
Large Scale 2D Laser SLAM using Truncated Signed Distance
Functions

Kevin Daun1, Stefan Kohlbrecher1, Jürgen Sturm2 and Oskar von Stryk1

Abstract— For deployment in previously unknown, unstruc-
tured and GPS-denied environments, autonomous mobile rescue
robots need to localize themselves in the environment and
create a map of it using a simultaneous localization and
mapping (SLAM) approach. While most existing lidar-based
methods use occupancy grids to represent a map, the use of
truncated signed distance functions (TSDFs) is investigated in
this paper to improve accuracy and robustness. In contrast to
occupancy grids, TSDFs represent the distance to the nearest
surface in every grid cell. This enables sub-pixel precision
during localization and increases the basin of convergence of
scan matching. To enable consistent mapping of large spaces,
an efficient branch-and-bound based loop closure detection is
applied. The evaluation of the proposed approach with publicly
available benchmark data shows that the proposed approach
yields improved accuracy in comparison to occupancy grid
based methods, while requiring similar runtime. Furthermore,
it is demonstrated that the proposed approach is able to map a
large scale environment with urban search and rescue elements
in real-time.

I. INTRODUCTION

To perform missions within large, unknown and degraded
environments, autonomous mobile rescue robots need to
localize themselves in such environments and create a map
of it using a simultaneous localization and mapping (SLAM)
approach. The ability to create such a map and locate the
robot’s pose in it are a key prerequisite for many higher level
autonomous functions such as navigation or exploration.

Current state-of-the-art 2D laser SLAM systems such
as Cartographer [1], Hector SLAM [2] or GMapping [3]
represent maps using occupancy grids where every map cell
represents the probability of being occupied. As a result, the
localization accuracy of the occupancy grids is inherently
limited by the map resolution (see Fig. 1). An alternative to
occupancy grid maps are truncated signed distance functions
(TSDFs) [4] where every cell models the distance to the
nearest object surface enabling sub-pixel accuracy. As TS-
DFs provide gradients around the surface they are naturally
suited for optimization based approaches. Furthermore, since
meaningful gradients exist in a larger area, scan matching is
expected to be more robust to poor initialization.

TSDF-based approaches became popular with RGB-D
cameras [5], but so far their utility for laser-based 2D SLAM
has not been fully exploited. The main challenge in applying
these methods to laser scanners is, that those sensors also

1Simulation, Systems Optimization and Robotics Group, Technische Uni-
versität Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany {daun,
kohlbrecher, stryk}@sim.tu-darmstadt.de

2Google Germany GmbH, Erika-Mann-Str. 33, 80636 München, Ger-
many jsturm@google.com

0 0 1 0.5

0 x

Occ.

Zero
gradient

Ambiguous
alignment

(a) Occupancy Grid

2.4 1.4 0.4 −0.6

0 x

Dist.

Continuous
gradient

Exact
alignment

(b) TSDF

Fig. 1: 1D comparison of a TSDF and an occupancy grid
with an ideal sensor. The TSDF accurately reconstructs the
position of the surface whereas the accuracy of occupancy
grid is limited by the grid resolution. As the TSDF provides
gradients in a larger area around the surface, it yields a larger
convergence radius for scan matching.

provide distance readings under highly slanted angles, which
leads to poor surface reconstruction. This requires different
update and inference schemes. Recently, 2D TSDF SLAM
approaches have been explored. Koch et al. [6] applied
TSDFs to urban search and rescue (USAR) environments
demonstrating reduced drift. Fossel et al. [7] demonstrated
improvements in accuracy for office like environments. How-
ever, these methods are not able to map large environments as
they do not detect loop-closures. In this paper, we present a
full SLAM system based on TSDFs and show in experiments
that it outperforms occupancy grids both in terms of accuracy
and robustness.

We base our work on Cartographer, an open-source SLAM
system that implements scan-to-map matching and loop
closure detection. We extend Cartographer to support TSDFs
as an alternative map representation, and introduce corre-
sponding algorithms for scan matching and loop closure
detection. The main contributions of this paper are:
• Investigation of TSDF update rules for long-range sen-

sors
• Extension of the branch-and-bound loop closure detec-

tion [1] for TSDFs
• Quantitative evaluation and comparison of TSDF and

Occupancy Grid based-methods
Our evaluation on artificial data sets and publicly available
benchmark data shows that the proposed approach yields
improved accuracy in comparison to occupancy grid based
methods while improving robustness and requiring similar
runtime. Furthermore, we demonstrate that the proposed
approach is able to map a large scale environment with
USAR elements in real-time. Our implementation is publicly

0.9 0.7

0.3 1

0.1

0.1

0

0.9 0.9 0.9

0.3 0.3 0.3 11 1

1

1

1

1

10.8

0.8

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0

0

(a) Occupancy Grid

-0.5 -0.7 -0.8

0.5 -0 -0 -0 0

-1.1

-1.5

-1.1 -1.5

-0.2

-0.2

-0.2

0.8

0.5

0.5 0.5 0.5

0.5

0.80.80.8

0.3

0.3

0.7

0.7

0.9

1.1

1.1

1.1

1.5

1.5

1.51.5

-0.5-0.5-0.5

-0.5

-0.5

-0.8 -0.8

(b) TSDF

Fig. 2: A two-dimensional occupancy grid and TSDF. The
underlying surface of the scene is indicated by the dashed
lines. Undefined cells are marked in gray.

available1.

II. RELATED WORK

The SLAM problem covers two aspects – estimating the
robot pose and mapping the environment. This requires suit-
able techniques to model the environment, which influence
the choice of methods to optimize the pose and the map.

Common paradigms to address the SLAM problem are
particle filter [3] and graph-based methods [8].

Graph based approaches, introduced by Lu and Milios [9],
combine a front-end and back-end [10]. The front-end con-
tinuously estimates the pose based on local observations such
as odometry or scan matches. The back-end incorporates
global observations such as information from revisiting poses
and continuously updates the whole pose history. The robot
trajectory and map are modeled as a graph, consisting of
nodes for each pose which are constrained by measurements.

While optimizing a pose graph in real-time is usually pos-
sible, detecting constraints requires an exhaustive search in a
large space. Therefore, Hess et al. [1] propose a branch-and-
bound approach for computing loop closure constraints in
occupancy grids in real-time. Occupancy grids (see Fig. 2a)
represent the environment as a volumetric grid, assigning
each cell a probability of being occupied.

Focusing on robustness against rough environments,
Kohlbrecher et al. [2] propose Hector SLAM, a front-end
maintaining a 2D map with 3D motion estimation. It applies
multi-resolution occupancy grids to achieve robust scan
matching.

A method to improve the robustness of scan matching
to poor initialization is real-time correlative scan match-
ing [11] which efficiently samples poses around the initial
scan matching pose to avoid local optima.

Droeschel et al. [12] propose to use local multi-resolution
grids to improve the computational efficiency for mapping
with laser scanners.

In their seminal work, Curless and Levoy [4] propose
modeling the environment using TSDFs (see Fig. 2b). This
method became popular with RGB-D sensors and Kinect-
Fusion [5] an approach capable of live 3D tracking and

1https://github.com/tu-darmstadt-ros-pkg/cartographer/tree/tsdf

reconstruction. Performing a point-to-plane iterative closest
point algorithm (ICP) optimized for efficient usage of GPU
parallelization they were able to generate high-resolution 3D
maps in real-time. Bylow et al. [13] propose to directly
minimize the depth error of the RGB-D image on the TSDF.
Thereby, they demonstrate improvements in accuracy in
comparison to KinectFusion. Slavcheva et al. [14] propose
representing the scan as TSDF and performing direct TSDF
to TSDF matching and demonstrate further improvements
in the size of the convergence basin, rotational motion
estimation and reconstruction fidelity.

LiDAR systems have a larger range in comparison to
RGB-D cameras, leading to more measurements with steep
incident angles and thereby increasing projection errors of
TSDFs. Fossel et al. [7] propose a 2D laser TSDF front-
end approximating the scan with regression lines to correct
for the projection error and show improved accuracy in
comparison to occupancy grids.

Koch et al. [6] propose ohm tsd slam, an ICP based 2D
laser TSDF front-end enabling multi-robot SLAM in USAR
environments.

Our approach applies a direct optimization of scan poses
based on minimizing the distance values in the TSDF [13].
To improve robustness to poor initialization of scan match-
ing we apply real-time correlative scan matching [11]. We
investigate and compare two update schemes for the TSDF:
projective distance [5] and an approximation of the Euclidean
distance based on normal projections which is related to [7].
To enable the mapping of large areas with loop closure in
real-time with TSDFs, we propose a loop closure method for
TSDFs which is derived from the branch-and-bound based
method for occupancy grids in [1].

III. APPROACH

Following [1], we split the the SLAM problem into a local
and a global optimization phase.

Local SLAM (or SLAM frontend) computes locally con-
sistent submaps by performing scan-to-map matching and is
thereby able to generate a pose estimate and a map in real-
time. Scan matching induces small errors, leading to drift in
the pose estimate over time.

To maintain global consistency of the map, Global SLAM
subsequently optimizes the poses of all submaps and scans in
a pose graph. Whenever a submap is finished, the constraint
detection checks for loop closures and adds the new con-
straints to the pose graph. Optimizing the pose graph yields
a globally consistent map.

IV. LOCAL SLAM

Local SLAM solves the online SLAM problem. First, the
sensor pose is estimated by aligning the latest laser scan with
the map. Afterwards, the map is updated to incorporate the
scan information.

A. Scans

We denote a single scan H = {hi}i=1,...,N consisting of
N range observations h = (hx, hy) in the scan coordinate

hi+2

hi+1

hi

hi-1

hi+3

o

(a) Projective Distance Update

hi+2

hi+1

hi

hi-1

hi+3

o

ni

(b) Approximate Euclidean Dis-
tance Update

Fig. 3: To update the TSDF with a scan observation hi
we evaluate two distance methods. (a) updates the cells in
direction of measurement hi to origin x. (b) updates the cells
in direction of the scan normal ni.

frame with the sensor pose as the origin of the scan frame.
The rigid transformation T ξ, with ξ = [ξx, ξy, ξθ]

T trans-
forms a point p ∈ R2 from the scan frame into the map
frame and is defined as

T ξp = Rξp+ tξ =

(
cos ξθ − sin ξθ
sin ξθ cos ξθ

)
p+

(
ξx
ξy

)
. (1)

B. Maps

The key difference of our approach to [1] is that we model
the map as a TSDF. The Signed Distance Function Φ : R2 →
R represents the scalar, signed distance to the nearest surface
for each position in space. Φ is positive outside of objects
and negative inside of objects. Therefore, object surfaces are
encoded as the zero isocontour (Φ = 0). Instead of evaluating
Φ completely, TSDFs evaluate Φ only close to the surface.
Each evaluation of a position further away from the closest
surface than the truncation distance τ is truncated

Φτ (x) =


−τ, if Φ(x) < −τ
Φ(x), if |Φ(x)| ≤ τ
τ, if Φ(x) > τ.

(2)

To represent a 2D scene as a TSDF, space is discretized in
a regular grid. Each grid cell c contains the current estimate
of the TSDF MΦ(c), and a scalar weight Mw(c) indicating
the confidence in the TSDF value.

1) Projective Distance Update: Estimating the proper
Euclidean distance for every cell is computationally intense.
Therefore, most approaches approximate it. A common ap-
proach for updating the TSDF from depth images is the
projective distance cell updates [5] (see Fig. 3a). To update
a TSDF from a new range observation, we model each
measurement as a ray from the sensor origin located at the
origin of the sensor frame to the position of the measurement
hi. Thus, the direction is ĥ = hi

||hi|| . We parameterize the
scan based on an interpolation parameter u as a ray

vprojective(u) = hi + uĥ. (3)

All cells c along the ray v(u) with u ∈ [−||hi||, τ] are
updated by taking a weighted moving average of the distance

measurements

MΦ(c) :=
MW (c)MΦ(c) + ω(u)Φτ (u)

W (c) + ω(u)
(4)

MW (c) := MW (c) + ω(u) (5)

with the update weighting function ω(u). We apply an expo-
nential weighting function as proposed in [13]. Additionally,
we reduce the weight outside the truncation distance in front
of the observation to reduce overwriting effects when the ray
passes by close to other obstacles

ω(u) =


e−σ(u+ε)2 , if u ≤ −ε
1, if u ≤ τ andu > −ε
wfree, u > τ.

(6)

In our experiments values in the range of 0.1 ≤ wfree ≤ 0.5
yielded accurate tracking results.

2) Approximate Euclidean Distance Update: The pro-
jective distance function is only accurate for observations
with viewing angles orthogonal to surface or exactly at the
surface.

The less orthogonal the viewing angle becomes the more
inaccurate are the update distances. To compensate for the
distance biases induced by using the projective distance,
we evaluate the use of scan normals to approximate the
Euclidean distance (see Figure 3b) to the surface. Therefore,
instead of directly using the projective distance, we propose
to approximate the distance along a ray from the observation
along the scan normal:

veuclidean(u) = hi − un. (7)

Note that veuclidean ≈ vprojective if the angle of incidence
is large which is typically the case for RGB-D cameras as
they cannot observe surfaces at oblique angles. However,
laser scanners have a high signal to noise ratio which leads
to observations even under small angles.

To estimate the scan normal n at the position of the
range observation hi we compute tangents from hi to all
neighboring scan points within a distance d and average the
respective normals.

C. Scan Matching

Scan matching is the process of registering laser scans
with each other or with an existing map.

For registering scans in TSDF two paradigms are preva-
lent: ICP based registration [5][6] and direct optimization of
the pose on the TSDF [13][7].

We apply a direct optimization of the pose on the TSDF
as [13] indicates benefits in accuracy and efficiency. Follow-
ing their derivations, we phrase scan matching as a Nonlinear
Least Squares Problem

argmin
ξ

N∑
i=1

(ΦI(T ξhi))
2
. (8)

ΦI is the bi-linear interpolation of the TSDF grid map MΦ.
We solve the optimization with the Levenberg-Marquardt
method using the Ceres Solver [15] and compute gradients

with Automatic Differentiation. If odometry is available, we
use it for initialization. If no or only inaccurate odometry is
available, we apply real-time correlative scan matching [11]
to improve the initialization.

V. GLOBAL SLAM

Scan matching induces small registration errors, resulting
in an accumulation of errors over large distances. Thereby,
it yields global inconsistencies in the pose estimate and the
map.

To correct these errors, Cartographer generates many
small, locally consistent submaps connected in a pose graph.
Optimizing the pose graph for its constraints yields a globally
consistent map if sufficient constraints have been found. The
algorithm uses an efficient branch-and-bound based approach
to compute loop closure constraints for occupancy grids. We
extend their method to efficiently detect loop closures in
TSDFs by adapting the scan matching problem and bounding
function for TSDFs.

A. Branch and Bound Scan Matching

The detection of constraints between scans and submaps
requires the search for an optimal scan match ξ? within a
large search window W. If the search window is smaller than
the accumulated error in the pose estimate the constraint
will be missed. A naive, exhaustive search of the search
window is possible. However, for large search windows, it
is computationally intractable.

a) Constraint Detection Scan Matching: To detect pose
graph constraints, we search an optimal match ξ? for a scan
H

ξ? = argmin
ξ∈W

K∑
k=1

|ΦN (T ξhk)| (9)

s.t.

K∑
k=1

|ΦN (T ξhk)| < emax (10)

within the search window W. ΦN is the nearest neighbor in-
terpolation of the TSDF grid map MΦ. The nearest neighbor
interpolation allows an efficient evaluation of the bounding
function.

As we are only interested in good matches, we require the
solution to have an alignment error smaller than emax. If no
solution satisfies this requirement, no constraint is added to
the pose-graph.

b) Branch and Bound: Branch and bound approaches
represent the solution space as a tree with each node corre-
sponding to a subspace of the solution space. Efficiency in
the evaluation of the optimal solution is gained by estimating
bounds for the optimal solution within the subtrees. Thereby,
the evaluation of large parts of the tree can be omitted and
only a small part of the solution space has to be evaluated.

c) Search Window Discretization: To discretize the
search window, we choose the angular step size δr =
arccos(1− r2

2d2max
) and translation step size δt = r with the

maximum range dmax. Thus, the scan points at the maximum
range do not move more than the grid resolution r.

d) Branching rule: The branching rule defines how the
solution space of a node is split into the subspaces of its
children. A node in the tree is defined by a tuple of integers
c = c{x,y,φ,h} ∈ Z4 with the node height ch. Nodes at height
ch combine up to 2ch × 2ch translations while representing
a single rotation.

A node c at height ch is branched into up to four nodes
at height ch − 1, as we branch once in each translational
dimension:

branch(c) = {cx, cx+2ch−1}×{cy, cy+2ch−1}×cφ×ch−1.
(11)

Child nodes exceeding the search window boundaries are
removed.

e) Bounding function: An accurate and efficient evalua-
tion of a lower bound of the optimal solution at an inner node
c is crucial to prune large parts of the tree. Approximating
the optimal solution within the search window by the optimal
match for each scan point within the potential maximum size
of the search window yields the bounding function bound(c)
as

min
ξc∈Wc

K∑
k=1

|ΦN (T ξchk)| (12)

≥
K∑
k=1

min
ξc∈Wc

|ΦN (T ξchk)| = bound(c). (13)

The bounding function can be efficiently precomputed as a
grid Φhprecomp for each height h

Φhprecomp([x, y]T) = min
x′∈[x,x+r(2h−1)]

y′∈[y,y+r(2h−1)]

|ΦN ([x′, y′]T)|. (14)

The precomputed grid Φhprecomp has the same grid structure
as Φnearest, but each cell in the precomputed grid contains
the minimum values of the 2h × 2h square around it.

With the precomputed grid Mh
precomp we can evaluate the

bounding function efficiently as

bound(c) =

K∑
k=1

Φchprecomp(T ξchk). (15)

VI. RESULTS

In this section, we give a detailed evaluation of accuracy
and robustness based on an artificial benchmark. We compare
the TSDF reconstruction with the projective and the approx-
imate Euclidean updates on simulated data. Furthermore, we
compare our method to others in a subset of the Radish
dataset. Finally, we demonstrate the capabilities to map a
large-scale environments with USAR elements.

A. Square Benchmark

To compare TSDFs and occupancy grids in a reproducible
environment we consider artificial point clouds derived from
a square shape with an edge length of 1 m and a measurement
noise with standard deviation σ2 = 0.01 m2. The sensor
origin is located at the center of the square. We generate an

(a) Occupancy Grid (b) TSDF

Fig. 4: Comparison of the scan matching cost functions for
a square with TSDFs and Occupancy Grids. The TSDF
provides gradients in a larger area around the optimum,
yielding a larger convergence area and higher convergence
rates.

OG TSDF
0

2

4

·10−3

(a) Translation
Error [m]

OG TSDF
0

0.5

1

·10−2

(b) Rotation
Error [rad]

OG TSDF
0

10

20

30

(c) Solver
Iterations

OG TSDF
0

1

2

3

·10−3

(d) Matching
Duration [ms]

Fig. 5: We match 100 simulated scans of a square in a TSDF
and an Occupancy Grid (OG). The TSDF scan matcher
matches with a higher accuracy while requiring less solver
iterations and matching time.

occupancy grid with resolution r = 0.05 m and a TSDF with
the same resolution and a truncation distance τ = 0.25 m.

Fig. 4 shows plots of the scan matching cost functions
for translations along the x- and y-axis. The ground truth
solution is at (0, 0). The TSDF provides gradients in a larger
area around the solution, providing a larger convergence area.

To evaluate the size of the convergence area, we sample
the initial position of the scan matching in 2 cm steps within
a window of 1 m × 1 m around the optimal alignment.
The resulting translational errors are shown in Fig. 6. The
occupancy grid converges to the optimum within a radius
of 0.1 m whereas the TSDF converges within a radius of
0.35 m.

To evaluate the accuracy and convergence behavior we
match 100 point clouds with an initial error of 0.05 m in
uniformly distributed random directions. The resulting errors,
solver iterations and matching durations are shown in Fig. 5.
The TSDF improves the accuracy significantly by reducing
the average translation error by 28.8 % and the rotational
error by 48.5 % in comparison to the occupancy grid. The
solver iterations are reduced by 76.5 % and the matching
time is reduced by 61.1 %.

B. TSDF Update Rules

To evaluate the TSDF update rules we simulate a long,
narrow hallway with a square and a circle obstacle inside.
The robot is a simulated Pioneer 3DX with a lidar with 180◦

FOV and a measurement noise with a standard deviation

Fig. 6: Translation error after scan matching for initial
positions p = (px, py) within a window of 1 m×1 m around
the ground truth position. The error is clipped at the grid
resolution r = 0.05 m. The TSDF converges for initial
positions within 0.35 m around the ground truth position
whereas the Occupancy Grid converges only for 0.1 m.

(a) Projective Distance Update

(b) Approximated Euclidean Distance Update

Fig. 7: Comparison of TSDF maps with different TSDF
update rules in a simulated environment. Red indicates a
positive TSDF value, blue encodes negative values. The
reconstructed surfaces are indicated by black lines.

σ2 = 0.01 m2. The robot drives a trajectory similar to an
eight around the two obstacles. Therefore, the outer ends
of the hallways are mainly observed from skewed angles.
Fig. 7 shows TSDF maps with projective distance and the
approximated Euclidean distance updates.

The projective approach shows artifacts modeling the
square, which is reconstructed more consistently with the
Euclidean approximation. In the top right corner, the surface
reconstruction with the Euclidean approach shows small
jitter.

The projective approach shows a strong overestimation of
the absolute distance values close to the corners on the upper
and lower edge of the outer rectangle and provides only a
narrow truncation band. These errors are to be expected as
these cells have only been observed under oblique angles.
In contrast, the approximate Euclidean update yields a more
consistent estimation of the Euclidean distance within the
truncation band around the surface.

C. Radish Benchmark

To compare to other methods, we evaluate our approach
on benchmarks from the radish data set [17] using the bench-
mark measure suggested in [16]. The measure compares the
error in relative poses with respect to manually annotated
ground truth relations. We choose two data sets with different
characteristics, the MIT Killian Court provides more than

TABLE I: Quantitative Error Comparison

TSDF Projective TSDF Euclidean Cartographer Graph Mapping [16]
MIT Killian Court
Absolute translational [m] 0.0276 ± 0.0232 0.0276 ± 0.0235 0.0324± 0.0270 0.050± 0.056
Squared translational [m2] 0.0013 ± 0.0089 0.0013 ± 0.0095 0.0018± 0.0099 0.006± 0.029
Absolute rotational [◦] 0.2807± 0.2462 0.2802 ± 0.2435 0.3183± 0.2883 0.5± 0.5
Squared rotational [deg2] 0.1394± 0.26865 0.1378 ± 0.2591 0.1844± 0.4912 0.9± 0.9
Freiburg Bldg. 79
Absolute translational [m] 0.0382 ± 0.0292 0.0391± 0.0298 0.0395± 0.0306 0.056± 0.042
Squared translational [m2] 0.0023 ± 0.0044 0.0024± 0.0045 0.0025± 0.0048 0.005± 0.011
Absolute rotational [◦] 0.4245± 0.4610 0.4204 ± 0.4606 0.4333± 0.4735 0.6± 0.6
Squared rotational [deg2] 0.3926± 1.2308 0.3887 ± 1.1806 0.4118± 1.2475 0.7± 1.7

TABLE II: Runtime Comparison

TSDF
Projective

TSDF
Euclidean

Cartographer

MIT Killian Court
Wall Clock Time [s] 81.0 74.8 103.5
CPU Time [s] 177.6 162.4 220.8
Memory [MB] 1201.4 1171.2 886.0
Freiburg Bldg. 79
Wall Clock Time [s] 20.7 18.9 19.1
CPU Time [s] 68.1 107.3 71.7
Memory [MB] 228.6 245.8 215.9

two hours of data with loop closures over large distances
and long hallways, whereas the Freiburg Bldg. 79 is a more
narrow and cluttered environment with loop closures on
smaller scales.

As the data sets differ in sensor configurations and
characteristics, we adjust the parameters for each data set
individually. For MIT Killian Court we use a grid resolution
r = 0.075 m and a truncation distance τ = 0.15 m. For
Freiburg Bldg. 79 we use r = 0.1 m and τ = 0.15 m. On
both data sets, we use odometry information and use the real-
time correlative scan matcher with an angular search window
of 0.1 rad to improve the scan matching initialization. As we
were able to achieve better results with the current occupancy
grid implementation in Cartographer than the results in the
original publication, we use the current cartographer imple-
mentation performance, as measured by us. For occupancy
grids, we choose the same settings for resolution and the
real-time correlative scan matcher as for TSDF.

Table I shows the results of our TSDF approach in
comparison to the occupancy grids in Cartographer and
Graph Mapping [16]. The two TSDF approaches achieve
similar accuracy on both benchmarks. In comparison to
occupancy grids, the TSDF approaches reduce the absolute
translational error by 13.6 %, the squared error by 27.8 % and
the rotational errors by similar margins in the MIT Killian
Court data set. In the Freiburg Bldg. 79 data set, the TSDF
approaches perform slightly better than the occupancy grids
with margins between 1 % and 5 %.

A potential reason for the small improvement in the
Freiburg data set is that it contains many small objects. TS-
DFs suffer from overwriting effects which degrade the map
fidelity when objects smaller than the truncation distance are

observed from multiple viewpoints. This is a known issue
also described in [6] and requires further investigation.

A comparison of the runtimes and memory loads are
shown in Table II. For the MIT Killian Court data set the
TSDF requires less run time than the occupancy grid. In
contrast, Cartographer is slightly faster on the Freiburg Bldg.
79 data set. Overall the TSDF is faster in scan matching,
but the map update requires more computations and the
bounds for the loop closure branch-and-bound are slightly
worse yielding an overall similar runtime. For both data sets
the TSDF approach needs 10 % to 20 % more memory. An
increase in memory is to be expected as TSDF maps store
two values, signed distance and weight, per grid cell instead
of one for occupancy grids.

D. Darmstadt Campus Experiment

Using data captured at TU Darmstadt Campus with an
ExRobotics ExR-1 equipped with a Velodyne VLP-16 lidar,
we computed the map shown in Fig. 8. The data set is
challenging in multiple aspects. The robot traverses uneven
terrain in the rescue robot arena with continuous pitch-and-
roll ramps, following the NIST guidelines [18], (see Fig. 8a
and Fig. 8b) inducing fast roll and pitch motions. It also
covers both narrow indoor hallways and open outdoor spaces
in a public park with people walking by. The overall trajec-
tory spans 4160 s of sensor data and covers approximately
1300 m. The map is computed with a grid resolution r =
0.05 m, truncation distance τ = 0.1 m and the approximated
Euclidean distance update. For larger truncation distances,
we observe overwriting effects, when the robot observes
walls thinner than the truncation distance from both sides.
On a Notebook with an Intel i7-8750H CPU, using up to
3.75 GB memory the computation finishes after 2364 s wall
time using 7389 s CPU time, achieving 1.76 times real-time
performance.

VII. CONCLUSIONS

In this paper, we presented and evaluated a full 2D
SLAM framework based on TSDF maps. To leverage the
benefits of TSDFs for lidar-based SLAM, we investigated
TSDF update rules and applied an efficient approach to
find loop closure constraints in TSDF maps. Our evalua-
tion on publicly available benchmark data showed that the
proposed approach achieves higher accuracy in comparison

(a) ExR-1 robot in the rescue
robot test arena.

(b) Generated map segment of the
rescue robot test arena with the
robot trajectory in blue.

(c) Projection of the generated point cloud. The color en-
codes the point density.

(d) Projection of the generated point cloud in red overlaid
over aerial imagery (c©Google).

Fig. 8: Darmstadt Campus Experiment

to occupancy grid based methods, while requiring similar
runtime. We demonstrated that our approach is able to map
a challenging large scale environment with USAR elements
in real-time. The proposed method has been published as
open source.

As a next step, we are planning to extend the approach to
3D lidar SLAM and further investigate improvements of the
normal estimation in sparse scans and the representation of
thin surfaces with TSDF.

ACKNOWLEDGMENT

Research presented in this paper has been supported in
parts by the German Federal Ministry of Education and

Research (BMBF) within the subproject ”Autonomous As-
sistance Functions for Ground Robots” of the collaborative
A-DRZ project (grant no. 13N14861).

The authors gratefully acknowledge the contributions by
and fruitful cooperation with all members of the Cartogra-
pher Team and Team Hector. Thanks go to Christoph Schütte,
Andre Gaschler, Alexander Belyaev, Martin Bokeloh, Sebas-
tian Klose and Damon Kohler.

REFERENCES

[1] W. Hess, D. Kohler, H. Rapp, et al., “Real-time loop closure in
2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 1271–1278.

[2] S. Kohlbrecher, O. Von Stryk, J. Meyer, et al., “A flexible and
scalable slam system with full 3d motion estimation,” in Safety,
Security, and Rescue Robotics (SSRR), 2011 IEEE International
Symposium on, IEEE, 2011, pp. 155–160.

[3] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques
for grid mapping with rao-blackwellized particle filters,” IEEE
transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[4] B. Curless and M. Levoy, “A volumetric method for building com-
plex models from range images,” in Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, ACM,
1996, pp. 303–312.

[5] R. A. Newcombe, S. Izadi, O. Hilliges, et al., “Kinectfusion: Real-
time dense surface mapping and tracking,” in Mixed and augmented
reality (ISMAR), 2011 10th IEEE international symposium on,
IEEE, 2011, pp. 127–136.

[6] P. Koch, S. May, M. Schmidpeter, et al., “Multi-robot localization
and mapping based on signed distance functions,” Journal of
Intelligent & Robotic Systems, vol. 83, no. 3-4, pp. 409–428, 2016.

[7] J.-D. Fossel, K. Tuyls, and J. Sturm, “2d-sdf-slam: A signed distance
function based slam frontend for laser scanners,” in Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Confer-
ence on, IEEE, 2015, pp. 1949–1955.

[8] K. Konolige, G. Grisetti, R. Kümmerle, et al., “Efficient sparse
pose adjustment for 2d mapping,” in Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, IEEE, 2010,
pp. 22–29.

[9] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous robots, vol. 4, no. 4, pp. 333–
349, 1997.

[10] G. Grisetti, R. Kummerle, C. Stachniss, et al., “A tutorial on graph-
based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[11] E. B. Olson, “Real-time correlative scan matching,” in 2009 IEEE
International Conference on Robotics and Automation, IEEE, 2009,
pp. 4387–4393.

[12] D. Droeschel, J. Stückler, and S. Behnke, “Local multi-resolution
representation for 6d motion estimation and mapping with a con-
tinuously rotating 3d laser scanner,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on, IEEE, 2014,
pp. 5221–5226.

[13] E. Bylow, J. Sturm, C. Kerl, et al., “Real-time camera tracking and
3d reconstruction using signed distance functions.,” in Robotics:
Science and Systems, vol. 2, 2013.

[14] M. Slavcheva, W. Kehl, N. Navab, et al., “Sdf-2-sdf registration for
real-time 3d reconstruction from rgb-d data,” International Journal
of Computer Vision, pp. 1–22, 2018.

[15] S. Agarwal, K. Mierle, et al., Ceres solver, http://ceres-solver.org.
[16] R. Kümmerle, B. Steder, C. Dornhege, et al., “On measuring the

accuracy of slam algorithms,” Autonomous Robots, vol. 27, no. 4,
p. 387, 2009.

[17] A. Howard and N. Roy, The robotics data set repository (radish),
2003. [Online]. Available: http://radish.sourceforge.
net/.

[18] A. Jacoff, R. Sheh, A.-M. Virts, et al., “Using competitions to
advance the development of standard test methods for response
robots,” in Proceedings of the Workshop on Performance Metrics
for Intelligent Systems, ACM, 2012, pp. 182–189.

