Evaluation and Enhancement of Common
Simulation Methods for Robotic Range Sensors

Martin Friedmann, Karen Petersen, and Oskar von Stryk

Technische Universitat Darmstadt, Department of Computer Science
Hochschulstr. 10, D-64289 Darmstadt, Germany
{ friedmann, petersen, stryk }@sim.tu-darmstadt.de,
WWW home page: http://www.sim.tu-darmstadt.de

Abstract. Distance sensors are an important class of external sensors
used in many autonomous robots. Thus it is of importance to provide
proper simulation for these sensors to enable software-in-the-loop testing
of a robot’s control software. Two different methods for distance calcu-
lation are commonly applied for the simulation of such sensors, namely
reading back the depth buffer from 3D renderings and the calculation of
ray-object-intersections. Many simulators impose restrictions on either
method, none of the widely used robot simulators reviewed in this pa-
per currently considers material dependent simulation of the distances
measured.

In this paper extended versions of both methods are presented which pro-
vide additional information on the object perceived by distance sensors.
Several methods for incorporating distance- and object-information into
a complete distance-sensor simulation-module are discussed. Implemen-
tations of either method are compared for their performance depending
on the sensor resolution on different computer systems. These measure-
ments show, that the break even of the methods strongly depends on
the hardware, thus stressing the importance of providing either method
in a robot simulation in a transparent way in order to obtain optimal
performance of the simulation.

1 Introduction

Laser range finders and other distance sensors like time-of-flight (ToF) cameras
or ultrasound sensors are important for many fundamental capabilities of mobile,
autonomous robots like mapping or obstacle avoidance. To support development
of software for mobile autonomous robots, many existing simulators provide
simulation of distance sensors.

Two major approaches are usually applied to simulate the distances measured
by the sensor: calculating ray-object intersections using ray-casting or rendering
the scene from the sensor’s point of view and subsequently reading back the depth
buffer. As shown in [1,2] either method has specific advantages and drawbacks,
depending on the geometry and resolution of the simulated device. Nevertheless
many existing robot simulators are limited to only one of these methods, or

impose limitations on the devices simulated with either method. Even though
the material of the objects perceived by a distance sensor has significant impact
on the error produced by the sensor (e. g. [3]) none of the investigated simulators
provides material dependent error models for the sensors.

In this paper both commonly used methods are compared according their
performance. Further on it is discussed how either method can be extended to
provide information on the object perceived by the sensor.

The remainder of this paper is structured as follows: In Section 2 an overview
of the simulation capabilities for distance sensors found in current simulators
is given. In Section 3 the authors’ implementations of both general methods
including the aforementioned enhancements are presented. After this, simulators
using these implementations and extensive measurements of the performance of
the implementations are presented and discussed in section 4. The paper closes
with concluding remarks and an outlook in Section 5.

2 Simulation of Distance Sensors in Robot Simulators

Many simulators used throughout the autonomous robots community provide
simulation for distance sensors. In this section the respective simulation capa-
bilities are discussed and summarized in Table 1.

Gazebo [4], the 3D dynamics simulation developed as part of the Player-
Stage-project, is based on the Open-Dynamics-Engine (ODE) for physics simula-
tion. The collision detection mechanisms provided by ODE are used to calculate
ray-object intersections which are used to simulate distance sensors.

Microsoft Robotics Studio [5] provides a simulation for mobile robots, includ-
ing laser range finders. It is not known, though, how this simulation of distance
sensors is realized in detail.

Simbad [6,7] is a 3D robots simulation implemented in Java. Simulation of
distance sensors is based on the picking functions provided by the Java3D API.

SimRobot [8, 9] is a general 3D robot simulation based on ODE. Two methods
for the simulation of distance sensors are provided: readings from the depth-
buffer and calculation of ray-object intersections based on the ODE collision
detection. The later, though, is limited to single rays.

Stage [10] is a 2D simulation for mobile robots which has been developed
as part of the Player-Stage-Project. Simulation of distance sensors is only avail-
able for measurements in the 2D plane. It is based on calculating intersections
between rays and the 2D scene representation. Version 3 of the simulation intro-
duced a 3D representation for the scene [11]. In this version, distance sensors can
be simulated by ray-intersection in 3D space or by evaluating the depth-buffer.

USARSim [12,13] is a multi-robot-simulation based on the game engine of
Unreal Tournament. The simulation is realized as a set of scripts executed by
the game-engine as well as game levels representing the simulated scenarios. As
the scripts only are allowed limited access to the internals of the game engine,
simulation of distance-sensors can only be done by intersecting individual rays
with the scene, but not by evaluating the depth-buffer.

Webots [14, 15] is a commercially available simulation for mobile robots. Sim-
ulation of range finders is provided by evaluating the depth-buffer of OpenGL
based 3D renderings. Besides the standard pinhole projection a method for the
simulation of spherical projections based on multiple rendering passes is pro-
vided. Other distance sensors can be simulated by calculation of ray-object in-
tersections. This method is limited to single rays and cones of equally distributed
rays (defined by aperture angle and number of rays). The readings of the simu-
lated sensors can be post-processed to simulate different output characteristics
including noise.

Table 1. Overview of simulation methods for distance sensors in existing simulators.

Simulator [|Simulation method
Raycasting [Depthbuffer

Gazebo yes ‘no

MSRS yes (method unknown)

Simbad yes no
SimRobot ||yes (limited to single rays) yes

Stage 2.1.1||lyes (2D simulation, limited to plane) no

Stage 3.2 ||yes (limited 3D support due to model of environment)|yes
USARSim ||yes (only single ray, fixed cones and 2D-sweeps) yes

Webots yes (only single ray and predefined distributions) yes

Discussion. Many of the discussed simulators impose restrictions on the direc-
tions of rays in the ray-intersection based simulated method. Not all simulators
provide simulation of distance sensors based on the depth buffer, only few of
those provide simulation beyond the pinhole model. These circumstances com-
plicate a transparent exchange of the simulation method, if it is possible at all.

Some of the investigated simulators allow to modify the measurements of the
simulated sensors to reproduce sensor specific output characteristics. Neverthe-
less none of the simulators considers the impact of different materials on the
measurements. This limitation is most likely caused by the fact, that the meth-
ods used to determine the distances only provide information on the distance of
objects, but not on their type.

3 Enhanced Simulation of Distance Sensors

Simulation of a distance sensor is a two step process. The first mandatory step
consists of the calculation of the first intersection of each ray emitted by the
sensor. Besides information on the length of the ray, this step may produce
additional information on the kind of object hit by the ray. The data produced
by this step can be considered as readings from a perfect sensor.

In a second, optional, step, the ray length is post-processed. Independent of
the object hit by a ray, effects like noise or other sensor specific output character-
istics can be simulated as a function of the length calculated before. If additional
information on the object is present, further object or material specific process-
ing of the sensor output can be calculated.

This leads to three distinct levels of accuracy for the sensor simulation:

1. Simulation of a perfect sensor,

2. Simulation of a sensor with specific output characteristics,

3. Simulation of a sensor considering material dependent behavior.

The highest level of accuracy can only be simulated, if information on the objects
hit by the ray are provided by the first step.

In the following subsections two methods used in many simulators for the
calculation of the ray length are discussed. Further on it is investigated, how
these methods can be extended to provide further information on the objects
hit by the rays. Both methods have been implemented as part of the Multi-
Robot-Simulation-Framework (MuRoSimF) by the authors of this paper. Later on
the methods will be compared for their respective performance concerning the
different levels of accuracy.

MuRoSimF provides methods for the simulation of wheeled (e. g. [1]) and legged
(e.g. [16]) locomotion as well as for different sensors of autonomous mobile
robots. It allows an unrestricted combination of these simulation methods to
create simulations with different levels of accuracy and abstraction.

3.1 Depth Buffer Based Method for Ray Simulation

This method is based on rendering the simulated scene from the sensor’s point of
view using OpenGL!. After rendering the scene, the depth-buffer used for hidden
surface removal by OpenGL is read back to process memory for calculation of
the length of each view-ray. Inverting the steps of the perspective projection
manipulations of the depth coordinate described in [17] leads to
f-n

TR G-w-7 .
with z being the orthogonal distance of a point with depth coordinate Z from
the viewing plane. The parameters f and n denote the near and far clipping
plane defining the viewing volume used for the rendering process (see Figure 1
for details). To calculate the length [of a ray, the direction « of this ray must
be taken into account leading to

z

= (2)

cosar’

If additional information on the object hit by a ray is desired, this information
can be encoded into the image during rendering. To do this, an id describing the

! Note that the same method can be used using other 3D rendering systems, as long
as they provide access to the depth buffer for the CPU.

surface of each object is transformed into an RGB-triplet which is used as color
during rendering. Rendering itself is done without lighting, shading or blending
effects, so that the color’s RGB-values are preserved during the rasterization
process. To obtain object information for the rays, the frame-buffer is read back
to process memory and evaluated for each pixel leading to surface information
for the object hit by each of the rays.

As discussed in [1,2] the view-rays have an equal distribution in the image
plane. This contradicts the equal angular distribution usually found in laser
range finders. Different strategies to cope with this problem are discussed in
Section 3.3.

Far Clipping / Obiject

Plane f \‘_/

Object

N)
“Projection

Plane™. "\
Near Clipping
Plane
n V4
Viewing _ Viewing
Plane Plane

Fig. 1. Left: Length of a ray. Right: distribution of rays (adapted from [1]).

3.2 Ray Intersection Based Method for Ray Simulation

The second method for calculation of the rays is based on the explicit calculation
of ray-object intersections. A sensor can be defined by an arbitrary number of
rays, each with an individual direction. No limits are imposed on the aperture
angle or the distribution of the rays.

To avoid intersecting each ray of the sensor with each object of the scene,
the scene is decomposed into compounds containing the objects of the scene.
For each compound and each individual object an axis-aligned bounding-box
is calculated (and if the object is mobile, re-calculated for each time-step of
the simulation). Ray-intersection is based on this hierarchy of bounding boxes,
thus allowing to discard many objects before calculating time consuming tests on
object-geometry-level. The whole hierarchy is provided by the collision-detection
module which is provided as part of the dynamics-simulation of MuRoSimF [16].
Simulation of all distance sensors uses the same hierarchy, thus avoiding multiple
re-calculations of the hierarchy.

As the bounding-box-hierarchy is aligned to the world-coordinate systems,
the rays have to be transformed to the same coordinate system before inter-
section tests can be performed. To further speed up the simulation, rays are
aggregated to sets of rays, which fit into a bounding box, so that further objects
of the scene can be discarded for some of the sets.

3.3 Simulation of Different Distance Sensors

After calculation of the ray length (and optionally the material hit by the indi-
vidual rays) additional post-processing of the data may be applied to simulate
different kinds of sensors. In this section several of the possible steps are dis-
cussed.

Error modeling. Several possibilities for modeling the sensor’s errors exist and
can be applied after the ray-calculation on single-ray whole-scan level.

— On the level of single rays, an error can be calculated as a function of the
length of the ray. This function may contain a randomized component to
simulate noise. This function can be chosen individually for each simulated
sensor.

— If additional information on the material hit by the individual ray is present,
the function for error modeling can be chosen according to the material for
each ray.

— On the level of the whole scan, effects like crosstalk between neighboring
rays can be considered.

Handling errors of ray-direction. When using the depth-buffer based meth-
ods, the directions of the calculated rays are limited to those directions defined
by the viewing geometry. These directions are not necessarily the same as the
directions of the rays of simulated sensor. Especially laser scanners often have
an even-angular distribution of the rays. Several options are available to cope
with this problem:

— In case the error is small (enough for the desired application), the problem
may be ignored.

— Interpolation can be applied to approximate the length of the rays of the
simulated sensor.

— To reduce the angular error, a higher resolution for rendering can be chosen.

— If the aperture angle of the sensor is high, it may be necessary to use more
than one rendering pass using different viewing directions to reduce the error.

A different kind of error is caused by the motion of the sensor during mea-
surement. If the method used for ray simulation can be calculated efficiently for
parts of a scan (optimally for single rays), it can be interleaved with the motion
simulation. By this, distortions of the scan caused by the motion of the robot
can be simulated.

Aggregation of rays. For distance sensors which produce one single value,
e. g. ultrasound or infrared distance sensors, it nevertheless may be of interest to
calculate intersections of several rays with the scene. This is especially interesting
if the sensor has a significant cone characteristic, as it is the case with many
ultrasound-sensors. The easiest way to simulate a sensor producing a single value

is to calculate the minimum distance of all calculated rays. If further information
on the sensor’s characteristic is known, the directions of the rays may be used
as additional argument for the calculation of the sensor output value.

4 Results

4.1 Applications

Both simulation methods have been implemented as part of the Multi-Robot-
Simulation-Framework (MuRoSimF). With a robot simulation based on MuRoSimF
it is possible to provide different simulation methods for the same purpose (like
simulation of a robot’s motion or a distance sensor). These methods can be ex-
changed transparently and independently of the other elements of the simulation
and be adapted well to very different purposes of robot simulation [1,2].

Several simulations for robots equipped with laser-scanners have been cre-
ated using MuRoSimF. These include a simulation of simplified virtual robots
for educational purposes and a simulation of a search-and-rescue vehicle (see
Figure 2).

The simulation of the vehicle is based on a real robot used for urban search
and rescue [18] which is equipped with two laser-scanners, among other sensors.
To allow for a transparent integration of the sensor simulation with the robot-
control-software, a simulation specific module was added which emulates the
SCIP (see [19]) protocol used by the sensors of the real robot. For each laser-
scanner of each simulated robot it is possible to choose the simulation method,
resolution and rate independently in the configuration of the simulation. Be-
sides selecting a resolution appropriate for a specific simulated experiment, it
is possible to select the method providing the best performance on the respec-
tive computer. This selection can be made by running the simulation twice for
a short time with either method and comparing the performance, before start-
ing the main experiment. The simulation has been used for the development of
sensing and mapping algorithms as well as for high-level behaviors of the vehicle
which could be transferred successfully to the real vehicle.

4.2 Performance

The performance of the simulation methods has been measured with the search-
and-rescue vehicle simulation situating the robot in a typical maze-like environ-
ment (see Figure 3). For the measurements only one laser-scanner of the robot
was activated. In this scenario the time required to calculate one sweep of the
laser scanner has been measured for several resolutions using both methods with
and without determination of the material (see Table 3). For each of these se-
tups a new run of the simulation was started and 300 the computation time for
the sensor simulation was measured for 300 times. During all measurements the
aperture angle of the sensor was 90 degrees (with the obvious exception of the
1x1-resolution). Measurements were taken on three different laptop-computers
(see Table 2).

Fig. 2. Left: Simulation of a search-and-rescue robot. Right: Educational simulation of
two virtual robots. Note that rays are rendered green as long as they did not touch an
obstacle and red afterwards.

Fig. 3. The scenario used for performance evaluation.

Table 2. Computers used in experiments.

Computer
A |B |C
Operating||MacOS X 10.6.3 Ubuntu Lucid Lynx Windows Vista Business
System (|(32 Bit) (64 Bit) SP1 (32 Bit)
CPU Intel Core 2 Duo T8300|Intel Core 2 Duo P9500|Intel Core 2 Duo P8600

Clock 2.4 GHz 2.53 GHz 2.4 GHz

RAM 2 GByte 4 GByte 4 GByte
Graphics ||Intel GMA X3100 NVIDIA Quadro NVIDIA Quadro
Hardware || (chipset) NVS 160M NVS 160M

Table 3. Average computation time in ms for one scan at different resolutions for dif-

ferent simulation modes (R = ray-intersection, ZB = z-buffer, ...wM = ...with material
determination).

Computer A Computer B Computer C
Resolution||R RwM|ZB |ZBwM||R RwM|ZB |ZBwM|R RwM|ZB |ZBwM
1x1 0.021(0.023|6.3 | 6.33 [|0.048|0.05 |3.87|23.2 0.03 |0.033|1.57|1.64
1x3 0.017(0.01816.2 | 6.28 [|0.041]0.041]4.17(23.3 0.027|0.031|1.52{1.61
1x10 0.066(0.068|6.14| 6.17 (|0.19 |0.193|3.89(4.19 [|0.116|0.127|1.57|1.58
1x30 0.165(0.165|6.22| 6.27 {|0.468|0.569(3.96(3.98 0.256|0.272|1.52{1.6
1x100 0.467(0.474|6.18| 6.24 [[1.35 |1.31 |4.11|3.88 0.758|0.782|1.55|1.58
1x300 1.33 [1.35 |6.12] 6.27 [|4.03 |4.03 |3.88(3.94 2.17 |12.19 (1.5 |1.7
1x1000 4.31 |4.37 |6.12] 6.35 [|12.0 |11.2 |4.15|4.13 8.15 |7.06 |1.53|1.64
35x35 5.52 |5.59 (6.3 | 7.11 |[13.7 [12.6 [3.98|4.1 8.07 |8.64 |1.62|1.78
50x50 12.1 |12.1 |6.78| 7.37 |[19.7 [19.0 [4.19|4.3 20.8 |21.2 |1.6 |1.81
70x70 23.6 |124.0 |6.9 | 7.54 ||31.6 [31.6 |4.42]|4.62 47.8 |47.6 [1.74]|1.99
100x100 47.6 |48.2 |7.05| 7.67 ||52.8 |52.2 [4.98|5.51 68.3 (67.7 |2.11|2.47
140x140 93.8 (94.4 |74 | 833 [|91.7 |92.2 |5.86(6.67 126 (129 |2.5 |2.91
200x200 ||192 195 |7.91| 9.53 |[188 (190 |7.98(9.65 |[|259 [263 |3.16(4.24

The main results from these measurements are:

— The ray-intersection-methods have smaller computation times at small res-
olutions, while the depth-buffer-methods have a better performance at high
resolutions.

— Additional determination of the material hit by the respective rays has nearly
no impact on the performance of the ray-intersection based methods. On the
other hand, there is a visible impact at higher resolutions when using the
depth-buffer-methods. Parts of this impact can be explained by the addi-
tional effort required to read back the frame-buffer (see discussion below).
In some cases a method with additional determination of the material took
less time than the method without the addition. This is most likely caused
by disturbances due to background activities of the respective computer.

— The computation time of the ray-intersection methods scales quite well with
the number of rays. Compared to this, the depth-buffer-methods start at
a higher basic computation time, which does not change that much with
rising resolutions. This can be explained by the fact, that independently of
the actual resolution always the whole scene has to be rendered from the
sensor’s point of view.

— The break even of the computation time of the different methods is highly
dependent on the current system.

— Two measurements on system B led to extreme average computation times
(ZBwM at 1x1 and 1x3). Further investigations showed, that this effect ap-
peared randomly for several resolutions on system B but not on the other
systems. It is not clear what caused this effect.

Another result which came clear during these experiments is the strong im-
pact of reading-back the frame- and depth-buffer on the overall performance

of the depth-buffer based methods. Measurements of the time required to read
back these buffers are given in Tab. 4. Interestingly reading back the frame buffer
takes less time than reading the depth-buffer. To further investigate this effect,
the reading order was inverted in an experiment on system A, leading to an
exchange of the reading times.

Table 4. Time in ms required for read back of depth and framebuffer

Computer A Computer B Computer C
Resolution||depth-buffer|frame-buffer||depth-buffer|frame-buffer||depth-buffer|frame-buffer
1x1 1.24 0.075 0.076 0.036 0.312 0.086
1x3 1.21 0.075 0.078 0.036 0.313 0.093
1x10 1.18 0.077 0.169 0.068 0.246 0.088
1x30 1.20 0.079 0.116 0.056 0.289 0.087
1x100 1.21 0.090 0.130 0.060 0.271 0.089
1x300 1.17 0.111 0.135 0.056 0.311 0.096
1x1000 1.08 0.182 0.162 0.085 0.296 0.104
35x35 1.30 0.785 0.166 0.080 0.353 0.186
50x50 1.71 0.621 0.226 0.100 0.288 0.200
70x70 1.76 0.640 0.295 0.126 0.308 0.247
100x100 1.78 0.625 0.491 0.172 0.504 0.298
140x140 1.90 0.802 0.775 0.272 0.608 0.372
200x200 2.02 1.220 1.470 0.540 0.887 0.767

4.3 Discussion

The performance results from the previous section suggest, that it is highly de-
sirable to provide both methods for ray simulation. Depending on the computer
the simulation is executed on, this will allow to choose the better performing
method.

If the methods are to be truly exchangeable within a simulation, it is neces-
sary, that equal interfaces to the provided data are available. Any post-processing
for sensor error simulation can be done independently of the calculation of the
rays.

Independent of the performance other considerations can be made to choose
either one of the methods: The depth-buffer based method has a fixed distri-
bution of the view rays. Thus it can perform best, if either this distribution
matches the simulated sensor (e. g. ToF-cameras), or is of no interest (e. g. if the
rays will be aggregated later on for ultrasound cones). For sensors with different
distributions of the rays (e.g. 2D or 3D laser scanners), additional processing
steps are required as discussed in Section 3.3. Due to the high basic computation
time of the method, it cannot be used to simulate single rays, as it is necessary
when considering the motion of the sensor during measurement.

The ray-intersection based method imposes no limitations on the distribution
of the rays. Further on the method’s computation time scales well with the

number of rays. It is feasible to even simulate single rays at a high rate, thus
allowing the simulation of effects caused by the motion of the robot while sensing.
Both methods can be used for the additional calculation of the material hit
by the individual rays. Only at higher resolutions, there is a visible impact on the
computation time of the depth-buffer based method. Nevertheless the method
performs much better than the ray-based method at these resolutions.

5 Conclusions and Outlook

Two different methods for the calculation of the distances measured by distance
sensors were discussed in this paper, namely reading back the depth buffer from
3D renderings and the calculation of ray-object-intersections. Either method can
be extended to determine the material hit by individual rays of the sensor. This
allows for the simulation of sensor errors on different levels of accuracy which is
not possible in current general purpose robot simulators commonly used in the
autonomous robotics community.

Both methods have been implemented as part of the Multi-Robot-Simulation-
Framework (MuRoSimF) and can be exchanged transparently within simulations.
Extensive measurements of the performance of either method on different com-
puter systems were made. The results of these measurements suggest that it
is very useful to provide either method fully exchangeable within the simula-
tion to allow the adaption of the simulation to different computers to provide
optimal performance. Further on different advantages and drawbacks of each
method were discussed to give an aid in choosing a method depending on the
requirements of the individual simulation.

With the existing implementations of both methods the complete infrastruc-
ture for the simulation of distance sensors is provided. As a next step the authors
are planning to determine concrete functions to model errors of real world sensors
to be evaluated with the robots of the authors’ group, thus providing a validated
simulation of these devices. Identification of parameterized error models can be
based on comparing the outputs of real and simulated sensors in experiments
and applying optimization methods like least square fitting.

The good scalability of the ray intersection based simulation method opens
up another opportunity: By simulating few or even single rays of a whole sensor
sweep for every time step of the simulation of the robot’s motion, effects caused
by the motion of the sensor can be simulated.

Acknowledgment. Parts of this research have been supported by the German
Research Foundation (DFG) within the Research Training Group 1362 “Coop-
erative, adaptive and responsive monitoring in mixed mode environments”.

References

1. M. Friedmann, K. Petersen, and O. von Stryk. Simulation of Multi-Robot Teams
with Flexible Level of Detail. In S. Carpin et al., editor, Proc. of the 1st Intl. Conf.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR),
LNAI, pages 2940, Venice, Italy, Nov 4-6 2008. Springer.

M. Friedmann. Simulation of Autonomous Robot Teams With Adaptable Levels of
Abstraction. PhD thesis, Technische Universitdt Darmstadt, Nov. 30 2009.

H. Kawata, A. Ohya, S. Yuta, W. Santosh, and T. Mori. Development of ultra-
small lightweight optical range sensor system. In Proc. of the 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2005.

N. Koenig and A. Howard. Design and Use Paradigms of Gazebo, an Open-Source
Multi-Robot Simulator. In Proc. of the 2004 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2004.

J. Jackson. Microsoft Robotic Studio: A Technical Introduction. Robotics and
Automation Magazine, 14(4):82-87, 2007.

L. Hugues and N. Bredeche. Simbad: an Autonomous Robot Simulation Package
for Education and Research. In Proc. of the 2006 Intl. Conf. on the Simulation of
Adaptive Behavior (SAB), Rome, Italy, 2006.

Simbad website: http://simbad.sourceforge.net/, 2009.

T. Laue, K. Spiess, and T. Roéfer. SimRobot - A General Physical Robot Simu-
lator and Its Application in RoboCup. In A. Bredenfeld, A. Jacoff, I. Noda, and
Y. Takahashi, editors, RoboCup 2005: Robot Soccer World Cup IX, number 4020
in Lecture Notes in Al, pages 173-183. Springer, 2006.

T. Rofer, T. Laue, A. Burchardt, E. Damrose, K. Gillmann, C. Graf, T. J. de Haas,
A. Hartl, A. Rieskamp, A. Schreck, and J.-H. Worch. B-Human Team Report and
Code Release 2008. Technical report, 2008.

B. P. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage Project: Tools for
Multi-Robot and Distributed Sensor Systems. In Proc. of the 2003 Intl. Conf. on
Advanced Robotics (ICAR), pages 317-323, Coimbra, Portugal, 30 June - 3 July
2003.

R. Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence, 2:189—
208, 2008.

S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. USARSim: a robot
simulator for research and education. In Proc. of the 2007 IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2007.

J. Wang and S. Balakirsky. UARSSim V3.1.3 - A Game-based Simulation of mobile
robots. Technical report, NIST, 2008.

O. Michel. Cyberbotics Ltd. - Webots(TM): Professional Mobile Robot Simulation.
Intl. Journal of Advanced Robotic Systems, 1(1):39-42, 2004.

Webots user guide 6.2.3. Technical report, Cyberbotics, Ltd., 2010.

M. Friedmann, K. Petersen, and O. von Stryk. Adequate Motion Simulation
and Collision Detection for Soccer Playing Humanoid Robots. Robotics and Au-
tonomous Systems, 57:786-795, 2009.

M. Segal and K. Akeley. The OpenGL Graphics System: A Specification (Version
2.0 - October 22, 2004). Technical report, Silicon Graphics, Inc., 2004.

M. Andriluka, S. Kohlbrecher, J. Meyer, K. Petersen, P. Schnitzspan, and O. von
Stryk. RoboCupRescue 2010 - Robot League Team Hector Darmstadt (Germany).
Technical report, Technische Universitat Darmstadt, 2010.

URG Series Communication Protocol Specification SCIP-Version 2.0. Technical
report, Hokuyo Automatic co., Ltd., 2006.

