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Abstract
The application of mobile sensor-carrying vehicles for online estimating dynamic dispersion
processes is extremely beneficial. Based on current estimates that depend on past measure-
ments and forecasts obtained from a discretized PDE-model, the movement of the vehicles can
be adapted resulting in measurements at more informative locations. In this work, a novel
decentralized monitoring approach based on a partitioning of the spatial domain into several
subdomains is proposed. Each sensor is assigned to the subdomain it is located in and is
only required to maintain a process and multi-vehicle model related to its subdomain. In this
way, vast communication requirements of related centralized approaches and costly full model
simulations are avoided making the presented approach more scalable with respect to a larger
number of sensor-carrying vehicles and a larger problem domain. The approach consists of a
new prediction and update method based on a domain decomposition method and a partitioned
variant of the Ensemble Square Root Filter getting along with a minimum exchange of data
between sensors on neighboring subdomains. Furthermore, a cooperative vehicle controller is
applied in such a way that a dynamic adaption of the sensor distribution becomes possible.

Keywords: Dynamic data-driven application system, Domain decomposition, State estimation, Ensem-

ble Square Root Filter, Decentralized estimation, Vehicle control

1 Introduction
Estimating atmospheric or underwater pollutant dispersion, predicting the impacts of se-

vere weather conditions, detecting wildfires - all these applications require the monitoring of
dynamical spatially distributed dispersion processes. A typical goal of the monitoring process
is the generation of a repeatedly updated online estimate of the current process state. For this
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purpose, forecasts obtained from a suitable process model, usually comprising partial differ-
ential equations (PDEs), are repeatedly combined with measurements provided by a wireless
sensor network. Due to the development in the field of autonomous unmanned vehicles, mobile
sensor-carrying vehicles are more and more applied in this context [4]. They are not only capa-
ble of taking measurements at different locations, also, they are able to adapt their movement
online based on the current process estimates, leading to a concept called Dynamic Data-Driven
Application System (DDDAS) [2]. In this way, measurements can be obtained at locations that
are likely to provide a higher amount of information for process estimation.

A number of monitoring approaches have been proposed in the recent past concerning the
estimation part as well as the question of how to optimally control the vehicles [17, 20, 3, 15, 5].
These approaches are all based on a centralized sensor network. A central supercomputer
performs the model prediction, receives the measurements of the sensing vehicles, fuses forecast
and prediction, generates suitable control inputs, and sends the input back to the vehicles.
Such approaches demand for vast communication ranges, own a central point of failure, and
lack scalability with respect to larger problem domains and a larger number of vehicles.

For this reason, decentralized approaches, in which the central processing node is omitted,
with information being processed on-board the sensor platforms and being exchanged with
local neighbors, are a better choice. While several general propositions concerning decentralized
estimation and control strategies have been made [11, 12], the handling of PDE-based estimation
and its relation to vehicle control remain challenging in the considered applications. Discretized
PDE-models usually require the solution of high-dimensional problems, which is not at all
tailored for onboard computational units with limited computational power. One possible
alleviation for this challenge is provided by the application of reduced order models, where the
full order dynamics are projected onto a lower dimensional space. Approaches using reduced
order models have been applied in [14] and [16] and have shown good performance for relatively
small problem domains and a low number of sensor-carrying vehicles. However, if the spatial
dimension grows and the number of vehicles increases, further simplifications become necessary
to still meet the computational restrictions.

A suitable simplification, which further supports decentralization, is the application of do-
main decomposition. The global problem domain is decomposed into several subdomains and
each sensor vehicle is assigned to the subdomain it is located in. Every node only performs calcu-
lations concerning its own local subdomain and communicates with sensor nodes in neighboring
subdomains to resolve boundary issues. In this way, an enormous amount of computational time
can be saved.

If domain decomposition is applied, an adequate partitioned algorithm for simulation, data
assimilation, and vehicle control has to be designed. While there is rich literature on domain
decomposition regarding the simulation of dispersion processes [19], only few work has been
published in the field of data assimilation on partitioned domains. Most of the work in this
field focusses on sparse interconnections [10] between the models. On the other hand, problems
are considered that arise from the discretization of PDEs, for which an overlapping domain
decomposition method with Kalman Filter is applied [1]. However, the propagation of the
error variance from one subdomain to another, an important process in the context of adaptive
monitoring, is avoided.

In this work, a new scalable decentralized dynamic data-driven monitoring approach working
on partitioned domains is presented. The computational effort is significantly reduced since
every node only has to maintain a model of its own subdomain and only has to integrate
measurements stemming from its own and from adjacent subdomains. Furthermore, the applied
methods provide a reduced communication effort: Only low-dimensional vectors and matrices
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have to be communicated. A decentralized partitioned prediction and update method based
on the Ensemble Square Root Filter is proposed that is capable of propagating neighboring
measurement information as well as uncertainty over the interfaces of the subdomains. It is
combined with a cooperative feedback controller that guides the sensing vehicles to informative
measurement locations within the subdomain and also permits the movement of a vehicle from
one subdomain to a neighboring subdomain where it might be more useful.

2 Centralized Monitoring Approach
The basic methods of the dynamic data-driven monitoring approach are introduced in this

section on the basis of a centralized approach presented in previous work [15, 5, 16]. Based
thereupon, the decentralized partitioned approach is developed in Section 3.

2.1 Forecast and Observation Model

The considered dispersion process is usually modeled by a PDE so that a model forecast
starting from time t = 0 can be obtained by solving the initial boundary value problem

∂x(r, t)

∂t
+A(x(r, t)) = f in Ω (1a)

x(r, t) = xD(r, t) on ∂ΩD (1b)

∂x(r, t)

∂n
= dN (r, t) on ∂ΩN (1c)

x(r, 0) = x0(r) in Ω. (1d)

In this formulation, the scalar function x(r, t) represents the dispersed entity to be estimated
with spatial vector r ∈ Ω and time t ∈ R+

0 .
The initial boundary value problem (1) can be solved by a suitable discretization method,

e.g. the finite element method. In this way, the solution x is approximated using a vector x ∈ Rn

containing the nodal values at the positions of the nodes of the underlying grid. Combined with
a time discretization method, one can express the forecast of the state vector from time tk to
time tk+1 as

xk+1 =M(xk), (2)

where M describes the model forecast operator. Compared to the evolution of the true state
vector xt, a model error is made in every forecast step due to model inaccuracies and external
perturbations.

The true state vector xt can be accessed in a pointwise manner with np direct measurements
of the dispersed entity

yk = Hk(xt)k + εk, (3)

with the sensor model matrix H ∈ Rnp×n depending on the location rk of the measurements.
Furthermore, an observation error εk is made, which is also assumed to be Gaussian with
known covariance Rk. The model error covariance matrix Rk is diagonal since it is additionally
assumed that observations are uncorrelated.

2.2 Data Assimilation

To combine the model forecast (denoted by the superscript (·)f in the following) and the
measurements of the sensor network, a suitable data assimilation method has to be used. It is
recommendable to not only consider the mean estimate x, but also its error covariance matrix
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P. The update (superscript (·)a) step of the commonly used Kalman Filter reads

xa = xf + K(y −Hxf ) (4)

Pa = (I−KH)Pf , (5)

with the identity matrix I and the Kalman gain

K = Pf (H)T
(
HPf (H)T + R

)−1
, (6)

which is chosen such that the determinant of the analysis error covariance matrix Pa is mini-
mized. However, the Kalman Filter cannot be applied practically here since the error covariance
matrix P has to be forecasted along with the state estimate resulting in an expensive multipli-
cation of high-dimensional matrices.

Instead, ensemble methods that represent the covariance P implicitely by a set of different
state vectors {x(i)}ns

i=1 with ns � n are used. In this way, expensive matrix multiplications can
be avoided and (2) is used to forecast every ensemble member x(i) to observation time. With
the use of the ensemble, the mean state estimate can be determined by the mean of the sample

x̄f =

∑ns

i=1 xf(i)

ns
, (7)

whereas the error covariance matrix is the sample covariance

Pf =

∑ns

i=1(xf(i) − x̄f )(xf(i) − x̄f )T

ns − 1
= Xf (Xf )T (8)

with the n × ns matrix square root Xf of Pf . In the analysis, the updated ensemble mean
x̄a can be calculated from (7) and (8) using the Kalman update (4) and (5). As (8) should
also hold after the analysis, i.e. Pa = Xa(Xa)T , the analysis ensemble has to be determined
adequately. Inserting (8) in (5) yields

Xa = XfT (9)

with a transformation matrix T that depends on the ensemble square root method to be used.
In this work, the direct Ensemble Square Root Filter [18] is used so that the matrix T can be
obtained from

TTT = I− (Xf )THT (HXf (Xf )THT + R)−1HXf . (10)

2.3 Vehicle Control

To considerably improve the process estimate, the measurements should be taken at the
currently most informative measurement locations. Such profitable locations can, for example,
be characterized by a high error variance Pa

jj , j ∈ {1, . . . , n}. Thus, a suitable control law
should be designed for the vehicles so that measuring along the vehicles’ trajectories minimizes
the trace of the error covariance matrix Pa. Finding such optimal sensor trajectories would
require the solution of an optimal control problem subject to vehicle dynamics, the evolution of
the covariance matrix and further constraints. For the considered applications, this approach
is computationally much too expensive, so that an alternative sub-optimal control approach
seems to be more appropriate.

The approach consists of two parts. First, suitable measurement locations R = {r1, ..., rnp
}

are identified in a sequential procedure. For simplicity, the sequential procedure considers the
diagonal matrix diag{Pa

jj}nj=1 instead of the full matrix Pa. The location rmax belonging to
maxj∈{1,...,n}Pa

jj is chosen as the first target point r1. Then, the error covariance Pa is updated

using (9) with a sensor model matrix H̃ representing measurements at all already chosen target
points R. In this way, clustering of target points can be avoided. The procedure is repeated
until the number of target points corresponds to the number of vehicles. This algorithm does
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Figure 1: Exemplary domain decomposition

not require the direct computation of the matrix Pa since Pa
jj =

∑ns

i=1(Xa
ji)

2.
In the second step, a cooperative feedback vehicle controller based on a mixed logical dy-

namical formulation is applied in a model predictive control fashion to find the control inputs
such that the prescribed target points are reached [15].

3 Decentralized Monitoring Approach
To gain scalability and to avoid a central point of failure as well as vast communication

requirements, the aforementioned centralized procedure is transformed into a decentralized
monitoring approach. The idea is that every sensor platform computes its own model forecasts,
assimilates the data obtained from own and neighboring measurements and calculates its own
control inputs. However, the methods described before cannot be simply shifted to the pro-
cessing unit on-board the vehicles. Onboard computational capabilities are limited and with
higher-dimensional state vectors as well as with larger number of vehicles, the solution of the
problem takes too much time. Hence, the idea is to apply domain decomposition and assign
every vehicle to a subdomain so that only local tasks have to be fulfilled.

3.1 Domain Decomposition and Assumptions
Applying domain decomposition means sudividing the domain Ω into nd subdomains Ωi:

Ω = ∪i∈{1,...,nd}Ωi. In the context of this work, a non-overlapping domain decomposition is
applied, i.e. Ωi ∩ Ωj = ∂Ωi ∩ ∂Ωj . An exemplary decomposition is depicted in Figure 1.

The sensors are assigned to the subdomain they are located in and perform local compu-
tations in this subdomain. Computations concerning model forecasts and vehicles located far
away can be avoided. If a subdomain is occupied by several vehicles, it is assumed that ev-
ery node is able to communicate with all other nodes in the subdomain and that every node
maintains the same estimates. Furthermore, to provide convergence of the whole approach and
smoothness at the interfaces Γij = ∂Ωi ∩ Ωj between the subdomains, communication with all
the sensors in the neighboring subdomains Ni = {j ∈ D : i 6= j ∧ Γij 6= ∅} is possible.

3.2 Forecast
Instead of solving the global initial boundary value problem (1), only the local model defined

on the subdomain Ωi has to be maintained by every sensor node. As the area of the subdomain
Ωi is much smaller than the area of the original domain Ω, the resulting state vector xi has also
a much smaller dimension and the state forecast can be obtained in a much shorter amount
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of time. However, one has to account for the effects stemming from neighboring domains, i.e.
one has to specify the necessary conditions at the interfaces Γij , which determine which data
is exchanged between sensors on neighboring subdomains.

A popular method is the Dirichlet-Neumann method [19], in which a Dirichlet condition
is used at the interface in one subdomain and a Neumann condition at the same interface in
the neighboring subdomain. Thereby, the conditions mutually depend on the solution at the
interfaces of the neighboring subdomains. For reasons of efficiency, this interdependence can
be removed by applying the damped Adaptive Dirichlet-Neumann method [6]. In this case,
the interface boundaries are assumed to be either outflow boundaries Γout

ij or inflow boundaries

Γin
ij . While at the outflow boundaries a homogeneous Neumann condition is set, the Dirichlet

condition at the inflow boundaries prescribes the solution of the neighboring subdomain in
upstream direction at the interface. In this way, the subproblems become decoupled in each
time step and the following problem has to be solved on every subdomain

∂x

∂t
+A(x) = f in Ωi (11a)

x = xj on Γin
ij (11b)

∂x

∂n
= 0 on Γout

ij , (11c)

where xj is the solution of the neighboring subdomain Ωj . Additionally, the boundary condi-
tions (1b) and (1c) as well as the initial condition (1d) concerning the considered subdomain
have to be obeyed. For advection-dominiated problems, this solution provides a sufficiently
accurate approximation of the solution on the global domain.

The discretized global state vector computed with the partitioned approach is represented

by the vector x̃ = col{xi}nd
i=1 and the vector x

Γij

i containing all the boundary values at the
interface Γij has to be sent to the neighboring subdomain Ωj in case of an outflow boundary
or received from that subdomain in case of an inflow boundary.

3.3 Data Assimilation

In the analysis, every sensor node computes the update on its own local model incorporating
all measurements of the own subdomain as well as all measurements from all neighboring
subdomains. It is assumed that measurements in all other subdomains are far away and do not
influence the analysis state in the local subdomain. Besides a gain in efficiency, the local data
assimilation method comes along with another huge benefit. The limited ensemble size can
produce spurious correlations between distant locations in Pf causing unphysical adjustments
of model states far away from the actual observation. To suppress these correlations, local
ensemble update methods that only consider observations in a vicinity of the respecting grid
point have been developed [13, 8]. Hence, the decentralized data assimilation method proposed
in this work is closely related to these methods as well as to the parallel ensemble filters proposed
in [9, 7], but is considered for a decentralized sensor structure.

Partitioning the domain also means partitioning the ensemble set. The global partitioned
error covariance square root can be defined as X̃ = col{Xi}nd

i=1. Thus, each column of X̃
represents a state vector, which is continuous at the interfaces. The observation error covariance
R̃ = diag{Ri}nd

i=1 and observation matrix H̃ = blockdiag{Hi}nd
i=1 are partitioned accordingly.

To update the local ensemble mean, the local Kalman gain Ki is needed. Inserting (8) in
(6) yields

Ki = Xf
i (X̃f )T H̃T (H̃X̃f (X̃f )T H̃T + R̃)−1. (12)

Introducing localization, only measurements in the local vicinity of domain Ωi are important for
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the update, i.e. one only needs X̃fc
i = col{Xi : i = j ∨ i ∈ Ni}, R̃c

i = diag{Ri : i = j ∨ i ∈ Ni}
and H̃c

i = diag{Hi : i = j ∨ i ∈ Ni}. The Kalman gain can then be computed as

Ki = Xf
i YT

i (YiY
T
i + Rc

i )
−1, (13)

with the npi × ns matrix Yi = Hc
iX

fc
i = col{HiX

fc
i : i = j ∨ i ∈ Ni}. This means that, to

compute the Kalman gain, only relatively small-sized entities have to be exchanged between
sensors on neighboring domains: The observation error covariance matrix Ri and the forecast
covariance at measurement locations Yi. Furthermore, to perform the update step (4), the
innovation d̃c = col{yi −Hixi : i = j ∨ i ∈ N} is needed.

For the update of the ensemble, no further exchange is needed. The update equations (9)
and (10) only require Xc

iH
c
i , i.e. Yi, and Rc

i to perform the local update.

3.4 Vehicle Control
To compute the control input vector, the vehicle controller described in the previous section

is applied on-board every vehicle. In contrast to the centralized case, though, only the sensor
nodes that are located in the same subdomain are considered. Hence, the number of vehicles
and target points that have to be involved in the calculation is drastically reduced. Having
solved the optimization problem, every vehicle only applies the control input that has been
calculated for itself. The consideration of the other vehicles in the domain, however, leads to
cooperation in the task of getting to the target points.

The considered applications involve a dynamic process and so it might be ineffective to work
with a fixed assignment of sensors to subdomains. From a sensor’s perspective, a measurement
in an adjacent subdomain could be much more suitable than in the own subdomain, e.g. when
the uncertainty in the neighboring subdomain is extremely high, while the estimates in the own
subdomain are rather good. Therefore, an adaptive method in which, under specific conditions,
the sensors are allowed to move from one subdomain to another should be implemented.

Introducing another type of target point can solve this problem. From time to time, the
total subdomain variance Vi = trace(Pi) is exchanged between neighbors. If the following
condition holds for subdomains Ωi and Ωj

Vi

npi − 1
<

Vj

npj + 1
, (14)

a sensor of subdomain Ωi should move to subdomain Ωj . In that case, the last target point in
R is replaced by a target point on the boundary Γij . As soon as this target point is reached
by a vehicle from subdomain Ωi, it moves to subdomain Ωj and is supplied with the necessary
domain information (state ensemble, forecast model, etc.) by the sensor nodes of domain Ωj .

4 Results
To evaluate the proposed partitioned monitoring approach, a process governed by the linear

homogeneous advection-diffusion equation

∂x

∂t
+

∂(v1x)

∂r1
+

∂(v2x)

∂r2
−D1

∂2x

∂r2
1

−D2
∂2x

∂r2
2

= 0 (15)

is considered on the two-dimensional domain Ω = [0 km, 4 km]× [0 km, 4 km]. The scenario can
be interpreted as the two-dimensional aerial dispersion of a chemical pollutant with concen-
tration x. Typical velocity parameters for gentle wind are chosen (v1 = 3 ms−1, v2 = 2 ms−1,
D1 = D2 = 20 m2s−1) so that the process is advection-dominated as demanded. Besides the
model error, which is accounted for by slight perturbations of the velocity, the true initial con-
centration is unknown. Thus, the estimation process starts with a rather bad initial estimate,
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chosen in this scenario to be uniformly zero, x0(r) ≡ 0. The corresponding error covariance is
formed by a Gaussian kernel function, whose center is located at (1.6 km, 1.5 km)T .

The global domain comprises approximately 10,000 nodes and is decomposed into nine
subdomains according to Figure 1. To generate measurements and to assess the performance
of the proposed monitoring approach, the true solution starting from the true initial conditions
is also simulated (twin experiment). Two sensors are initially located in every subdomain.

At first, the partitioned prediction and update procedure is briefly evaluated by omitting the
vehicle control and considering a static sensor network instead. While the simplified forecast
with the assumption of a homogeneous Neumann boundary condition at the interfaces between
subdomains inevitably leads to an additional model error, even for advection-dominated flows,
no additional error compared to its centralized counterpart is introduced by the update step
if there are no correlations between non-adjacent subdomains. Figure 2 shows the root mean
square error between true state and estimate over time – once computed on the full domain
and once using the new partitioned approach. The deviation in error between both approaches
is small and does, due to repeated measurement updates, hardly grow over time. Thus, the
prediction and update scheme can be applied without compunction in the considered scenario.

Now, the sensors are mounted onto vehicles, modeled with double-integrator dynamics,
enabling the dynamic data-driven monitoring approach proposed in this work.

The resulting dynamic data-driven estimate at t = 100 s is depicted in Figure 4(a). Com-
pared to the true solution in Figure 4(b), deviations can be only noticed at the sides of the
concentration peaks and in the magnitude of them. In total, the monitoring approach succeeds
in providing a rather good qualitative estimate after a rather short amount of time.

The good performance is also reflected in the evolution of the root mean square error over
time plotted in Figure 2. With the first measurements, the estimate is already strongly im-
proved. The next phase mainly consists of the redistribution of the vehicles so that the estimate
temporarily gets worse, but the adaptation leads to a further decrease in error in the following.
To compare these results, the estimation error of the original centralized approach described in
Section 2 is also evaluated. The vehicles are not restricted to stay on a local domain and follow
a global control law guiding them to more informative locations. Thus, the error obtained with
this approach is smaller than with the partitioned approach, especially when the decentralized
approach is mainly occupied with redistributing the vehicles. However, the results obtained
with the partitioned approach are not much worse, as soon as the sensors are distributed over
the subdomains in a reasonable way. Taking into account that the centralized approach requires
much more computation time due to the larger problem dimension and the larger multi-vehicle
system to be considered, further revaluates the results obtained with the partitioned approach.
For the considered application and decomposition, the speedup of the proposed approach re-
garding state forecast amounts to approximately 10, whereas for the speedup regarding vehicle
control, an even higher gain can be achieved. Moreover, compared to the solution obtained with
the static sensor networks discussed before, the dynamic data-driven solution is significantly
better.

The adaptive redistribution ability of the vehicles is shown by Figure 3, depicting a histogram
of the number of sensors on every domain at t = 100 s. As the main concentration field is located
in the lower and middle part of the domain, a lot of sensors in the top part are hardly needed
but are strongly required in the lower part. Thus, adapting to the current uncertainty, sensors
move from the top part to the subdomains located in the bottom and middle part of the domain.
At t = 100 s, the subdomains at the top and the small subdomain Ω1 only contain one sensor
unit, while the subdomains in the lower and middle part contain two or more.
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5 Conclusion

A new decentralized dynamic data-driven strategy for online estimating dispersion processes
has been proposed. To attain a strategy that is computationally tractable, even when performed
on-board the sensor platforms, domain decomposition is applied effecting every sensor node
only to perform calculations concerning the local process and sensor model. A decentralized
prediction and update method based on damped Adaptive Dirichlet-Neumann and a partitioned
variant of the Ensemble Square Root Filter requiring only minimum communication with sensors
on neighboring domains ensures global convergence. The applied vehicle controller not only
guides the vehicles cooperatively to interesting measurement locations within the subdomains
but also allows a dynamic redistribution concerning exchanges of vehicles between subdomains.
Compared to its centralized counterpart, the estimation results obtained with the new approach
rank only a little behind, whereas the computation time can be reduced significantly. For a
further reduction of computation time in the future, the additional application of reduced order
models could be helpful in context of larger problem dimensions and a more heuristic controller
would help in context of a larger number of vehicles.
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