll is deformed despite
the usage of a voxel resolution of 5mm. This is caused
by a noisy depth image of the RGB-D camera, most likely
because of light reflections due to a sub-optimal viewing
angle. Thus, for the reconstruction and grasping of small
objects and objects with very noisy sensor data, the approach
is not perfectly suited at this point.

V. DISCUSSION AND FUTURE WORK

In this paper, a method has been presented that enables
grasping of unknown objects while maintaining the possibil-



(a) Grasping of a metal carrier stacked on top of the clutter. (b) Grasping of the red rope laying below the pipe.

Fig. 6: Grasping in clutter.

ity to select the object to grasp. By avoiding only pre-defined
object classes, we are able to grasp arbitrary rigid objects.
Thanks to the efficient interface requiring no training, the
method is usable for emergency responders as well. By
detecting antipodal grasps that are ranked using additional
metrics, we aim for robust and stable grasps using a two-
fingered hand. The approach is suitable for all robots that are
able to approach a 6D grasp pose, that have a depth camera,
ideally mounted on the manipulator arm, and that either have
a two-fingered gripper or approximate it. There are several
ways in which the system could be extended. Currently,
the geometric segmentation approach – despite being fast
– tends to oversegment objects in the scene. By improving
the category-agnostic segmentation approach, for example
by incorporating a deep learning-based approach, the overall
performance of the method could be improved even further.
In the current state, the object exploration procedure gener-
ates random view poses for the manipulator arm. Instead,
planning the view poses such that the area of interest is
explored with the minimal number of poses could reduce the
time needed for object exploration. Additionally, executing
the grasps with closed-loop control could compensate for a
slightly decalibrated arm as well as small localization errors
and therefore could increase the robustness of the presented
approach.
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