
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016 1

MBSlib - An Efficient Multibody Systems Library
for Kinematics and Dynamics Simulation,

Optimization and Sensitivity Analysis
Janis Wojtusch, Member, IEEE, Jürgen Kunz, Member, IEEE, Oskar von Stryk, Member, IEEE

Abstract—The dynamic behavior of many technical and biome-
chanical systems can be modeled, simulated and optimized by
using a multibody systems approach. Systems with many degrees
of freedom typically result in complex and high-dimensional
multibody systems models that necessitate capable modeling
approaches and efficient computational algorithms as well as
impede the numerical solution of related optimization problems.
In this paper, the efficient and modular multibody systems library
MBSLIB for kinematics and dynamics simulation, optimization
and sensitivity analysis is presented. MBSLIB provides an intu-
itive modeling interface, modular software architecture, efficient
computational algorithms as well as the computation of deriva-
tives with respect to system states, control variables or model
parameters. In combination with gradient-based optimization
methods, the derivatives can be used to facilitate the numerical
solution of optimization problems significantly. The library is
open and can be obtained from the MBSLIB website. These
features make MBSLIB a powerful, flexible and lightweight
modeling, simulation and optimization library suitable for many
technical and biomechanical applications.

Index Terms—Direct/Inverse Dynamics Formulation, Opti-
mization and Optimal Control, Calibration and Identification,
Sensitivity Analysis, Multibody Systems.

I. INTRODUCTION

DETAILED knowledge of the dynamic behavior is an
important foundation for the study, design, improvement

and control of technical and biomechanical systems [1], [2].
Many systems in robotics, assistance or sports applications
including robot arms, e.g. [3], [4], humanoid robots, e.g.,
[5], [6], or the human locomotor system, e.g., [7], [8],
can be modeled as multibody systems consisting of rigid
links, multidimensional joints and mechanical components like
springs, dampers, drives or muscle-tendon units. The dynamic
behavior of the modeled system may then be studied by
running kinematics and dynamics simulations to compute joint
trajectories or joint forces and torques, applying model based
or optimal control to find control and state trajectories for
given performance criteria or performing sensitivity analysis
to rate the influence of specific model parameters or input

Manuscript received: August, 31, 2015; Revised December, 12, 2015;
Accepted January, 7, 2016.

This paper was recommended for publication by Editor Kevin Lynch upon
evaluation of the Associate Editor and Reviewers’ comments. The work was
partially funded by the German Research Foundation DFG (STR533/8-1).

The authors are with the Simulation, Systems Optimization
and Robotics Group (SIM), Department of Computer Science,
Technische Universität Darmstadt, Germany. wojtusch | kunz
| stryk@sim.tu-darmstadt.de

Digital Object Identifier (DOI): see top of this page.

variables. Uncertain model parameters can be estimated by
running a parameter identification on measured reference data
or tuned in accordance with certain requirements by perform-
ing a parameter optimization. Systems with many degrees of
freedom (DOF) and sophisticated actuation concepts typically
result in very complex and high-dimensional multibody sys-
tems models [1]. High dimensionality accompanied by strong
nonlinearities result in long evaluation times, large feasible
regions and nonlinear constraints that impede the numerical
solution of related optimization problems [9]. In order to
handle this type of models, capable modeling approaches as
well as efficient computational algorithms are necessary.

Existing software packages for modeling and simulating
multibody systems can be divided into numerical and symbolic
formalisms. Numerical software packages, e.g., MBDYN [10],
RBDL1, MOBY2, apply efficient and flexible numerical sub-
routines to compute simulation results by exploiting structural
properties of multibody systems. Many of these software
packages are freely available and published under an open-
source license, but are limited to kinematics and dynamics sim-
ulations. Symbolic software packages, e.g. ROBOTRAN [11],
NEWEUL-M2 [12], DRAKE3, generate symbolic equations that
are potentially very fast and powerful and allow further modifi-
cation and processing like the computation of derivatives. Most
of these software packages can be used free of charge, but are
based on commercial algebra symbolic engines, e.g. MATLAB
(MathWorks, USA), MAPLE (Waterloo Maple, Canada).

In this paper, the efficient and modular numerical multibody
systems library MBSLIB [13] for kinematics and dynamics
simulation, optimization and sensitivity analysis is presented.
The library is written in C++ and provides interfaces to
external software packages and common model descriptions.
A small footprint of the core library allows the application
on various systems, while a modular software architecture
and provided interfaces enable an easy extension. The main
features of MBSLIB comprise

• an intuitive and straightforward modeling interface,
• a modular software architecture,
• efficient computational algorithms for forward, inverse

and hybrid dynamics as well as forward kinematics,
• automatic differentiation with respect to system states,

control variables or model parameters,

1http://rbdl.bitbucket.org
2http://physsim.sourceforge.net
3http://drake.mit.edu

http://rbdl.bitbucket.org
http://physsim.sourceforge.net
http://drake.mit.edu


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

• an interface for the direct collocation method
DIRCOL [14] to solve optimal control problems,

• support for DH [15] and URDF4 model descriptions.
The computation of derivatives with respect to system states,
control variables or model parameters based on automatic
differentiation is a prominent and expedient feature of MB-
SLIB. In combination with gradient-based optimization meth-
ods, these derivatives can be used to facilitate the numer-
ical solution of optimization problems like optimal control
or parameter estimation and optimization significantly. The
derivatives also represent the sensitivities of the simulation
outputs with respect to the specified independent variables
and can be applied in differential sensitivity analysis. These
features make MBSLIB a powerful, flexible and lightweight
modeling, simulation and optimization library for many tech-
nical and biomechanical applications. Currently, MBSLIB is
focused on tree-like multibody systems. The source code of
the library is open and can be obtained free of charge from the
MBSLIB website. Details on the modeling structure, modeling
elements and implemented algorithms are given in Section II.
A numerical validation of the included algorithms to compute
kinematics, dynamics and derivatives is described in Sec-
tion III. Section IV presents two application examples from
robotics and biomechanics and a computation time analysis
of the implemented algorithms. A concluding discussion is
given in Section V.

II. MODELING AND SIMULATION
MBSLIB is based on the minimal coordinate formulation

with relative coordinates [16]. Tree-structured multibody sys-
tems are modeled in a hierarchical model tree that consists of

4http://wiki.ros.org/urdf

Figure 1: Partial class diagram of MBSLIB covering prede-
fined modeling element, generator and compound classes.

predefined or custom modeling elements [13]. The predefined
modeling elements are fixed or free base, fixed translation
or rotation, prismatic or revolute joint, rigid link, fork and
endpoint. Examples for custom elements are links with specific
geometries or multi-dimensional joints. Starting with a fixed
or free base that forms the root node with a single branch,
the required modeling elements are added sequentially to the
model tree. A fork introduces a new branch. For a valid
model tree, all branches need to be terminated by endpoints
that represent leaf nodes. Forces and torques can be applied
in joints and endpoints. Joints allow to set internal force or
torque as well as position, velocity and acceleration directly.
In addition, predefined or custom generators enable to apply
external forces or torques on joints or endpoints as functions of
system states or control variables. The predefined generators
comprise a linear spring, an active linear spring and damper
drive and a passive linear spring and damper drive. Examples
for custom generators are nonlinear springs and dampers or
muscle-tendon units. Generators such as linear springs can act
on two or more endpoints and are modeled as polygon lines
which connect the affected endpoints. The generated forces act
along the polygon connection lines and are transformed into
equivalent joint forces or torques. Figure 1 presents a partial
class diagram of MBSLIB covering the described modeling
element and generator classes and showing the fundamental
software architecture.

The dynamic behavior of a multibody system is described
by the motion equation

τ = M(q)q̈ +C(q, q̇) +G(q) + F ext (1)

with the joint trajectories q, q̇, q̈, joint forces or torques τ ,
mass matrix M(q), Coriolis and centrifugal vector C(q, q̇),
gravitation vector G(q) as well as joint forces or torques
vector F ext resulting from external forces or torques. Solving
the motion equation 1 for the joint acceleration q̈ is known as
forward dynamics simulation. MBSLIB offers two established
and efficient algorithms for solving forward dynamics prob-
lems [13]. The first method is the composite-rigid-body algo-
rithm (CRBA) [17], [18] that computes the mass matrix M(q)
first and solves a system of linear equations subsequently.
This inertia matrix method has a computational complexity
of O(n3) for a multibody system with n joints. The second
method is the articulated-body algorithm (ABA) [18], [19] that
applies a recursive approach with three passes over the model
tree. This propagation method has a computational complexity
of O(n). Nevertheless, the ABA has a longer runtime than
the CRBA for systems with less than nine joints [18]. In
MBSLIB, both forward dynamics algorithms can be exchanged
transparently in order to use the better performing method
for the considered multibody system. Joint positions q and
velocities q̇ can be determined by time integrating a series
of computed joint accelerations q̈. The time integration can
be performed with any numerical integration software, e.g.
ODEINT5. For testing purposes, an implementation of the
explicit Euler algorithm is included in MBSLIB. Solving
the motion equation 1 for the joint torque or force τ is

5http://www.odeint.com

http://wiki.ros.org/urdf
http://www.odeint.com


WOJTUSCH et al.: MBSLIB - AN EFFICIENT MULTIBODY SYSTEMS LIBRARY 3

(a) (b)

Figure 2: Schematic diagram (a) and model tree (b) of the
pendulum on trolley.

known as inverse dynamics simulation. MBSLIB provides
an implementation of the recursive Newton-Euler algorithm
(RNEA) [20] with a computation complexity of O(n) for
computing inverse dynamics. A mixed computation of forward
and inverse dynamics, also referred to as hybrid dynamics,
where each joint has an assigned joint acceleration q̈ or
joint torque or force τ and the unknown joint variables are
calculated accordingly, is supported in MBSLIB by providing
the hybrid articulated-body algorithm (ABA-hybrid) [18].

For the computation of derivatives with respect to system
states, control variables and model parameters, MBSLIB in-
tegrates the automatic differentiation package ADOL-C [21]
in tape mode. Recent studies [22] showed that ADOL-C is
well suited for multibody systems simulations and provides
accurate results. ADOL-C works by operator overloading
and introduces a new floating point data type that is used to
record a tape of performed computations. By a subsequent
interpretation of the recorded tape, desired derivatives can
be obtained without truncation errors but with some run-
time and memory overhead. In combination with ADOL-C,
MBSLIB allows to compute explicit differentiation directly.
Implicit differentiation like derivatives depending on joint
angles computed from forward dynamics simulation requires
to consider additional computation steps like time integration
in the determination of derivatives by ADOL-C. Optionally,
MBSLIB can be compiled with or without ADOL-C integra-
tion. To solve optimal control problems, MBSLIB provides
an interface to the direct collocation method DIRCOL. An
adapter class easily allows to create, configure and carry out
model based optimizations with DIRCOL using the dynamics
of any multibody systems model. Features of MBSLIB can be
utilized in MATLAB (Mathworks, USA) by using the MATLAB
interface to call C shared libraries in combination with a user-
defined C library to invoke MBSLIB methods.

In order to provide an intuitive and straightforward model-
ing interface, the main functionalities of MBSLIB are encap-
sulated in the class MbsCompoundWithBuilder. The class
listed in the partial class diagram in Figure 1 provides methods
to setup a multibody systems model, set and read joint states,

read modeling element reference frames and apply kinematics
and dynamics simulations. A simple example system given
by a compound pendulum with a linear rotary stiffness and
damper mounted on a frictionless, massless trolley shown in
Figure 2a is used to demonstrate the modeling procedure. The
system consists of a fixed base, a prismatic joint q1 modeling
the trolley as well as a revolute joint q2 and a rigid link
modeling the pendulum with inertia I , mass m and length
l. The linear stiffness and damper k, d are modeled by a
passive spring damper drive that is connected to joint q2.
Gravitation acts in negative y direction of the global reference
frame. Figure 2b illustrates the model tree of the system
with the stated modeling elements as well as a terminating
endpoint. A possible implementation of the system using
MBSLIB is given in Listing 1. The first block creates a
MbsCompoundWithBuilder object, sets gravitation and
builds the multibody systems model by calling the corre-
sponding adding methods. In the second block, the passive
spring damper drive is set up and connected to the revolute
joint. Initial joint positions and velocities are set in the third
block. The last block evaluates the included drive and applies
a forward dynamics simulation step by using the CRBA. For
reasons of clarity and comprehensibility, the specific method
parameters are left out in the given listing.

III. VALIDATION

Numerical validation allows to assess computational algo-
rithms and is an important test for a correct implementation.
Exemplary, the forward kinematics and forward and inverse
dynamics algorithms as well as the automatic differentiation
implemented in MBSLIB are validated by comparing the
simulation results of a simple and low-dimensional system
with the analytical solution and the simulation results of a

Listing 1: MBSLIB setup code of the pendulum on trolley.
#include <mbslib/mbslib.h>

using namespace mbslib;

// Set up pendulum on trolley
MbsCompoundWithBuilder mbs;
mbs.setGravitation(...);
mbs.addFixedBase();
Joint1DOF* q1 = mbs.addPrismaticJoint(...);
Joint1DOF* q2 = mbs.addRevoluteJoint(...);
mbs.addRigidLink(...);
mbs.addEndpoint();

// Set up passive spring and damper
PassiveSpringDamperDrive* psdd;
psdd = new PassiveSpringDamperDrive(*q2, ...);
mbs.addDrive(psdd);

// Set joint states
q1->setJointPosition(-0.5);
q1->setJointVelocity(0);
q2->setJointPosition(0.9 * M_PI);
q2->setJointVelocity(0);

// Apply forward dynamics
mbs.doForwardDrives();
mbs.doCrba();



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

−5

0

5

 

 
q1,ref q2,ref

−1

0

1

 

 
x1,ref y1,ref x2,ref y2,ref

 −1e−15

0

1e−15

 

 

∆q1 ∆q2

 −1e−5

0

1e−5

 

 

∆x1 ∆y1 ∆x2 ∆y2

 −1e−15

0

1e−15

 

 

∆ẋ1 ∆ẏ1 ∆ẋ2 ∆ẏ2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 −1e−15

0

1e−15

t in s

 

 

∆
∂q̈1
∂k

∆
∂q̈2
∂k

Figure 3: Simulation results of the pendulum on trolley given in SI units.

more complex and high-dimensional system with a given
reference implementation.

A. Dynamics simulation of a pendulum on trolley

The first system is the pendulum on trolley described in
Section II. The motion equation can be derived analytically
by applying the Euler-Lagrange equation. The kinetic energy
K, potential energy U and dissipative energy D are

K =
m

2

(
l

2
cos(q2)q̇2 + q̇1

)2

+
m

2

(
l

2
sin(q2)q̇2

)2

+
1

24
ml2q̇22 ,

U =
1

2
kq22 −

1

2
l cos(q2)mg, D =

1

2
dq̇22 .

With the Lagrangian L = K − U and the Euler-Lagrange
equation d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
+ ∂D

∂q̇i
= τi, i = 1, . . . , n the motion

equations for q1 and q2 are given by

q̈1 =(2ml2 sin(q2)q̇22 + 6d cos(q2)q̇2 + 6k cos(q2)q2

+ 3gml cos(q2) sin(q2))/(4ml − 3ml cos(q2)2),

q̈2 =(3ml2 cos(q2) sin(q2)q̇22 + 12dq̇2 + 12kq2

+ 6gml sin(q2))/(3ml2 cos(q2)2 − 4ml2).

The kinematic relation between the joint positions q and the
Cartesian positions x, y of the joint locations is specified by

x1 =q1, y1 =0,

x2 =q1 + l sin(q2), y2 =− l cos(q2).

For the validation, the system parameters are set to l = 1.0 m,
m = 5.0 kg, k = 10.0 Nm rad−1, d = 0.6 Nm s rad−1,

g = 9.81 m s−2 and a forward dynamics simulation with the
initial values q1 = −0.5 m, q2 = 0.9π rad, q̇1 = q̇2 = 0
is carried out. Time integration is performed by applying
the Runge-Kutta 4 algorithm implemented in ODEINT with
a fixed step size of h = 1.0 ms. Figure 3 shows the motion
of the pendulum on trolley and the comparison between the
simulation results obtained by MBSLIB and the reference
values given by the analytical solution. The absolute error
of the joint trajectories ∆q, Cartesian positions ∆x, ∆y and
Cartesian velocities ∆ẋ, ∆ẏ shown in the middle plots of
Figure 3 that is computed by subtracting the reference values
from the simulation results is very small and originates from
finite numerical precision.

In addition to the forward dynamics simulation, the sensi-
tivity of the joint accelerations q̈ with respect to the stiffness
k was determined. The analytical sensitivities for q̈1 and q̈2
applying explicit differentiation are given by

∂q̈1
∂k

=− 6q2 cos(q2)

ml(3 cos(q2)2 − 4)
,

∂q̈2
∂k

=
12q2

ml2(3 cos(q2)2 − 4)
.

In MBSLIB, the numerical sensitivities are computed by
automatic differentiation. The lowest plot in Figure 3 shows
the absolute error of the sensitivities ∆∂q

∂k . Likewise, the
difference is limited to very small numerical deviations.

B. Dynamics simulation of a robot arm

The second system is the industrial robot arm MANUTEC
R3 (manutec, Germany) shown in Figure 4a that consists of
six rigid links and six revolute joints. A validated reference



WOJTUSCH et al.: MBSLIB - AN EFFICIENT MULTIBODY SYSTEMS LIBRARY 5

(a)

−5

0

5

 

 
q1,ref q3,ref q5,ref

 −2e−14

0

2e−14

 

 

∆q̈1 ∆q̈2 ∆q̈3

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

t in s

 

 

∆τ1 ∆τ3 ∆τ5

(b)

Figure 4: Picture (a) and simulation results (b) of the robot arm MANUTEC R3 (manutec, Germany) given in SI units.

implementation [3] written in Fortran provides functions to
evaluate forward and inverse dynamics. These functions also
consider rotor dynamics that include moments of deviation
resulting from the interaction between joint and actuator axes.
A predefined modeling element that allows to regard theses
effects does not yet exist in MBSLIB. The additional terms re-
quired for the extended mass matrix M(q) are obtained from
a documented modeling approach with rotor dynamics [1] and
added to the implementation of the CRBA. Figure 4b presents
the absolute error of the joint accelerations ∆q̈ and joint
torques ∆τ computed by subtracting the reference values from
the simulation results for three exemplary joints generated by
sinusoidal reference joint trajectories qref shown in the upper
plot. The joint torques τ are computed by inverse dynamics
simulation, while the joint accelerations q̈ result from forward
dynamics simulation with the previously determined joint
torques τ . The simulation results fit well, but the absolute error
of the joint torques τ exceeds expected numerical deviations.
The absolute error varies between −0.21 Nm and 0.16 Nm
for the joint torque τ1 that reaches values between −64.7 Nm
and 59.7 Nm. Presumably, these variations are caused by
small differences in the applied modeling approach and the
implementation of the rotor dynamics.

IV. EXAMPLES

Two application examples from robotics and biomechanics
as well as an analysis of the computation time required by
the implemented algorithms are presented to demonstrate the
practical relevance and applicability of MBSLIB. The source
code of both examples is available on the MBSLIB website.

A. Parameter estimation of an elastic robot arm

The first example is based on the elastic robot arm BIOROB
X4 (Bionics Robotics, Germany) shown in Figure 5a. The
multibody systems model of the robot arm illustrated in Fig-
ure 5b consists of four rigid links and four revolute joints. The

robot arm applies series elastic tendon-driven actuators that
are modeled as ideal rotary drives in series with linear rotary
stiffnesses ki and linear rotary dampers di. It is assumed that
the rotary stiffnesses ki and rotary dampers di are unknown
and should be identified by parameter estimation from a
measured joint acceleration trajectory q̈m with a duration of
20.0 s sampled at 100 Hz and resulting from known sinusoidal
series elastic actuator motions.

The parameter estimation is a non-linear least-squares prob-
lem with the parameter vector p = [k,d]T and the residual
vector r(p) = q̈(p) − q̈m. For solving this least-squares
problem, the iterative Levenberg-Marquardt algorithm [9] is
applied. The algorithm uses a damped form of the linear
normal equation given by(

J(p(t))JT (p(t)) + µ(t)E
)
d(t) = −J(p(t))r(p(t))

to find the shift vector d(t) = p(t+1) − p(t), where J(p(t)) =

(a) (b)

Figure 5: Picture (a) and schematic diagram (b) of the elastic
robot arm BIOROB X4 (Bionics Robotics, Germany).



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

Table I: Results of the parameter estimation of the elastic robot
arm given in SI units.

Reference Start Ideal Noisy
values values measurements measurements

k1 45.0 20.0 45.0 44.754
k2 40.0 20.0 40.0 40.401
k3 25.0 20.0 25.0 24.723
k4 15.0 20.0 15.0 14.984
d1 0.22 0.1 0.22 0.2237
d2 0.18 0.1 0.18 0.1905
d3 0.12 0.1 0.12 0.1140
d4 0.14 0.1 0.14 0.1380

∂r(p(t))
∂p(t) is the Jacobian matrix, µ(t) is the damping factor and
E is the identity matrix. The joint acceleration trajectories q̈
are computed with the CRBA and the Jacobian matrix J(p(t))
is obtained by using automatic differentiation.

Table I summarizes the reference values, start values and
parameter estimation results for ideal measurements without
noise and noisy measurements including additive Gaussian
white noise with 3σ = 0.1 max(q̈m). The results show
that the reference values of the rotary stiffnesses ki and
rotary dampers di can be identified very well from the noisy
measurements. The perfect identification result from the ideal
measurements is hardly surprising, but validates the imple-
mentation of the Levenberg-Marquardt algorithm.

B. Joint trajectory estimation of human locomotion

The second example addresses joint trajectory estimation
from measured motion capture data of human locomotion.
The open HUMOD Database [8] provides biomechanical mea-
surement data including motion capture data, ground reaction
forces and muscle activities for eight different motion tasks. A
three-dimensional motion capture system and a set of thirty-six
reflective markers were used to record the motion. Soft tissue
artifacts and other measurement errors may result in length
variations of rigid assumed body segments that impair the
estimation of joint trajectories. For fast running motions, this
variation can reach up to 8 % in the thigh segment relative to
an averaged reference length [8]. In order to compensate these
influences, an extended Kalman smoother in combination with
a subject-specific multibody systems model with twenty-eight
DOF is used to estimate the joint trajectories [23]. Figure 6
illustrates the applied human body model with thirteen rigid
links and twelve joints as well as the reflective marker set.

For estimating the joint trajectories x including joint po-
sitions q, joint velocities q̇, joint accelerations q̈ and joint
jerk

...
q , the extended Kalman smoother combines noisy mea-

surements of the reflective markers z with prior system knowl-
edge and minimizes the estimation error statistically. The prior
system knowledge is given by a process model f(x) that
describes the expected time evolution of the joint trajectories x
and a measurement model h(x) that characterizes the relation
between the joint trajectories x and noisy measurements z.
The linear process model f(x) is obtained by assuming a
constant joint jerk

...
q . The non-linear measurement model h(x)

is given by the forward kinematics simulation of the multibody

systems model. The extended Kalman smoother applies three
successive update steps given by the recursive equations

x̂(t) = f(x(t−1)), (2)

x̃(t) = x̂(t) +K(t)
(
z(t) − h(x̂(t))

)
, (3)

x(t) = x̃(t) + J (t)
(
x(t+1) − f(x̃(t))

)
(4)

with the adaptive filter gain K(t) and smoother gain J (t).
The first step in Equation 2 is a predictive time update using
the process model f(x). In the second step in Equation 3, a
forward recursion (filtering) estimates the joint trajectories x
from the measurements z. The third step in Equation 4 applies
a backward recursion (smoothing) to further improve the joint
trajectory estimates x. For computing the adaptive smoother
gain J (t), the Jacobian matrix H(x(t)) = ∂h(x(t))

∂x(t) repre-
senting the derivative of the non-linear forward kinematics
with respect to the joint trajectories x is required. MBSLIB
is used to compute the forward kinematics h(x) as well as
to obtain the Jacobian matrix H(x(t)) by applying automatic
differentiation. The resulting smoothed joint trajectories with-
out segment length variations are provided in the HUMOD
Database.

C. Analysis of computation time

The computation time of the implemented forward kine-
matics (KIN), forward dynamics (CRBA, ABA) and inverse
dynamics (RNEA) algorithms with and without ADOL-C
integration as well the interpretation of the tape created by
ADOL-C to compute derivatives is evaluated by applying
the models of the pendulum on trolley (A) described in Sec-
tion III-A and the human body (B) described in Section IV-B.

Figure 6: Schematic diagram of the human body model with
twenty-eight DOF and thirty-six reflective markers placed
anterior (dark grey) and posterior (light grey).



WOJTUSCH et al.: MBSLIB - AN EFFICIENT MULTIBODY SYSTEMS LIBRARY 7

Table II: Results of the computation time analysis for one al-
gorithm run or derivative computation given in microseconds.

KIN CRBA ABA RNEA
A: run without ADOL-C 0.01 1.03 1.04 0.01
A: run with ADOL-C 13.6 83.8 189.9 47.3
A: derivative from tape 102.3 135.6 200.4 169.5
B: run without ADOL-C 16.6 68.6 44.4 22.3
B: run with ADOL-C 305.8 4393.4 3584.0 967.2
B: derivative from tape 1197.1 3738.7 3226.8 1475.2

A computer system with i7-4810MQ processor (Intel, USA)
at a constant clock rate of 2.8 GHz and Ubuntu 14.04 is used
for running the analysis. The computation times for one run
of each algorithm and one derivative computation are deter-
mined by averaging one thousand runs with random, evenly
distributed input variables q ∈ [−π2 ,

π
2 ], q̇ ∈ [− 10π

2 , 10π2 ],
q̈ ∈ [− 100π

2 , 100π2 ] and τ ∈ [−100, 100] given in SI units. For
the derivative computation, arbitrary derivatives ∂qi

∂li
in forward

kinematics, ∂q̈i
∂mi

in forward dynamics and ∂τi
∂mi

in inverse
dynamics are calculated. Table II lists the averaged compu-
tation times for all algorithms and the derivative computation.
The results show that all algorithms are very efficient without
ADOL-C integration. For model A with two DOF, the CRBA
performs slightly better than the ABA, while the ABA runs
faster than the CRBA for model B with twenty-eight DOF.
This result illustrates the advantage of the ABA in systems
with nine or more joints as stated in Section II. With ADOL-
C integration, the computation times of all algorithms increase
significantly, which is also reflected in the computation times
of the derivatives. The overall performance can be improved by
optimizing the ADOL-C integration for example by reusing
specific ADOL-C objects.

V. CONCLUSION
MBSLIB is a powerful, flexible and lightweight modeling,

simulation and optimization library suitable for many tech-
nical and biomechanical applications. It features an intuitive
modeling interface and modular software architecture in com-
bination with efficient computational algorithms for forward
and inverse dynamics as well as forward kinematics simu-
lations. The possibility to compute derivatives with respect
to system states, control variables or model parameters is
a prominent and expedient feature and allows to facilitate
the numerical solution of optimization problems significantly.
The computational validity of the implemented algorithms
and automatic differentiation approach is demonstrated on a
simple and low-dimensional system with analytical solution
and a more complex and medium-dimensional system with
reference implementation. For showing the practical relevance
and applicability of MBSLIB, two application examples from
robotics and biomechanics are presented. The intuitive mod-
eling interface, modular architecture and provided interfaces
enable an easy extension or integration into other projects.

The source code of MBSLIB is open and published under
the Lesser General Public License (LGPL v3). It can be
obtained free of charge from the MBSLIB website:

http://www.sim.informatik.tu-darmstadt.de/mbslib

The simple and free availability of MBSLIB allows interested
users to utilize, share and improve the library. This is supposed
to enhance functionality, quality as well as usability. For future
releases, support of closed-loop multibody systems, methods
for contact handling and further optimization of the ADOL-C
integration are planned.

REFERENCES

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control, 1st ed. Springer, 2008.

[2] D. A. Winter, Biomechanics and Motor Control of Human Movement,
4th ed. John Wiley & Sons, 2009.

[3] M. Otter and S. Türk, “The DFVLR Models 1 and 2 of the Manutec
r3 Robot,” Deutsche Forschungs- und Versuchsanstalt für Luft- und
Raumfahrt, Köln, Germany, Tech. Rep. 88-13, 1988.

[4] T. Lens and O. von Stryk, “Investigation of safety in human-robot-
interaction for a series elastic, tendon-driven robot arm,” in IEEE/RSJ
IROS, 2012, pp. 4309–4314.

[5] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi,
“Humanoid robot HRP-3,” in IEEE/RSJ IROS, 2008, pp. 2471–2478.

[6] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization-
based Full Body Control for the DARPA Robotics Challenge,” J. Field
Rob., vol. 32, no. 2, p. 293–312, 2015.

[7] E. M. Arnold, S. R. Ward, R. L. Lieber, and S. L. Delp, “A Model
of the Lower Limb for Analysis of Human Movement,” Ann. Biomed.
Eng., vol. 38, no. 2, pp. 269–279, 2009.

[8] J. Wojtusch and O. von Stryk, “HuMoD - A versatile and open
database for the investigation, modeling and simulation of human motion
dynamics on actuation level,” in IEEE/RAS Humanoids, Seoul, 2015.

[9] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. Springer,
2006.

[10] P. Masarati, M. Morandini, and P. Mantegazza, “An Efficient Formula-
tion for General-Purpose Multibody/Multiphysics Analysis,” J. Comput.
Nonlinear Dyn., vol. 9, no. 4, pp. 1–9, 2014.

[11] N. Docquier, A. Poncelet, and P. Fisette, “ROBOTRAN: A powerful
symbolic generator of multibody models,” Mech. Sci., vol. 4, no. 1, pp.
199–219, 2013.

[12] T. Kurz, P. Eberhard, C. Henninger, and W. Schiehlen, “From Neweul
to Neweul-M2: Symbolical equations of motion for multibody system
analysis and synthesis,” Multibody Sys. Dyn., vol. 24, no. 1, pp. 25–41,
2010.

[13] M. Friedmann, J. Wojtusch, and O. von Stryk, “A modular and efficient
approach to computational modeling and sensitivity analysis of robot
and human motion dynamics,” Appl. Math. Mech., vol. 12, no. 1, pp.
85–86, 2012.

[14] O. von Stryk, “User’s Guide for DIRCOL - A Direct Collocation Method
for the Numerical Solution of Optimal Control Problems,” Technische
Universität Darmstadt, Darmstadt, Germany, Tech. Rep. 2.1, 2002.

[15] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” J. Appl. Mech., vol. 77, no. 23, pp.
215–221, 1955.

[16] R. von Schwerin, MultiBody System SIMulation, 1st ed. Springer, 1999.
[17] M. W. Walker and D. E. Orin, “Efficient Dynamic Computer Simulation

of Robotic Mechanisms,” J. Dyn. Syst. Meas. Contr., vol. 104, no. 3, p.
205, 1982.

[18] R. Featherstone, Rigid Body Dynamics Algorithms, 1st ed. Springer,
2008.

[19] ——, “The Calculation of Robot Dynamics Using Articulated-Body
Inertias,” Int. J. Robot. Res., vol. 2, no. 1, pp. 13–30, 1983.

[20] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-Line Computational
Scheme for Mechanical Manipulators,” J. Dyn. Syst. Meas. Contr., vol.
102, no. 2, p. 69, 1980.

[21] A. Walther and A. Griewank, “Getting started with ADOL-C,” in
Combinatorial Scientific Computing, 1st ed. Chapman-Hall CRC
Computational Science, 2012, ch. 7, pp. 181–202.

[22] A. Callejo, S. H. K. Narayanan, J. G. de Jalón, and B. Norris, “Per-
formance of automatic differentiation tools in the dynamic simulation
of multibody systems,” Adv. Eng. Software, vol. 73, no. 7, pp. 35–44,
2014.

[23] F. De Groote, T. De Laet, I. Jonkers, and J. De Schutter, “Kalman
smoothing improves the estimation of joint kinematics and kinetics in
marker-based human gait analysis,” J. Biomech., vol. 41, no. 16, pp.
3390–3398, 2008.

http://www.sim.informatik.tu-darmstadt.de/mbslib

	INTRODUCTION
	MODELING AND SIMULATION
	VALIDATION
	Dynamics simulation of a pendulum on trolley
	Dynamics simulation of a robot arm

	EXAMPLES
	Parameter estimation of an elastic robot arm
	Joint trajectory estimation of human locomotion
	Analysis of computation time

	CONCLUSION
	References

