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I. INTRODUCTION AND MOTIVATION

Building a software system for autonomous robots is a
difficult and time-consuming task. From the experience at
the RoboCup competitions, it takes new teams several years
to come up with autonomous robots that are competitive at
the RoboCup world championship level. These world class
solutions have the tendency to disappear when the teams
leave the competition. Code sharing is difficult, because most
teams use different, mostly homemade software frameworks.
So basic or more advanced modules such as drivers for
laser scanners or mapping solutions are re-implemented again
and again, which slows down the overall progress of the
capabilities of the league and research on autonomous robots
in general. Therefore, we proposed to establish an open source
standard software solution based on ROS for the RoboCup
Rescue Robot League that fosters the development of search
and rescue robots. This standard enables new teams to adopt
quickly to the world class performance level. The standard
software solution makes excellent solutions broadly reusable.
This way, each team can focus on their own topics of interest,
such as mapping, exploration or victim detection. Overall, it
will foster the progress of capabilities developed in the league.

In order to push this idea forward two ROS workshops took
place in Koblenz, Germany, in 2010 and 2011, followed by
the ROS RoboCup Rescue Summer School in Graz, Austria, in
2012. The outcome was a set of software modules that cover
an online mapping solution, laser based localization, and a
basic exploration capability. These events also established a
group of researchers committed to this initiative. Moreover,
these researchers also teach the use of the components, e. g.
at the SSRR Summer School 2012 in Alanya, Turkey.

The different events also serve as synchronization points,
where new requirements are discussed and prototypes are
developed. The main goal of the initiative is to continuously
enlarge the set of software building blocks that can be reused
in the search and rescue domain.

II. PROVIDING STANDARD SOFTWARE MODULES

The successful adoption of common software modules by
the community has been demonstrated with the hector slam
stack for robust SLAM in USAR environments. Originally

Fig. 1. GeoTiff map created using the hector slam stack. Final competition
run RoboCup 2012.

developed and used by Team Hector Darmstadt, it has been
published as open source software and has been used by three
of the four most successful teams in the RoboCup Rescue
Robot League competition at RoboCup 2012 in Mexico. A
detailed description of the SLAM approach is beyond the
scope of this paper and available in [1]. Additional packages
of the stack allow the creation of GeoTiff maps, storing
robot trajectory data and looking up map information. A map
created by the hector mapping SLAM node and visualized as a
GeoTiff file using the hector geotiff node is shown in Figure 1.
The use of the standard mapping package lifted the base line
in the league, because providing a map is now a standard for
all competitive teams.

III. TOWARDS NAVIGATION IN UNSTRUCTURED
ENVIRONMENTS

In order to go one step further the initiative in 2012 focused
on the navigation in unstructured environment and developed
prototypes for exploiting 3D map information.

For the path planning process, where a path from the robot’s
current position to the goal is computed, one requires knowl-
edge of the region of the map that is physically accessible
by the robot. To address this problem, a grid map specifying



all the locations that are reachable for the robot is built. This
map is designated here as cost-map. For simplicity sake, a
simple binary 2D cost-map was considered. The problem is
then how to construct a 2D cost-map, given a 3D octomap of
the environment and the robot’s current location.

This problem is addressed in two stages. We assume that
the octomap is oriented along the world coordinate system.
Firstly, the octomap is scanned to identify all map cells that
can be considered as ground. We consider a given cell as
ground if it is both (1) occupied, and (2) there are enough
adjacent free cells above, so that the robot can physically fit
into the total free height. These cells are then projected down
to a 2D grid. Secondly, once all ground cells are identified,
all cells that are 4-neighbor connected with the cell where
the robot is currently located are set as reachable. Two cells
are considered connected if the height difference between two
adjacent ground cells is within a specified steepness threshold.
This threshold depends on the robot’s physical capability of
traversing non-horizontal terrain. Note that these two stages
can be run asynchronously, i.e., the first stage only needs to
be run every time the octomap is updated, while the second one
should be run every time the robot’s current location changes.

We have used several octomap datasets, including one
built from the NIST arena. The preliminary results match
our expectations, including their sensitivity to changes in the
steepness threshold. The implementation prototype is currently
running in batch mode, but we expect its integration into a
ROS node to be straightforward.

Exploration, even in state of the art approaches, is usually
guided by a 2D map built using a distance sensor. For USAR
environments this is not sufficient, as the focus should be to
observe 3D space with a victim sensor (e. g. a thermal camera),
that usually has a significantly smaller field of view than, for
example, a laser range sensor. To be able to reason about
exploration towards finding points of interest such as victims,
it is necessary to have knowledge about what area has been
covered by the victim detection sensor. This area is likely to
be different from the area covered by the mapping sensor.

Thus, we implemented a 3D coverage map, based on
octomaps [2]. Besides the occupancy information in each
known cell, we additionally store, if this cell has been seen
by each individual sensor. We model a sensor observation
for the i-th sensor as the 6-dof pose (xi,qi) and field of
view (φi, θi, rmini

, rmaxi
), where φi, θi are the horizontal and

vertical opening angle and rmini , rmaxi are the minimum and
maximum range of the sensor. Given the pose and field of
view, we compute a view frustum at the sensor pose and
perform raytraces towards all end points at the maximum
range. The origin of each raytrace is the sensor pose. We
raytrace only through free space modelled in the octomap,
and stop when an occupied cell is encountered. All free cells
between the minimum and maximum range (or a blocked cell)
are then marked as seen for sensor i.

In most cases it is only necessary to reason about covered
or uncovered cells near geometry, as it can be assumed that
free space cells do not contain anything. Thus we optionally

Fig. 2. This figure shows the coverage octomap within a rescue arena. A
sideways mounted camera is used as a sensor. (Covered cells in red.)

only retrieve cells that have an occupied neighbor cell. To
prevent computationally expensive neighbor lookups, we store
this property in the cells as well. This property is only com-
puted when a new distance sensor observation was integrated.
We use octomap’s change detection to only recompute the
neighbor property on cells that are semantically changed, e.g.
from free to occupied, and their neighbors. This efficient
implementation bounds the runtime even in larger maps. An
example of the coverage octomap can be seen in Figure 2.
In the future, we plan to not only return neighbor cells,
but all cells within a distance threshold. This can be done
efficiently using the dynamicEDT3D library available in the
recent octomap release.

IV. CONCLUSION AND FUTURE ACTIVITIES

We presented a successful community-driven initiative for
the development of standard software for robots in USAR
environments. The adoption of a first set of mapping tools
by the RoboCup Rescue Robot League proofs the concept.

The current status of the common framework for RoboCup
Rescue initiative is documented in the ROS wiki at http://
www.ros.org/wiki/robocup_rescue. The page gives
also instructions on how to get and how to install the software
components, and how to get involved in the initiative.

We plan to continue the initiative with a summer school on
Perception and Action in 3D Environments, co-located with
the SSRR symposium 2013.
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