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Abstract— This paper presents a sequential optimum design
approach for estimating the parameters of an atmospheric
dispersion process model based on measurement data gathered
by a team of cooperating sensor-equipped UAVs. Locally opti-
mal waypoint sequences that account for each UAV’s possibly
heterogeneous motion dynamics are computed by minimizing
a suitable optimality criterion. Following these waypoints, the
UAVs cooperatively maximize the information gain of the
acquired measurements. A decentralized data-driven online
control scheme is proposed that couples parameter estimation,
waypoint calculation, and vehicle control and enables the UAVs
to adaptively observe the dynamic process and iteratively
improve the parameter estimate.

Simulations demonstrate the effectiveness of the proposed
scheme in reducing the error between the estimated and the
true dispersion model parameters compared to non-adaptive
sensing strategies. In addition, the effect of using different
optimality criteria, different numbers and types of UAVs as
well as two options for decentralizing the waypoint calculation
are investigated.

I. INTRODUCTION

Monitoring the atmospheric dispersion of volcanic ash and
radioactive or otherwise hazardous airborne material is a
typical non-visual remote sensing application for unmanned
aerial vehicles (UAVs). These phenomena represent large-
scale dynamic spatio-temporal processes that can hardly
be captured by stationary sensor networks. Sensor-carrying
UAVs, instead, can be deployed flexibly and move to the
most relevant measurement locations. This paper investigates
cooperative sensing by multiple UAVs for the purpose of es-
timating the parameters of an atmospheric dispersion model.

The efficiency of the measurement process can be maxi-
mized using an adaptive control approach that accounts for
already available information as well as the UAVs’ individual
physical capabilities. This can be achieved by not only
incorporating new measurement data to update the parameter
estimate, but by feeding the estimate back to the UAVs’
motion controller in a way that the information gain of
future measurements is maximized. This closed loop between
application and measurements is characteristic for so called
Dynamic Data Driven Application Systems (DDDAS) [1].

Model-based DDDAS in the context of atmospheric dis-
persion monitoring can be implemented in many different
ways: In [2], the authors utilize virtual attractor particles
to guide multiple UAVs collecting data for a pollutant puff
simulation. A loss function combining misclassification and
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mutual information is minimized in [3] to choose the best
option from a finite set of possible actions for each UAV.
This is similarly done in [4] and [5], where a measure for the
uncertainty of the parameter estimate is optimized instead.
Above approaches, however, do not explicitly incorporate the
UAVs’ motion dynamics.

The authors of [6] do so by optimizing a set of waypoint
sequences that maximize the forecast accuracy of a PDE
plume model subject to the vehicle dynamics. The data-
driven scheme proposed in [7] is also based on a PDE process
model and the Ensemble Kalman Filter, but combines it with
a separate model-predictive cooperative controller. Since
PDE-based simulations are computationally intensive, both
approaches depend on a central computing unit.

[8] provides a comprehensive theoretical background on
optimum design for identifying distributed parameter sys-
tems. Here, the goal is to solve a complex optimal control
problem (OCP) that minimizes an optimality criterion subject
to ordinary differential equations representing the vehicle
dynamics. A similar idea is also pursued in [9]. However,
online adaptability of the vehicles’ motion to the gathered
information is not possible in these feedforward approaches
and solving the OCP quickly becomes computationally in-
tensive. In order to overcome these drawbacks, the OCP
can repeatedly be solved in a receding horizon fashion,
as proposed in [10] and [11]. The feedback loop can be
closed that way, but both approaches [10], [11] depend on
a central instance able to solve the OCP. As communication
between the central instance and the UAVs is likely to be
limited, decentralized solutions are preferable for real-world
applications and offer the additional benefit of being scalable
to larger UAV teams.

In this paper, the DDDAS scheme is implemented as se-
quential optimum design approach. By minimizing a suitable
optimality criterion, sequences of spatiotemporal waypoints
are determined, where measurements collected by sensor-
equipped UAVs are most valuable for improving the param-
eter estimate of a Gaussian puff model. The design problem
is constrained by the UAVs’ (possibly heterogeneous) mo-
tion dynamics and therefore provides vehicle-specific locally
optimal waypoint sequences as input for each UAV’s motion
controller. Parameter estimation (Sec. II), waypoint calcu-
lation (Sec. III), and vehicle control permanently interact
as illustrated in Fig. 1. By coupling the estimation and the
control problem in that way, an efficient decentralized data-
driven online control scheme is obtained.
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Fig. 1. Schematic view of the proposed dynamic data-driven sensing loop.
The focus of this paper is on the interaction of the elements PARAMETER
ESTIMATION and WAYPOINT CALCULATION highlighted in blue.

II. DISPERSION MODEL

Gas emissions in the atmosphere can be described by the
advection-diffusion equation

∂C

∂t
= −∇ · q , (1)

where C(x, t) is the contaminant concentration in [kg/m3] at
location x ∈ R3 at time t and q is the mass flux in [kg/m2s].
q combines diffusion and advection since

q = qA + qD = Cvw −K∇C , (2)

where vw is the wind velocity in [m/s], K =
diag(Kx,Ky,Kz) is the diffusion coefficient, and
Kx(x),Ky(x),Kz(x) [m2/s] turbulent eddy diffusivities.

A. Solving the Advection-Diffusion Equation

Under a number of simplifying assumptions (detailed in
[12]), by Laplace transform one can obtain

C(θθθ, x, y, z, t) =
Q

8π
3
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)
, (3)

as the so called Gaussian puff solution of (1). Here, Q [kg] is
the total mass of the instantaneous release, (x0, y0, z0) is the
location of the source in [m], t0 [s] the time of the release,
∆x = x−x0, ∆y = y−y0, ∆t = t−t0, and vw = (u, 0, 0).

Further assuming that the lateral eddy diffusion in x and
y direction is identical, i.e. Kx = Ky , and that Kz can be
derived from the theoretical model Kz = a(z − z0)n [12]
with a and n depending on the atmospherical conditions, the
vector of unknown parameters for the Gaussian puff solution
(3) is θθθ = (Q,Kx, x0, y0, z0, t0)T .

The Gaussian model is used extensively as the standard
approach in literature studying industrial emissions, various
pollutant transport processes as well as the release of nuclear
or biological contaminants [13]. For the latter case, the im-
portance of (Gaussian) dispersion models that offer “a quick,
simple, hands-on prediction capability for plume direction,
coverage, and lethality” for first responders is emphasized
in [14]. However, the approach presented in the following

section could equally well deal with other analytical solutions
of (1). It is possible to extend the Gaussian solutions to
represent more complex dispersion phenomena, e.g. multiple
sources or stronger turbulences. In general, more complex
solutions of (1) can be derived by changing the underlying
assumptions and boundary conditions (cf. [13]).

B. Parameter Estimation Problem

Let (pi, vi), i = 1, 2, . . . ,m, be m data points with
measurements vi defined as

vi = Ci(θθθtrue) + εi, i = 1, 2, . . . ,m , (4)

where Ci(θθθtrue) = C(θθθtrue,pi) as defined in (3) and θθθtrue is
the true parameter vector to be estimated. pi = (xi, yi, zi, ti)
contains the coordinates of the ith measurement in space
and time. The measurement error εi is assumed to be white
Gaussian noise with mean E(εi) = 0 and variance var(εi) =
σ2
i . Following the problem definition in [5], the standard

deviation σi of the error is modeled as σi = vi
α with a

constant signal to noise ratio (SNR) α2 = 1000. It is further
assumed that the measurement errors are uncorrelated, i.e.
E(εiεj) = cov(εi, εj) = 0 for i 6= j.

The following weighted nonlinear least squares problem
is solved to estimate the parameter vector θθθ:

min
θθθ

1

2

∥∥W(v −C(θθθ))
∥∥2
2
. (5)

Here, v = (v1, v2, . . . , vm)T and C(θθθ) =
(C1(θθθ), C2(θθθ), . . . , Cm(θθθ))T . Since the standard deviations
of the measurement errors are not identical, each residual
vi − Ci(θθθ) needs to be weighted by the reciprocal of σi.
Hence, W = diag(σ−1

1 , σ−1
2 , . . . , σ−1

m ) ∈ Rm×m.
In order to most efficiently obtain an accurate estimate

of the parameters θθθ of the Gaussian puff model (3), the
sensor UAVs are to collect measurements vi at locations
where maximum information gain and, hence, maximum
improvement of the solution of problem (5) can be expected.
Identifying these optimum locations respecting previously
gathered information as well as the vehicles’ motion capa-
bilities is subject of the following section.

III. WAYPOINTS FOR OPTIMAL SENSING

A. UAV Dynamics

Quadrotor as well as fixed-wing UAVs are considered as
sensor platforms in this paper. The modeling of their motion
dynamics is described in the following.

a) Quadrotor UAV: Quadrotor UAVs are modeled as
point mass with double integrator dynamics ẍ = u [15], i.e.
the first order ODE describing the motion dynamics is

ẋqr =


vx
vy
vz
ux
uy
uz

 = fqr(xqr,uqr) , (6)



where the state vector xqr = (x, y, z, vx, vy, vz)
T contains

the quadrotor’s x/y/z positions and velocities, and the vector
of control inputs uqr = (ux, uy, uz)

T ) comprises its x/y/z
accelerations. Euler discretization of (6) yields

xk+1
qr = xkqr + ∆t · fqr(xkqr,ukqr) , (7)

where ∆t is the step size and the superscript k relates to the
time step tk = k ·∆t.

b) Fixed-Wing UAV: A simple airplane model (cf. [15])
is used to describe the motion of fixed-wing UAVs:

ẋfw =


s · cosϕ
s · sinϕ
vz
ωϕ
uz
uω

 = ffw(xfw,ufw) . (8)

Here, the state vector xfw = (x, y, z, ϕ, vz, ωϕ)T contains
the UAV’s x/y/z position, orientation ϕ, climb/descent rate
vz , and angular velocity ωϕ. Control inputs ufw = (uz, uω)T

are the climb/descent acceleration uz and the angular accel-
eration uω . A constant forward speed s = const is assumed.
Takeoff and landing of the aircraft are not modeled. Euler
discretization of (8) yields

xk+1
fw = xkfw + ∆t · ffw(xkfw,u

k
fw) . (9)

Although wind velocity is an important parameter of the
Gaussian puff model, both UAV dynamics models do not ac-
count for the influence of wind. It is assumed that the UAVs’
motion controller is able to compensate wind disturbances at
least for the low winds considered in this paper. This justifies
the calculation of waypoints neglecting the impact of wind on
the UAVs’ flight paths. For dealing with stronger winds, they
could be incorporated also in the UAV dynamics models.

B. Optimum Design Problem

Let θ̄θθ be the result of the parameter estimation problem
(5). Since the Gaussian puff model (3) is nonlinear in the
parameters θθθ, an optimum design will depend on these
parameters and, thus, on the quality of the estimate θ̄θθ. In
order to compensate negative effects of bad estimates θ̄θθ on
the design, a sequential design approach [16] is employed in
this paper. In a first step, a linearization of the Gaussian puff
model (3) by Taylor series expansion about θ̄θθ combining all
available measurement data yields

C(θθθ) = C(θ̄θθ) + JC · (θθθ − θ̄θθ) , (10)

where the Jacobian of C(θ̄θθ) denoted as

JC = (∇C1(θ̄θθ),∇C2(θ̄θθ), . . . ,∇Cm(θ̄θθ))T

= (∇C(θ̄θθ,p1),∇C(θ̄θθ,p2) . . . ,∇C(θ̄θθ,pm))T

is the extended design matrix for the linearized model (C as
defined in (3)). From that, the information matrix

M = JTCW
2JC (11)

is obtained. W is the same as in (5). In order to determine
an optimum design for the linearized model (i.e. optimized

new measurement locations p̃v,1, . . . , p̃v,nw as waypoints for
each UAV v), M is extended such that

Mext = M +∇C(θ̄θθ, p̃v,1)∇C(θ̄θθ, p̃v,1)T+

· · ·+∇C(θ̄θθ, p̃v,nw
)∇C(θ̄θθ, p̃v,nw

)T (12)

for all UAVs v = 1, 2, . . . , nv . That way, Mext becomes
dependent on the waypoints to be determined. The volume
of the confidence ellipsoid of the parameters θ̄θθ is inversely
proportional to

√
det(Mext). Hence, it is desirable to max-

imize det(Mext) in order to improve the reliability of the
parameter estimate. This leads to the so called D-optimality
criterion [16], a convex formulation of which is

ΨD(Mext) = − log(det(Mext)) . (13)

Other frequently used optimality criteria expressed in terms
of the eigenvalues λi of Mext are A-optimality

ΨA(Mext) =
∏
i

1

λi
(14)

corresponding to the diagonal of the bounding box of the
confidence ellipsoid and E-optimality

ΨE(Mext) = max
i

1

λi
(15)

corresponding to the largest radius of the confidence ellipsoid
[16]. Minimization of one of the optimality criteria subject
to the UAVs’ motion dynamics models leads to the following
design problem for the determination of optimized vehicle-
specific waypoint sequences:

min
p̃v,1,p̃v,2,...p̃v,nw

Ψ(Mext + µI) (16a)

s.t. xk+1 = xk + ∆t · f(xk,uk) (16b)

p̃v,k+1 = Cvx
k+1 (16c)

xmin ≤ xk ≤ xmax (16d)

umin ≤ uk ≤ umax , (16e)

where k = 0, 1, . . . , nw − 1. Constraint (16b) represents the
dynamics of all nv UAVs considered in the problem since

xk=

 xk1
...

xknv

 ,uk=

 uk1
...

uknv

 , f(xk,uk)=

 f(xk1 ,u
k
1)

...
f(xknv

,uknv
)

 ,

where xv,uv, fv correspond to the type of UAV v. Constraint
(16c) is not implemented, but stated here to illustrate the
extraction of waypoints from the overall vehicle state vector.
The term µI with small µ is required to regularize the
information matrix. The software package SNOPT 7.5 [17]
is employed to solve the nonlinear program (NLP) (16).

The waypoints can be tailored to the current or a predicted
vehicle state by selecting the initial value x0

v accordingly.
This allows collateral precalculation of new waypoints while
the sensor vehicle is still collecting data along previously
determined waypoints.

Whenever additional measurement data has been gathered,
it can be incorporated to obtain an updated parameter esti-
mate θ̄θθ from (5). Based on the new θ̄θθ, the linearization (10)
can be recalculated and the sequential design restarts.



C. Decentralized Waypoint Calculation

Our high-level objective is the development of a fully
decentralized dynamic data-driven control loop for cooper-
ative process estimation by multiple UAVs as depicted in
Fig. 1. Therefore, all loop components including PARAME-
TER ESTIMATION and WAYPOINT CALCULATION have to be
performed by each UAV individually. For this purpose, it is
assumed that the UAVs exchange the measurement data they
gathered, their current parameter estimate θ̄θθ as well as their
current state vector whenever they are within communication
range to each other.

Two options can be considered for the way a UAV
calculates its waypoint sequences.

Option 1: Problem (16) is set up only for the UAV itself,
i.e. constraint (16b) contains only one motion dynamics
model and only one waypoint sequence is determined. That
way, each UAV will try to improve the parameter estimate
without considering its teammates’ actions.

Option 2: Problem (16) is set up for the UAV itself
plus all teammates within communication range. From the
resulting waypoint sequences only the calculating UAV’s
own sequence is actually used. This joint waypoint calcula-
tion can be assumed to result in better cooperative behavior
than Option 1 since the optimization accounts also for the
teammates’ (potential) future measurements.

It is obvious that the NLP for the joint waypoint calcula-
tion in Option 2 is more complex and its solution therefore
more time consuming than Option 1. The differences in the
UAVs’ behavior and the quality of the parameter estimate
resulting from the two different options will be evaluated in
Sec. IV-C.

IV. EVALUATION

Purpose of the following analysis is to prove the general
effectiveness of the waypoint approach with respect to the
quality of the resulting parameter estimate. This is done
under idealized conditions omitting inaccuracies stemming
from the deviation between the motion dynamics models
in problem (16) and the actual UAV motion. That means,
the vehicle controller step in the data-driven sensing loop
(Fig. 1) is skipped and the sensors are assumed to collect
measurements precisely at the calculated spatio-temporal
locations. Moreover, perfect communication is assumed,
making identical measurement data and parameter estimates
available to all UAVs at any time. Measurement noise is the
only considered error source (cf. Sec. II-B).

A. Comparison of Optimality Criteria

In Sec. III-B, the criteria for A-, D-, and E-optimality were
introduced. From a theoretical point of view, D-optimality
has a significant advantage over the other two criteria as
it is invariant to affine transformations of ∇C(θθθ,p). Hence,
changing a unit of measure, e.g. from [m] to [cm], would not
affect the D-optimum design. In order to evaluate differences
in the performance of the proposed waypoint approach with
respect to the employed optimality criterion, a set of 60
simulation runs per criterion was performed.

TABLE I
SIMULATION PARAMETERS

parameter value unit
domain size F = 500 [m]
min UAV altitude zmin = 5 [m]

x0
1 = (−50, 0, 5)

initial UAV positions x0
2 = (−50,−50, 5) [m]
x0
3 = (−50, 50, 5)

sensing rate ∆t = 2 [s]

true puff parameters θθθtrue =


Q
Kx

x0
y0
z0
t0

=


1000
12
2
5
0
0




[kg]

[m2/s]
[m]
[m]
[m]
[s]



initial estimate θ̄θθ0 =


Q
Kx

x0
y0
z0
t0

=


700
20
40
25
1
30




[kg]

[m2/s]
[m]
[m]
[m]
[s]


diffusivity parameter Kz = 0.2113 [m2/s]

quadrotor UAV
max x/y/z velocity vmax = 10 [m/s]
max x/y/z acceleration umax = 3 [m/s2]

fixed-wing UAV
max z velocity vzmax = 2 [m/s]
max ang. velocity ωϕmax = 9 [deg/s]
max z acceleration vzmax = 0.16 [m/s2]
max ang. acceleration uϕmax = 0.3 [deg/s2]
forward speed s = 18 [m/s]

All values of the variables mentioned in the following are
given in Table I. On a [−F, F ] × [−F, F ] × [0, 50] ⊂ R3

domain, a Gaussian puff with parameters θθθtrue is to be
identified. With the joint waypoint calculation approach as
introduced in Sec. III-C and each of the criteria (14), (13),
and (15), sequences of nw = 4 waypoints per optimization
are generated for nv = 1/2/3 quadrotor UAVs starting
at the initial positions x0

1/2/3. The last waypoint of the
previous sequence serves as starting point for the next
waypoint sequence. In order to guarantee that a feasible
follow-up sequence exists, 4+2=6 waypoints are determined
per optimization, but only the first 4 are actually used.
The UAVs start at time t = 100 and take measurements
every ∆t s. Measurement noise is modeled as described in
Sec. II-B and the wind conditions were uniformly varied
between u ∈ {0.5, 0,−0.5, 1}. The initial parameter estimate
θ̄θθ0 is assumed to be updated every ∆t s and the sequence of
estimates over a period of 50 s was evaluated.

Fig. 2 shows the resulting root mean squared error (RMSE)
for the different criteria and numbers of UAVs nv . It re-
veals, that in terms of the RSME, E-optimality performs
significantly worse than A- and D-optimality. They provide
very similar estimate accuracies for all numbers of UAVs, D-
optimality being slightly superior to A-optimality. Moreover,
the different criteria perform differently in terms of the
accuracies of the single parameters in θθθ as shown in Fig. 2.
Hence, the choice of the criterion can be made situation-
dependant based on the importance of certain parameters. For
the following experiments, we will employ the D-optimality
criterion as it promises the best overall performance and, in
addition, has the useful scaling property.



Fig. 2. RMSE in 60 simulation runs of the joint waypoint calculation
approach with nv = 1, 2, 3 quadrotors employing the A-, D-, and
E-optimality criterion, respectively. Wind conditions uniformly varied
between u ∈ {0.5, 0,−0.5, 1} [m/s].

Fig. 3. Boxplots showing the estimated values of the single parameters in θθθ
at t = 150 s in 60 simulation runs of the joint waypoint approach for nv = 3
quadrotors employing A-, D-, and E-optimality, respectively.

Fig. 4. Sequence of measurement locations resulting from wavy line motion
(blue •) and space-filling Hilbert curve motion (red ∗) over a period of 50
s and ∆t = 2 s. The stationary 4-sensor network is depicted as magenta
♦, the 9-sensor network as black ◦.

B. Comparison to Motion Patterns and Fixed Sensors

In order to prove the effectiveness of following the
optimized waypoints for maximizing the informativeness
of measurements, the proposed approach is compared to
two predefined sensor motion patterns as well as to two
stationary sensor networks. In addition to the simulation
setup described in Sec. IV-A, a single UAV following a
simple wavy line motion pattern and a space-filling Hilbert
curve (order n = 2), respectively, each starting from x0

1 is
considered. Both patterns are illustrated in Fig. 4. In all cases,
the UAVs start at time t = 100 and take measurements every
∆t s. Additionally, measurements provided from stationary
sensor networks with 4 and 9 sensors, respectively, at rate
∆t are considered. The locations of these sensors are also
marked in Fig. 4. For each sensing approach, the same initial
parameter estimate θ̄θθ0 is considered and updated every ∆t s.
The resulting RMSE curves are shown in Fig. 5.

As can be seen, with respect to estimation error reduc-
tion, measurements taken at the optimized waypoints are
significantly more effective than measurements taken along

Fig. 5. RMSE in 60 simulation runs of the joint waypoint calculation with
nv = 1, 2, 3 quadrotors in comparison to a single sensor moving along
wavy lines and Hilbert curves as well as to two stationary sensor networks.
Wind were uniformly varied between u ∈ {0.5, 0,−0.5, 1} [m/s].

predefined sensor paths. Since new waypoints are calculated
every 8 s based on the current parameter estimate, the motion
of the waypoint-guided UAVs adapts to the current state of
the Gaussian puff. Fig. 6 shows examples of typical waypoint
sequences. While the adaptive sensor motion quickly reduces
the RMSE to values < 50, the wavy line motion seems to
be especially disadvantageous. Since the source of the puff
release is located at (2, 5, 0), lots of measurements taken
along the wavy line are located outside the puff. Hence,
their information content is low, which has a strong negative
influence on the parameter estimate.

For the first estimate update, corresponding to the number
of unknown parameters, 6 measurements are required. This
is why the curves of the wavy line, Hilbert, and waypoint-
guided motion for a single UAV remain constant until
enough measurements have been collected. Two and three
waypoint-guided UAVs and the stationary sensor networks
deliver 2/3/4/9 measurements per time step and therefore
the corresponding RMSE descends earlier. As expected,



Fig. 6. Examples of optimized trajectories computed for 1 quadrotors at
wind speed u = 1 (top) and 3 quadrotors at u = −0.5 (bottom).

the efficiency of the waypoint approach increases with the
number of UAVs. In any case, the final estimation accuracy
of the waypoint approach outperforms the 4-sensor network,
proving that less measurements at optimized locations can be
more valuable than more measurements taken at fixed posi-
tions. Also the 9-sensor network is temporarily outperformed
by the waypoint approach with 3 UAVs, but eventually,
the network’s RMSE further decreases. This is due to the
advantageous positions of the stationary sensors with respect
to the puff’s evolution towards the end of the simulated
time period. The 9-sensor network is then able to gather
9 meaningful measurements per time step in contrast to 3
obtained from the UAVs. This could be completely different
in settings where the puff cannot be covered by the fixed
sensors. Then flexibly adapting UAVs are clearly in favor.

C. Comparing Individual and Joint Waypoint Calculation

In order to compare the two waypoint calculation options
introduced in Sec. III-C, 50 simulation runs for each variant
were performed for 2 quadrotor UAVs. The wind speed was
fixed at u = 0.5, otherwise the same simulation setup as
before was used (see Table I). Figs. 7 and 8 show typical
examples of waypoint sequences obtained from the joint
calculation (Option 2) and the individual calculation (Option
1), respectively. Option 1 leads to an alignment of both

Fig. 10. RMSE in 60 simulation runs of the waypoint calculation for 1
quadrotor with nw = 2, 4, 8 waypoints per sequence. Circles indicate when
new waypoints were computed.

UAV trajectories while Option 2 distributes the UAVs in the
domain. Since nearly all waypoints are at z = 5, only a top
down view is given. The joint calculation provides a slightly
better reduction of the RMSE of the parameter estimate,
the only exception being the first waypoint sequence, see
Fig. 9. The average computing time (Dual Core CPU, 2.53
GHz, 8GB RAM) for one waypoint optimization accounting
for both UAVs was 1.098 s, for the individual case it was
0.432 s. In a setup with 3 quadrotors, Option 2 took 4.519
s in average and the corresponding RMSE curve was even
closer to that obtained with Option 1. It is left to the user
to decide whether a slightly better performance of Option
2 is worth the computational effort exponentially increasing
with the number of UAVs. However, Option 2 is preferable if
additional constraints affecting the UAVs’ cooperation, such
as collision avoidance, are to be considered in the waypoint
calculation. In order to still be able to scale the approach to
teams with nv � 3 UAVs, an upper bound for the number of
UAVs considered in problem (16) along with rules for their
selection can be defined.

Another possibility for influencing frequency and effort
of the waypoint computation is by varying the number of
waypoints nw per optimized sequence. Fig. 10 shows the
RMSE performance for the simulation setup of Sec. IV-
A with 1 quadrotor and nw = 2/4/8. While nw = 8,
i.e. a recomputation interval of 16 s, does not allow good
adaptation of the parameter estimate to the gathered data,
a recomputation every nw = 2 waypoints seems to be too
frequent since not enough relevant additional measurements
can be incorporated to improve the parameter estimate.
Therefore, nw = 4 appears to be a good tradeoff in terms of
estimation error reduction. In terms of computational effort,
the average waypoint calculation time for nw = 2 was
0.233 s, for nw = 4 it was 0.675 s, and 1.166 s for nw = 8.

D. Heterogeneous Teams of UAVs

The proposed waypoint approach is able to deal with het-
erogeneous vehicle teams as problem (16) can be modularly



Fig. 7. Example result of a joint waypoint
calculation for 2 quadrotors.

Fig. 8. Example result of an individual way-
point calculation for 2 quadrotors.

Fig. 9. RMSE resulting from individual and
joint waypoint calculation. Dotted black lines
indicate when waypoints were calculated.

Fig. 11. Example of waypoints for a quadrotor (magenta) and a fixed-wing
(cyan) UAV collecting measurements at wind speed u = 2 [m/s].

assembled according to the current UAV constellation. An
example of waypoint sequences for a quadrotor and a fixed-
wing UAV (with specification as given in Table I) is shown
in Fig. 11. Due to the fixed-wing UAV’s constant speed and
its large turning radius, it is less agile and flexible than the
quadrotor, but can quickly cover significantly larger domains.
This has to be considered when both UAV type are to jointly
identify a dispersion process.

V. CONCLUSIONS

An efficient decentralized data-driven control loop for co-
operating sensor-equipped UAVs was presented in this paper.
Core is a novel optimum design-based approach for maxi-
mizing the informativeness of measurements by computing
waypoints that are individually tailored to each vehicle and
exploit the team’s cooperative mobility. Simulation results
illustrate the proposed approach from different perspectives
and prove its effectiveness.

While this paper was intended as a general proof of
concept ignoring the effects of deviations between the mod-
eled and the actual UAV motion or limited communication,
ongoing work is on investigating the waypoint approach in

a more realistic setting. It comprises the use of a model-
predictive cooperative controller for guiding the UAVs along
their waypoints while simultaneously allowing for additional
mission objectives. By using ROS and Gazebo as imple-
mentation and simulation framework, another step is taken
towards the applicability of the proposed dynamic data-
driven control loop in real-world scenarios.
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[3] V. Šmı́dl and R. Hofman, “Tracking of atmospheric release of pollution
using unmanned aerial vehicles,” Atmospheric Environment, vol. 67,
pp. 425–436, 2013.

[4] V. N. Christopoulos and S. Roumeliotis, “Adaptive Sensing for Instan-
taneous Gas Release Parameter Estimation,” in IEEE ICRA, 2005, pp.
4450–4456.

[5] ——, “Multi Robot Trajectory Generation for Single Source Explosion
Parameter Estimation,” in IEEE ICRA, 2005, pp. 2803–2809.

[6] D. Zhang, C. Colburn, and T. Bewley, “Estimation and adaptive
observation of environmental plumes,” in ACC, 2011, pp. 4281–4286.

[7] J. Euler, T. Ritter, S. Ulbrich, and O. von Stryk, “Centralized
Ensemble-Based Trajectory Planning of Cooperating Sensors for Esti-
mating Atmospheric Dispersion Processes,” in Dynamic Data-Driven
Environmental Systems Science, 1st ed., ser. LNCS, S. Ravela and
A. Sandu, Eds. Springer, 2015, vol. 8964.
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motion planning under nonholonomic constraints for parameter esti-
mation of distributed systems,” in IEEE IROS, 2005, pp. 3163–3168.

[10] C. Tricaud and Y. Chen, Optimal Mobile Sensing and Actuation
Policies in Cyber-physical Systems. Springer, 2011.

[11] J. Haugen and L. Imsland, “Monitoring an Advection-Diffusion Pro-
cess Using Aerial Mobile Sensors,” Unmanned Systems, vol. 3, no. 3,
pp. 221–238, 2015.

[12] P. Kathirgamanathan, R. Mckibbin, and R. McLachlan, “Source Term
Estimation of Pollution from an Instantaneous Point Source,” MOD-
SIM, vol. 6, pp. 59–67, 2002.

[13] J. M. Stockie, “The Mathematics of Atmospheric Dispersion Model-
ing,” SIAM Review, vol. 53, no. 2, pp. 349–372, 2011.

[14] G. S. Settles, “Fluid Mechanics and Homeland Security,” Annual
Review of Fluid Mechanics, vol. 38, pp. 87–110, 2006.

[15] S. M. LaValle, Planning Algorithms, 2006.
[16] A. Atkinson, A. N. Donev, and R. D. Tobias, Optimum Experimental

Designs, With SAS. OUP Oxford, 2007.
[17] P. E. Gill, E. Wong, W. Murray, and M. A. Saunders, “User’s Guide

for SNOPT Version 7.5,” Ctr. Comp. Math., UC San Diego, Tech.
Rep., 2015.


	INTRODUCTION
	DISPERSION MODEL
	Solving the Advection-Diffusion Equation
	Parameter Estimation Problem

	WAYPOINTS FOR OPTIMAL SENSING
	UAV Dynamics
	Optimum Design Problem
	Decentralized Waypoint Calculation

	EVALUATION
	Comparison of Optimality Criteria
	Comparison to Motion Patterns and Fixed Sensors
	Comparing Individual and Joint Waypoint Calculation
	Heterogeneous Teams of UAVs

	CONCLUSIONS
	References



