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Velocity Estimation for Ultra Lightweight Tendon
Driven Series Elastic Robots

Jérôme Kirchhoff1 and Oskar von Stryk1

Abstract—Accurate velocity estimation is an important basis
for robot control, but especially challenging for highly elastically
driven robots. These robots show large swing or oscillation effects
if they are not damped appropriately during the performed
motion. In this paper, we consider an ultra lightweight tendon
driven series elastic robot arm equipped with low-resolution joint
position encoders. We propose an adaptive Kalman filter for
velocity estimation that is suitable for these kinds of robots with
a large range of possible velocities and oscillation frequencies.
Based on an analysis of the parameter characteristics of the
measurement noise variance, an update rule based on the filter
position error is developed that is easy to adjust for use with
different sensors. Evaluation of the filter both in simulation and
in robot experiments shows a smooth and accurate performance,
well suited for control purposes.

Index Terms—Biologically-Inspired Robots, Compliant
Joint/Mechanism, Physical Human-Robot Interaction

I. INTRODUCTION

SAFE human-robot interaction and robots working in the
vicinity of humans significantly gained importance in the

industrial automation in the past years. This can be seen
from the growing range of different robots on the market,
specifically designed for such tasks. Besides sensor driven
approaches (e.g. joint torque sensors, proximity sensors, or
camera based workspace observation) also mechanical ap-
proaches (e.g. cushioning, joint elasticities, and lightweight
structures) can be used to benefit safe collaboration.

One challenge for joint elastic robots is to reduce or
even eliminate undesired swinging or oscillating motions. A
damped motion would enable higher precision and increase
the acceptance of such robots because safety and performance
have to be in the right balance. In order to damp oscillations
in a robot controller, an accurate velocity estimation is crucial.
But velocity estimation is not only related to control issues.
Also, observer based methods, e.g. for friction estimation,
joint stiffness estimation or collision detection, need accurate
velocity estimations.

In the last decades, several velocity estimation approaches
for different sensors have been developed based on numerical
or statistical principles (see Section II). The applicability of
these approaches highly depends on the considered robotic
system. Because of the lightweight structure and small size,
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robots for safe human-robot interaction cannot always be
equipped with high-resolution position sensors. Moreover,
for joint elastic systems, the application relevant range of
possible velocities and oscillations can be very large. Thus,
the adaptability of the desired velocity estimation method has
to be appropriate. Further, the produced velocity estimation
should be smooth and without a large time delay, to avoid
instabilities if used for robot control.

The main contribution of this paper is the optimization
based analysis of the kinematic Kalman filter’s measurement
noise variance regarding velocity estimation, that revealed
basic properties for optimal filter performance, and on this
basis, the development of a novel measurement noise variance
update rule. The introduced method has been compared with
a velocity estimation filter showing the best performance,
according to the filter comparison of [1]. The filter per-
formance is evaluated in simulation experiments and based
on data of an ultra lightweight tendon driven series elastic
robot arm (see Fig. 1). During the experiments, the proposed
filter approach shows a higher adaptability to different filter
scenarios than the state-of-the-art filter. Furthermore, it is
simple to adjust for use on different sensors. The accurate
performance proves that the presented approach is suitable for
the new class of highly elastic robots.

The paper is organized as follows. Section II gives an
overview of commonly used filter approaches for velocity
estimation. An optimization based analysis of the measurement
noise variance Kalman filter parameter is shown in Section
III. A novel update rule is introduced in Section IV. The
experimental filter evaluations are described in Section V.
Section VI summarizes all aspects discussed in this work.

II. RELATED WORK

In order to estimate the velocity from time-discrete data
provided by a position encoder, one can choose between
many well-studied approaches. If position encoders with finite
resolution are used to estimate velocity or even acceleration,
two categories of data recording have to be distinguished:
encoder-driven and clock-driven [2]. Encoder-driven means,
that the clock reading is performed on every encoder pulse,
whereas in clock-driven approaches the encoder position is
recorded at fixed time intervals.

One basic approach for velocity estimation is to use a Euler-
based method that computes the finite differences [3] from
sampled position data. As stated in [2], the velocity resolution
(encoder resolution divided by sampling time) and thus the
estimation accuracy gets unacceptable at short sampling times
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Figure 1. Hardware implementation of the BioRob arm with four elastically
actuated joints. BioRob Ultra (right) is an evolution of the BioRob V3 (left).

(which is a common case in robotics), especially if the
velocity is below the resulting velocity resolution. In this
case, the estimation result can be improved according to the
approach proposed in [4] for incremental encoders, that varies
the skipped encoder positions before computing backward
differences based on the maximum encoder accuracy. Such
adaptive windowing techniques have also been proposed in
[5] and [6]. Velocity and acceleration estimation from the
pulse train of accurate optical encoders has been proposed in
[7] and [8]. Another approach to reducing noise of the finite
difference result is to subsequently low-pass filter the result
[6], which introduces a certain time delay according to the
selected cut-off frequency. Alternatively, the finite differences
can be computed not on every acquired encoder position data,
but only if the encoder position data changes for at least a
minimum value, a so called encoder event [9].

Another possibility to create a velocity estimation is to fit a
polynomial through a number of past positions [3] or encoder
events [9]. The challenge using this approach is to find the
appropriate polynomial order and number of passed samples.

Since estimating velocity from uncertain position informa-
tion can be interpreted as state estimation, Kalman filtering
[10] can be applied to this problem. The Kalman filter
implements a Bayes filter for prediction of linear Gaussian
systems [11]. It consists of a state prediction step based on
a state transition probability and a correction step. A Kalman
filter for optical shaft encoders based on a combination of
encoder-driven and clock-driven acquired encoder data has
been proposed in [2] using a third order process model. Based
on the pulse train of optical encoders a single dimensional
Kalman filter with adaptive noise variance is used in [12] to
compute velocity and acceleration estimations. One advantage
of the Kalman filter is that it can be used for sensor fusion.
This has been done in [13] to estimate the joint state of an
industrial robot equipped with an accelerometer for robot end-
effector sensing.

The major velocity estimation approaches that can be used
on digital position data have been compared in detail in [1].
This includes finite differences with subsequent filtering or
computed from encoder events, polynomial fitting, Kalman
filter estimation, and sliding mode differentiation approaches
[14]. In the analyzed velocity range, the Kalman filter ap-

proach with a third order model with adaptive measurement
variance provided the best results.

On ultra lightweight robots with elastic joints, optical en-
coders with high accuracy are typically too large and heavy to
be used. Thus, a velocity estimation approach is needed, that
can handle low-resolution position data that contains additional
noise besides quantization. The filter performance at oscilla-
tions caused by the elastic drive train is of special interest. The
adaptive Kalman filter velocity estimation approach proposed
in this paper is developed based on clock-driven acquired
position data. Since the experimental environment in [1] also
consists of low resolution encoders with clock-driven data,
evaluated on different oscillating motions, our approach is
compared to the best in [1].

The proposed method only uses a kinematic process model,
which keeps the computational effort low and enables to
implement it on low-level controllers. Since the computational
effort for integrating dynamics knowledge is high, especially
for dynamic decoupled drive trains with typically no joint
torque measurements, an alternative solution is preferred here.

III. VELOCITY ESTIMATION ANALYSIS

For using a Kalman filter for velocity estimation in the
environment of elastically driven robots, one first has to choose
the appropriate system model. Afterward, it is possible to
investigate the filter performance in an ideal world with no
sensor noise and known ground truth signal. Using this infor-
mation, it is further possible to optimize the filter’s parameters
to discover the correlation between the parameters and the
desired filter behavior. This is described in the following
subsections.

A. Kalman Filtering

Using a Kalman filter is a common technique to estimate
the state of a system from uncertain information and was
first published in 1960 [10]. The Kalman filter produces a
state estimation that minimizes the mean squared estimation
error based on a given observation sequence [11]. Its time-
discrete version estimates the state based on a linear stochastic
difference equation [15]:

xk = Axk−1 + Buk + wk−1,

zk = Hxk + vk,

with the state vector x ∈ Rn, the state transition matrix A ∈
Rn×n, the matrix B ∈ Rn×l that relates the control input
vector u ∈ Rl to the state, the matrix H ∈ Rm×n that relates
the state to the measurement z ∈ Rm and the random variables
w and v that represent the process and measurement noise
respectively.

The system state is estimated iteratively from one time
step to the next using the following equations ([15]) for the
prediction (Time-Update):

x̂−k = Ax̂k−1 + Buk P−k = AP k−1A
T + Q
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with predicted state vector x̂−k and estimation covariance
matrix P−k . For the correction (Measurement-Update):

Kk = P−kH
T
(
HP−kH

T + R
)−1

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
P k = (I −KkH)P−k

where Kk is the Kalman gain that minimizes the estimated
error covariance, the corrected state estimation x̂k, and error
covariance matrix P k. The matrix Q represents the process
noise covariance and R represents the measurement noise
variance.

In order to estimate the system state, one can use various
models according to the considered filter problem, e.g. a
third order kinematic model [1]. Since especially for elastic
robots with possible human-robot interaction, sudden position
changes can occur, a kinematic model for highly maneuvering
targets with constant jerk should be regarded as presented in
[16]:

A =


1 T T 2/2 T 3/6
0 1 T T 2/2
0 0 1 T
0 0 0 1

 ,

Q = σ2


T 7/252 T 6/72 T 5/30 T 4/24
T 6/72 T 5/20 T 4/8 T 3/6
T 5/30 T 4/8 T 3/3 T 2/2
T 4/24 T 3/6 T 2/2 T

 ,

with σ2 the system process variance and the system state
vector x = (q, q̇, q̈,

...
q )T containing the position q, the velocity

q̇, the acceleration q̈ and the jerk
...
q of the system. In the

application presented here, this represents the state of one
elastic robot joint. Using this model H = (1, 0, 0, 0)T and
R reduces to a scalar R.

B. Optimized Filter Parameter Performance
An appropriate velocity estimation has to perform well

within a large frequency bandwidth. Besides the different
frequencies a robot can move with, the maximum velocity
can also vary in a wide range. Thus, the optimal filter settings
are investigated during simulation experiments with increasing
position signal frequencies and amplitudes. To simulate the
real world scenario, where position changes are measured via
an digital encoder with limited resolution, the position signal
q is quantized into a series of discrete position values qm:

qm =

⌊
q(
2π
N

)⌋ · (2π

N

)
,

with the position signal q, the resulting measured position
signal qm and the encoder ticks per rotation N .

The objective function used to evaluate the filter perfor-
mance computes the error between the estimated system
state x̂ and the real state x. Here, the root mean square
error is computed individually for the position, velocity and
acceleration and then added together:

min
R∈R

√∑n
i=1(εqi)

2

n
+

√∑n
i=1(εq̇i)

2

n
+

√∑n
i=1(εq̈i)

2

n
, (1)
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Figure 2. Result of measurement variance optimization for a kinematic
Kalman filter according to the objective function (1). The optimization has
been performed on a sinusoidal position signal with various frequencies and
velocities. Assuming a 12Bit encoder (N = 212) the velocities changed
between q̇max = 0.001 · ∆v rad/s and q̇max = 4.001 · ∆v rad/s in 0.05
rad/s steps, with a position sampling time T = 1ms.

with the position error εqi = q̂i − qi, the velocity error
εq̇i = ˆ̇qi − q̇i, the acceleration error εq̈i = ˆ̈qi − q̈i and the
number of samples n. Since the velocity and acceleration
deviations are typically higher than the position deviations,
these have a larger influence on the optimization criterion,
which results in a smoother filter result. During optimization,
only the measurement noise variance R is optimized, whereas
the process covariance matrix Q is kept constant.

For optimization, the MATLAB Optimization Toolbox is
used with the fmincon algorithm, suitable for minimization
of nonlinear functions. The values of R are constrained to
the range of [10−15, 1015]. The optimization procedure is
performed for different position signal frequencies. For each
frequency, the maximum velocity amplitude and, thus, the
maximum acceleration amplitude are varied from a slow to
a fast motion. The maximum velocity value q̇max = α∆v

is computed according to the velocity resolution ∆v of the
encoder for varying α ∈ R. The velocity resolution is com-
puted according to ∆v = (2π/N)/T with the encoder ticks
per rotation N and sampling time T . Using these equations,
the signals for a chosen frequency f can be obtained from:

ω = 2πf ¯̇q = q̇max/ω q = ¯̇q · sin(ωt) (2)

q̇ = ω ¯̇q · cos(ωt) q̈ = −ω2 ¯̇q · cos(ωt) (3)

The optimization has been performed with the frequencies
f = 4, 2, 1, 0.5, 0.25, 0.125 Hz and within each frequency
with a velocity scaling factor between α = 0.001 and
α = 4.001 with factor steps of 0.05. The resulting values of
the optimized measurement variances R with process model
variance σ2 = 108 assuming a 12 Bit encoder and a third
order model are depicted in Fig. 2 (top). The R-axis is plotted
in logarithmic scale. Three observations with respect to the
measurement variance R can be made from this analysis:
• R decreases exponentially with increasing velocity
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 ε 

 ϵq  

ε  sΔR = ε-|ϵq| 

Figure 3. Visualization of quantities used in update rule for measurement
variance R, with accuracy region ε (gray regions with red dashed border),
position estimation error εq and update step size factor s∆R. The measured
positions are represented by the black dots, the filter position estimation by
the blue line.

• R depends on velocity and frequency
• R is exponentially related to changing frequencies
The signal produced by a real robotic system especially with

elastic joints will not be perfectly sinusoidal and superimposed
by multiple frequencies. Repeating the optimization based on
position data acquired from controlling sinusoidal motions
with an elastic joint results in the variance values shown
in Fig. 2 (bottom). Here, one can observe that the variance
values drop even faster to the final value and also tend
to reach a lower value if the signal additionally contains
higher frequencies as the case for fE = 1, 0.25, 0.125 Hz.
This seems reasonable in general, since the filter has to be
reactive for these additional frequencies. Because of the joint
position limits, values for fE = 0.25, 0.125 Hz are only
available for maximum α = 2.0, 1.0 respectively. Repeating
both experiments with an order four model resulted in very
similar results.

IV. MEASUREMENT NOISE VARIANCE UPDATE RULE

As shown in the Section III-B, the choice of an appropriate
measurement variance R depends on the current velocity and
frequency. This has to be taken into account to achieve an
optimized filter performance for velocity estimation.

A filter for velocity estimation based on position measure-
ments needs to fulfill the following criteria:
• The filter result has to be mostly smooth.
• The velocity estimation delay has to be small.
• The filter has to be reactive within a large bandwidth.
• The filter has to be easily adjustable.

In order to fulfill the first criterion, R should be chosen as large
as possible to achieve an appropriate smooth signal without a
large filter delay. To keep the filter reactive to velocity changes,
R should be decreased if the filter cannot follow the measured
position signal.

The proposed filter adjustment rule is based on enlarging or
shrinking the current value of R, according to the observations
made in the previous section. This is realized by defining an
accuracy region ε around the measured position. As long as
the position estimation stays within this region, R is increased,
otherwise it is decreased:

R = exp(log(R) + ∆R · s∆R), (4)

with the update step size ∆R and scaling factor s∆R. As
observed in the optimization experiments (see Fig. 2), R is
exponentially related to changing frequencies. Thus, before

updating R with an update step size having the same scale
for all frequencies, its current value is logarithmized. The
update rule in (4) is inspired by the gradient descent method
with variable step size. Transferred to the scaling of R, the
distance between the estimated position and the accuracy
region border ε determines scaling of the update step size ∆R,
with ∆R being a user-defined constant value determining the
reactiveness of the update rule. If the estimation is within the
accuracy region and far away from the border, R is increased
(smoother filtering). If the estimation error approaches the
border, the update step ∆R ·s∆R should get smaller to prevent
overshooting. In the remaining case, where the estimation error
is larger than the accuracy region, R must be decreased to
guarantee an accurate filter result. The step size scaling factor
s∆R is calculated by

s∆R = ((ε− |εq|)/ε)2, (5)

with the position estimation error εq = q̂ − q, where q̂ the
estimated and q the measured position, and the user-defined
accuracy range ε. The meaning of the variables are depicted
in Fig. 3. The scaling factor s∆R increases quadratically with
the distance of the position signal from the accuracy border.
To regard the update direction, the sign of s∆R has to be set
negative in case |εq| > ε.

Since position encoders can produce noisy signals (addi-
tional to the quantization noise), it should be possible to adjust
the filter according to this behavior. For this purpose, we define
a heuristic to compute ε. If a position variation in the sensor
position signal can be observed while the joint is in rest or
slowly moving, one can use the number of position variation
resolution ticks nn (or noise factor), to approximate the noise
limits similar to an estimation of the 3σ interval that covers
99.7% of the noise, in the heuristic:

ε = max(0.5, nn · 0.5) · 2π/N.
This heuristic assumes normal distributed noise and defines
the accuracy region as half of the position variation region,
with at least one half of the sensor resolution. One is free to
reduce this region further, but this will result in a more noisy
filter result.

Since the update rule modifies R without limitations, this
has to be done afterwards. Based on the optimization results
(see Fig. 2) we set the limits to a range of [10−20, 1020].
Further, the scaling factor s∆R also needs to be limited as
described in Section V-A.

V. EXPERIMENTAL EVALUATION

In [1], an adaptive Kalman filter with a third order process
model is proposed for velocity estimation, that outperforms
commonly used approaches in a sophisticated comparison,
showing less filter errors according different performance
indices for a broader frequency bandwidth. This makes it
very suitable for use with elastic joint robots, where velocity
estimation has to be performed on position signals typically
containing a broad spectrum of velocities and oscillation
frequencies, and is, thus, used as reference filter for the
proposed approach in this work. As performance measures
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Figure 4. Filter performance evaluated on sinusoidal motions with frequencies f = 0.125, 1.0, 4.0 Hz (rows) and maximum velocity amplitudes q̇max = sv∆v

with sv = 0.01, 0.5, 1.0 (columns). The gray solid lines represents the reference velocity signal q̇, the green dashed lines the adaptive Kalman filter based
on velocity estimation AKF3rd,v and the dotted red and blue line the proposed adaptive Kalman filter AKF3rd,r and AKF4th,r respectively.

the root mean square εRMS , the absolute maximum relative
εMAX and average relative εAVG errors are used.

The adaptive Kalman filter in [1] is based on the knowledge
that the noise caused by encoder quantization is significant
at low and neglectable at high speeds [17]. Regarding this,
the measurement noise variance Rv (subscript v denotes the
velocity dependancy) can be recomputed using the current
velocity estimation according to

Rv = 10Rb

(
1 + ˆ̇q

)−1

(6)

with the application-dependent base measurement variance Rb
and the estimated velocity ˆ̇q. This and the proposed filter are
compared first in simulation experiments to investigate the
characteristic behavior and further evaluated in experiments
on an elastic, tendon driven ultra lightweight robot.

A. Evaluation in Simulation Experiments

The first experiment concerns the adaptability of the filters.
The filters have been evaluated on sinusoidal motions accord-
ing to (2), (3) with varying frequencies f = 0.125, 1.0, 4.0 Hz
and slow to moderate velocities according to maximum veloc-
ity amplitudes with sv = 0.01, 0.5, 1.0. As filter parameters,
the system noise variance σ2 = 108 and the initial respectively
base measurement variance R = 10−1 and Rb = 10−1 for
the corresponding update rule has been set. The measurement
variance has been taken from the optimization results (see
Fig. 2 top), approximately representing the optimal value

for the mean frequency and velocity in the regarded range.
Concerning the update Rule (6) and the characteristics of the
optimal measurement variance, adjustments of Rb would shift
the optimal filter results to another frequency and velocity
range.

The results of the performed experiments for the pro-
posed Kalman filter AKF3rd,r and compared Kalman filter
AKF3rd,v are shown in Fig. 4 with the performance indices
listed in Table I. The filter performance at low frequency
and slow velocity (Fig. 4 (a)) shows that the proposed filter
produces smaller estimation errors for all indices. These results
can also be observed for high frequency and medium to
high velocity (Fig. 4 (h), (i)) with AKF3rd,v showing more
overshooting and a considerable signal time delay. In the
case depicted in Fig. 4 (b), (c) the εRMS is not sufficient
to distinguish the performance. Here, εMAX and εAVG are
smaller for the AKF3rd,r filter, thus, produce a better filter
result also visualized in the close-ups. In Fig. 4 (e), (g) the
compared filter AKF3rd,v performs better. Whereas in case
Fig. 4 (f) both filters perform comparable well. For medium
frequency and low velocity AKF3rd,r shows smaller errors
except for εMAX indicating that the estimation error close
to zero crossing is larger, but the small error εRMS is more
relevant if looking at the large peaks produced by AKF3rd,v.
Overall, the proposed filter outperform the compared one in
low frequency for the whole velocity range, mid frequency
with slow velocity, and high frequency with mid and high ve-
locity. In the remaining cases the AKF3rd,v performs better or
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Figure 5. Step response behavior of the investigated adaptive Kalman filters
for a position step of π/50 [rad] (left column) and a velocity step of π/10
[rad] (right column).

equally. Adjusting Rb would shift this improved performance
to another frequency range. As shown in Table I (gray val-
ues), increasing the filter’s order (AKF4th,r) mostly reduces
εRMS compared to AKF3rd,r but increases the relative errors
resulting from an increases phase shift.

Besides the performance evaluation in oscillation motions,
another insight into to the filter properties can be gained from
a step response, as shown in Fig. 5. Here, the two relevant step
signals in case of velocity filtering are shown, with position
measurement sampling time of T = 1 ms and N = 212

sensor ticks per turn. In the left column a step of π/50
rad is introduced in the position signal, where in the right
column the velocity signal contains a step of π rad/s. In all
experiments the proposed filters shows lower overshooting.
Whereby, AKF3rd,r and AKF4th,r are quite reactive, since
they show a small settling time of 3ms. Considering the
velocity step, AKF3rd,v follows the velocity signal faster but
shows a larger overshoot. The step experiments further showed
for the encoder with N = 212 ticks that the overall update
value ∆R ·s∆R of R should not get larger than 10. Otherwise,
the filters AKF3rd,r and AKF4th,r produced a continuous
oscillating velocity estimation.

The bandwidths of the filters are evaluated via a frequency
analysis of a sinusoidal motion with an amplitude of a multiple
of the sensor resolution. The filter result is then analyzed
regarding the amplitude amplification and phase shift in com-
parison to the input signal using a Fourier transformation. The
result is shown in Fig. 6 using a Bode diagram. The filter input
signal has an amplitude of 20·∆p (amplitude of approximately
1.75o) using a sensor with a resolution of N = 212 Bit.
The frequency analysis from 0.125 Hz to 480.0 Hz shows
that the resonance frequency of the proposed filter update
rule of AKF3rd,r and AKF4th,r is much higher than for the
alternative filter AKF3rd,v. Even for the investigated small
motion, a filter performance for AKF3rd,r and AKF4th,r

with low amplitude amplification and phase shift up to approx.
100.0 Hz is obtained. The detail plots for 0.2 Hz and 8.0 Hz
show the time domain filter results, which is less noisy for the
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Figure 6. Bode diagram for the adaptive Kalman filters. Analyzed amplitude
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motion with amplitude of 20·∆p sensor resolution steps. Gray area represents
the 3 dB region. Detail plots show the time domain velocity estimation
according to 0.2 Hz and 8 Hz motion with true velocity in gray.

proposed filters especially for a low frequency (which is not
immediately evident using only the Bode diagram) and has
a small phase shift for mid to high frequencies. Both filters
with the proposed update rule behave quiet similar in the case
without noise but with the AKF3rd,r filter showing a smaller
resonance peak.

Performing the same analysis with noise in the position
signal (nn = 2.0) showed that the filter performance of
AKF4th,r still has low noise, amplitude amplification and
phase shift for low frequencies and only a slightly higher
amplitude amplification for high frequencies, compared to the
performance with no noise. This also holds for AKF3rd,r,
except that the phase shift is increased, what makes the higher
order filter more suitable in this case.

B. Evaluation in Robot Experiments

In order to investigate the filter behavior on real world data,
the filters performance has been evaluated using the BioRob
arm [18]. This ultra lightweight (approximately 6 kg mass)
tendon driven robot is highly elastic because of the used
springs. The arm is equipped with rotary position encoders
on motor and joint side. Since the elasticities decouple the
motor from joint actuation, a robust velocity estimation on
joint side is crucial for good control performance. Due to the
lightweight structure, only small and light sensors can be used.
Magnetic encoders based on the Hall effect can fulfill these
requirements and are used in the BioRob arm. The position
values are acquired clock-driven each T = 1 ms according to
the control frequency of 1 kHz.

The filter performance has been evaluated using experiments
that covers the common scenarios, as slow to fast motions with
oscillations, sudden changes of the end effector load and point
to point motions (pick and place). In order to visualize the
velocity resolution and noise behavior of the sensors, the finite
backward differences (FD) are shown. The velocity estimation
reference signals has been computed offline with a two-sided
Savitzky-Golay smoother (linear polynomial with manually
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Figure 7. Filter performance of a sinusoidal motion with increasing frequen-
cies recorded from the robot experiment with the BioRob V3 arm.

tuned window length) that is well suited to reproduce the
signal from sampled data.

In the first robot experiment, the adaptability of the filters is
investigated. For this, a sinusoidal motion with an amplitude
of approximately 2.5◦ and increasing frequency starting from
f = 0.05 Hz to f = 4.05 Hz in 10 steps is executed on the
robot, with a sensor resolution of N = 212 ticks per revolution.
Here, a simple motor side P-Controller is used to actuate
the robot. To regard noise, the base measurement variance
is set to Rb = 100 and, since with the considered encoder
hardware the positions varied one to two ticks with the joint
in rest, the noise factor is set to nn = 1. The filter results are
depicted in Fig. 7 and performance measures listed in Table
II. Analog to the simulation experiment, AKF3rd,v shows a
noisy velocity estimation at low velocities and a remarkable
overshoot with time delay at high velocity and frequency.
According to the experimental evaluation, the proposed filters
AKF3rd,r and AKF4th,r barely show noise at low speed and
only little overshooting at high speed motions, resulting in
overall smaller estimation errors.

Sudden changes of the end effector load can strongly alter
the motion behavior of elastic systems. This has been inves-
tigated during placing and releasing an object (500 g) with
the BioRob Ultra (16 Bit sensor with low noise) that causes
oscillations after the place motion. The velocity estimations
are shown in Fig. 8 (Rb = 10−1, init R = 10−1, nn = 1) and
the estimation errors of both phases (place motion, release
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Figure 8. Velocity estimation during object (500 g) placing and releasing
with the BioRob Ultra arm.
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Figure 9. Velocity estimation during a Pick and Place motion with the BioRob
Ultra arm in shoulder and elbow joint. The motor resolution is reflected thru
the gear to the joint, creating a high resolution low noise signal.

object) are listed in Table III. According to the estimation
errors, all filter show a rather similar performance during the
place motion, whereas the proposed filter are more accurate
during the oscillations.

A typical task for robots consists of part handling with
a pick and place motion. This kind of motion has been
performed with the BioRob Ultra arm to show the adjustability
of the proposed filters. Velocity estimation has been performed
on different position signals, with a separate filter for each
signal. After only adaption of the sensor resolution and noise
factor parameters for AKF3rd,r and AKF4th,r according to
the measurement (see finite differences in Fig. 9), the filters
estimated the velocities as depicted in Fig. 9 (only half a
cycle shown) and with the estimation errors listed in Table IV.
Even at signals with high noise, the filters produce an accurate
performance, with nearly similar accuracy in a subsequently
repeated second cycle.

VI. CONCLUSION

In this paper, the Kalman filter based velocity estimation
using low-resolution encoders has been investigated for ultra
lightweight tendon driven elastic robots. For this, the measure-
ment variance characteristics regarding a wide range of signal
velocities and frequencies have been analyzed. Based on these
observations, a novel adaptive measurement noise variance
update rule has been introduced that is easy to adjust to other
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Table I
ESTIMATION ERRORS OF SIMULATED SINUSOIDAL SIGNALS ACCORDING TO FIG. 4

q̇max = 0.01∆v q̇max = 0.5∆v q̇max = 1.0∆v

Filter εRMS εMAX εAV G εRMS εMAX εAV G εRMS εMAX εAV G

f = 0.125 Hz
AKF3rd,v 0.0223 10.8689 1.8739 0.0054 11.076 0.0444 0.0101 16.4375 0.0395
AKF3rd,r 0.0022 0.9554 0.1941 0.0074 1.5983 0.0199 0.0095 2.9077 0.0153
AKF4th,r 0.0021↓ 2.7270↑ 0.2811↑ 0.0051↓ 5.6780↑ 0.0388↑ 0.0061↓ 5.6363↑ 0.0240↑

f = 1.0 Hz
AKF3rd,v 0.0213 4.5651 1.9639 0.0189 1.6306 0.0549 0.0335 2.2612 0.0558
AKF3rd,r 0.0066 8.9505 0.7019 0.0310 2.7000 0.0896 0.0387 2.2519 0.0576
AKF4th,r 0.0058↓ 7.8055↓ 0.7320↑ 0.0249↓ 6.1141↑ 0.1400↑ 0.0293↓ 2.7718↑ 0.0743↑

f = 4.0 Hz
AKF3rd,v 0.0210 3.5214 1.6973 0.2676 30.2556 1.4333 0.4330 25.5303 1.1989
AKF3rd,r 0.0214 17.2821 2.0267 0.0868 2.7127 0.1914 0.1081 0.7184 0.1037
AKF4th,r 0.0385↑ 39.1094↑ 5.4942↑ 0.0833↓ 12.0087↑ 0.4702↑ 0.0928↓ 7.1051↑ 0.2779↑

Table II
ESTIMATION ERRORS OF RECORDED MOTION ACCORDING TO FIG. 7

Filter εRMS εMAX εAV G

AKF3rd,v 0.2611 38.9285 0.6860
AKF3rd,r 0.0643 8.9916 0.2372
AKF4th,r 0.0688↑ 11.9324↑ 0.2543↑

Table III
ESTIMATION ERRORS OF RECORDED MOTION ACCORDING TO FIG. 8

Motion Filter εRMS εMAX εAV G

Place Object
AKF3rd,v 0.0470 1.4721 0.3459
AKF3rd,r 0.0467 1.4633 0.3481
AKF4th,r 0.0468 1.5575 0.3441

Object Released
AKF3rd,v 0.0533 2.4545 0.5494
AKF3rd,r 0.0442 1.4607 0.5028
AKF4th,r 0.0443 1.4793 0.5274

encoders. This rule uses the filter’s position estimation error
(residual) to decide whether the velocity estimation should be
smoothed or is not accurate enough. The proposed filter has
been compared to the most promising alternative based on the
analysis of [1]. It has been shown in simulation and robot
experiments that the new adaptive Kalman filter approach
adapts better to the investigated application scenario of an
ultra lightweight tendon driven elastic robots with low time
delay. Furthermore, it produces a smooth and accurate velocity
estimation over a wide bandwidth, which is promising with
regards to using for control purposes. Additionally, the general
filter concept is not limited to be used on highly elastic robots
and also provides an acceleration estimation that should be
investigated in further studies.
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