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Abstract. This paper presents the modeling of the light-weight BioRob
robot arm with series elastic actuation for simulation and controller de-
sign. We describe the kinematic coupling introduced by the cable ac-
tuation and the robot arm dynamics including the elastic actuator and
motor and gear model. We show how the inverse dynamics model de-
rived from these equations can be used as a basis for a position tracking
controller that is able to sufficiently damp the oscillations caused by the
high, nonlinear joint elasticity. We presents results from simulation and
briefly describe the implementation for a real world application.
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1 Introduction

Elasticity in the actuation of robotic arms was for a long time seen as undesir-
able. When introducing a series elasticity in the joint actuation, reduced torque
and force bandwidth and increased controller complexity for oscillation damp-
ing and tracking control are the result. Research on series elastic actuators [13]
however, showed that mechanical compliance in the joint actuation can simplify
force control in constrained situations, increase safety because of the low-pass
filtering of torque and force peaks between the decoupled joint and gearbox ,
and increase performance of specific tasks because of the possibility to store me-
chanical energy in the elasticity. For example, the increase of performance for
throwing was examined in [18]. In [19], an actuation approach with two motors
per joint increasing torque bandwith without compromising safety was exam-
ined. A classification of elastic joint actuation principles is given in [17].

Flexible link manipulators are also subject to current research. But these
systems are even harder to control, especially when dealing with multiple de-
grees of freedom, and do not introduce significant advantages compared to joint
elasticity. An overview over research on flexible joint and link systems with an
emphasis on flexible links is given in [6].

The modeling of an elastic joint robot with a reduced model was presented in
[14]. The complete model and analysis of the model structure was derived in [15],
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and complemented by [7]. The control of elastic joint robots with a controller
relying solely on motor-based sensor data was presented in [16]. The use of full
state feedback was examined in [1] and [5]. Feedforward/feedback control laws
are covered in [3]. A good overview over modeling and control methods for robot
arms with joint and link flexibility is given in [4].

2 BioRob Arm Design

Fig. 1. BioRob robot arm actuation principle.

In this work, the BioRob arm, an equilibrium-controlled stiffness manipula-
tor, is analyzed. The mechanical design of this robot arm is depicted in Figure 1.
The arm consists of a very lightweight structure with rigid links, elastically ac-
tuated by DC motors driving the joints by pulleys and cables with built-in me-
chanical compliances. Alternative actuation concepts such as pneumatic muscles
[8] exhibit inherent compliance and omit the need for gearboxes, but are slower,
have a restricted range of operation and are suited for mobile applications only
to a very limited extent. Electrical motors on the other hand are robust, allow
high speeds, exhibit excellent controllability and are well suited for highly mo-
bile applications. The construction and actuation principle is described in more
detail in [11,9].

The general properties of series elasticity in the actuation were described in
Section 1. The specific properties of the BioRob arm concept compared to other
series elastic concepts are reduced link mass and inertia (a total mass of 4 kg),
reduced power consumption, and a significantly lower joint stiffness (ranging
between 4 and 20 Nm), in total resulting in increased safety for applications
with direct human-robot interaction. As a downside, the use of cable and pulley
actuation increases friction and the series elasticity with particularly low joint
stiffness demands special efforts regarding oscillation damping. Therefore, an
appropriate controller structure is needed.

3 Kinematics Model

The BioRob robot arm consists of four elastically actuated joints. To model the
kinematics of the robot arm, it is sufficient to model the rigid link structure,
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Fig. 2. BioRob 4 DOF robot arm kinematic structure and table with DH parameters.

because the joint elasticity has no effect on kinematics when using joint sensors.
Link elasticity is negligible for loads not exceeding the nominal load. Thus, the
same modeling methods as used for rigid link robots without elasticity in the
actuation can be used, as can be seen in picture 2, where the DH-parameters
are listed. As mentioned above, the kinematics model depends only on the joint
angular positions qi and not on the motor angular positions θi.

Especially for control, the equilibrium positions of the joints are important.
These are the joint positions qi and motor positions θi where the elasticity be-
tween motor and joint produces no torque. Normally, the equilibrium position
of the joints corresponds to the current position of the motors. This is not the
case, however, if the motor is mounted neither on the link it actuates nor on
the previous link. Then an additional deflecting pulley becomes necessary. As
depicted in Figure 3, the motor driving joint four is fixed to link two and coupled
with a deflection pulley (radius rd3

) in joint three to joint four. Because of the
kinematic coupling between link four and three, the equilibrium position of this
motor not only depends on q4, but also on q3, because the cable wraps around
the guiding pulley. The amount of cable that wraps around the pulley on joint
three is equal to the amount of cable that unwinds from the pulley driving joint
four:

rd3
q3 = −r4 ∆q4 ⇒ ∆q4 = −rd3

r4
q3 . (1)

This correction term has to be considered when calculating the equilibrium
positions. The resulting joint equilibrium position vector of the manipulator for
given angular motor positions θ and joint positions q is:

q̂(θ, q) =


θ1
θ2
θ3

θ4 −
rd3

r4
· q3

 = θ −αc(q) . (2)
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Fig. 3. Position of motors on the BioRob arm.

4 Dynamics Model

The dynamics model is used for simulation and controller design. In simulation,
the behavior of the model can be studied without the need to perform time-
consuming experiments, also avoiding wear of the hardware. It is especially useful
for examining scenarios such as collision detection, which are difficult to perform
with the hardware. In simulation, it is also possible to provide additional data,
that would be difficult to measure, such as collision reaction forces.

However, only effects can be studied that are modeled with sufficient accu-
racy. The most important effects are the robot arm dynamics consisting of the
dynamics of the rigid structure and the joint elasticity, described in Section 4.2.
The dynamics model of the motors (Section 4.1) is required to be able take ac-
tuator saturation into account. It also allows to simulate the torque loads and
peaks caused by collisions.

The primary requirement for the dynamics model is steady state accuracy,
which is important for the controller design. Besides the steady state equations
and parameters of motors and robot arm, the nonlinear joint elasticity is to be
modeled accurately, shown in Section 4.2, due to the low elasticity and therefore
large spring deflection. The second important requirement is the accurate mod-
eling of the joint oscillations caused by the joint elasticity. An accurate model
of this behavior allows for a better controller design in simulation.

4.1 Motor Model

Motors can be controlled to deliver a desired torque τm which can be seen as
the input of the system. Instead of using the simple torque source model, a more
complete model of the electrical motor dynamics allows for the examination of
the motor currents and voltages, which are bounded in reality. The motors used
in the BioRob robot arm are DC motors. The effect of the armature inductance
can be neglected compared to the other dynamics of the motor. The electrical
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dynamics can be described as:

u = Ra i+ kv · θ̇ =
Ra

kt
τm + kv · θ̇ (3)

with input voltage u, armature resistance Ra, torque constant kt, speed con-
stant kv and generated motor torque τm, which drives the rotor. The mechanical
dynamics of a freely rotating motor are:

Im θ̈ + dm θ̇ = τm . (4)

When connected to the robot, the mechanical motor model has to be mod-
eled together with the robot arm mechanics to receive the mechanical dynamics
equations of the coupled system. This is described in the following section.

In most cases, electrical motors require gearboxes to achieve the desired
torques. These can be modeled with a transmission ratio z reducing the speed θ̇
of the motor:

θ̇∗ =
1

z
θ̇ with |z| > 1 , (5)

which increases the torque τm of the motor. The gearbox also introduces addi-
tional friction dg and inertia Ig. For a compact model representation, all motor
variables and parameters will be used with respect to the joint side, as reflected
variables:

τ∗m = z · τm − dg · θ̇∗ (6)

I∗m = z2 · Im + Ig (7)

d∗m = z2 · dm + dg . (8)

All variables marked with an asterisk are reflected variables calculated with
respect to the joint. Further on, only these will be used and for the sake of
simplicity, they will not be asterisked.

4.2 Robot Arm Dynamics

The model of a BioRob joint as shown in Figure 4 can be transformed into a
model of a series elastically actuated joint shown in Figure 5. This is possible
if the mass of the cables and elastic parts is so small that the kinetic energy
of these elements can be neglected compared to the kinetic energy of the other
mechanical robot arm parts. In this case, the transformation can be performed
by adapting some of the model parameters. The mass of the motor can be added
to the link it is fixed to and the transmission ratios of the gearbox and the cable
and pulley elements can be multiplied. All variables can then be calculated as
reflected variables with respect to the joint side, as described in the former
section.
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Fig. 5. Joint actuated by a Series
Elastic Actuator.

The nonlinear joint spring characteristics curve is a function of the deviation
of the joint position qi of its equilibrium position q̂i, which is normally the
motor position θi, but can also be dependent of the position of previous joints,
as described in Section 3:

τ e = ke(q̂ − q) . (9)

Figure 6 shows the spring characteristic of the fourth joint. The joint elasticity
of each joint was chosen according to the expected maximum load torque.

Fig. 6. Nonlinear spring characteristic of joint 4.

The multibody dynamics of the robot arm and the motors can be described
by using the reduced model of elastic joint robots. For formal derivation of these
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equations see [14,16]:

M(q)q̈ +C(q, q̇)q̇ +Dq̇ + g(q) = τ e (10)

Imθ̈ +Dmθ̇ + τ e = τm (11)

Equation (10) describes the dynamics of the rigid structure with mass matrix
M , Coriolis matrix C, gravity torque vector g, and diagonal friction matrix D.
Equation (11) describes the dynamics of the motor rotors with the diagonal
motor rotor inertia matrix Im, diagonal friction matrix Dm and motor torque
τm. The mass matrix consist of the inertia and mass of the links, including
the motor masses, which are added to the links where they are mounted (see
Figure 3). The mass of the cables and mechanical elasticity is negligible. The
diagonal matrix Im consists of the motor rotor inertias Imizz

with respect to
the rotor rotating axis. These are the reflected motor inertia values as stated in
Section 4.1.

Because the motors are mounted on the first and second joint and therefore
moving with low kinetic energy, and because of the large reduction ratios (overall
reduction ratios zi between 100 and 150), it is possible to neglect the effects of
the inertial couplings between the motors and the links, so that the reduced
model can be used, as stated in [14]. Otherwise, a more general model would
have to be used [15]. Also, the fact that the motors are not located in the joints
but mounted on the links, would have to be considered and modeled [12].

5 Inverse Model for Tracking Control

5.1 Inverse Model

For sufficiently high (but still finite) joint stiffness Ke, a singular perturbation
model can be used [10]. It consist of a slow subsystem, given by the link dynamics
equations, and a fast subsystem describing the elasticity. It can be used as a basis
for composite control schemes. The joint stiffness of the BioRob manipulator,
however, is too low for this approach. Instead, an inverse model is used for the
control law [3].

The calculation of computed torque for a given trajectory qd(t) is more dif-
ficult with elastic joints, because the desired motor trajectories θd(t) are not
known. With the desired link trajectory we calculate the link equilibrium posi-
tions from the joint elasticity equation (9):

q̂d = k−1
e (τ e,d) + qd . (12)

Applying the rigid link dynamics (10) and transforming the equilibrium po-
sitions in motor positions with (2) yields the desired motor trajectory that pro-
duces the given desired joint trajectory qd(t):

θd = k−1
e

(
M(qd)q̈d +C(qd, q̇d)q̇d +D q̇d + g(qd)

)
+ qd + αc(qd) (13)
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The desired motor torques τm,d can then be calculated through Equation (11):

τm,d = Im θ̈d +Dm θ̇d + τ e,d , (14)

requiring the second derivative of (13), however. Feedforward laws for the lin-
ear joint elasticity case were presented in [3]. This approach would demand a
linearization of Equation (6), which would be inaccurate. Therefore, the desired
motor trajectory is used for control instead of the desired motor torque.

5.2 Control

The desired link trajectory qd and the desired motor trajectory θd (13) can be
used for a controller as shown in Figure 7. Each elastic joint can be described
by an ordinary differential equation of order four, which is the length of the
complete state vector. The BioRob arm sensor system measures motor θi and
joint qi positions, so that following state variables are chosen:

(
q q̇ θ θ̇

)
. This

representation has the advantage that only the first derivative is needed, which
can be obtained by numerical differentiation.

A simplified control structure can be obtained when using only the steady
state torque in (13):

θd = k−1
e

(
g(qd)

)
+ qd +αc(qd) . (15)

This controller structure uses a global nonlinear calculation of the motor set-
point, which linearizes each joint around the current desired position, assuming
a sufficiently accurate model. Each joint can than be controlled by a linear con-
troller for all states to receive damped and exact steady state behavior.

In addition to the controller, we also use an approximation of a global grav-
itational compensation g(q), which is exact in steady state. We assume a motor
with controlled torque output (3).
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Fig. 7. Control structure for joint i.
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6 Simulation Experiments

For the evaluation of the presented controller, a simulation model consisting
of the models presented in the former chapters was implemented. The values
of the model parameters were obtained by identification and optimization with
measurements of the real hardware. The joint stiffness ranges from 4 to 20 Nm/rad,
the motors are limited to 10 Nm.

The trajectory used for evaluation of the controller is oriented toward a
typical application (Figure 10), but also consists of segments of linear motion in
Cartesian space. The desired joint trajectories qd were piecewise generated by
cubic interpolation of joint trajectories calculated by inverse kinematics. These
trajectories were than low pass filtered. Figure 8 shows the increased performance
when using slight filtering with two time constants. As can be seen, critical
trajectory points are smoothed (t = 2 s), whereas stationary points are preserved
(t = 3 s).

(a) Low pass filtering of the joint tra-
jectory with time constants T1 = T2 =
0.05 s.

(b) Without trajectory filtering.

Fig. 8. Effect of the joint trajectory low pass filtering.

Figure 9 shows how the joint sensor information is used for damping the
oscillations caused by the joint elasticity. As can be seen in Figure 9(a), good
steady state accuracy can be obtained with an accurate steady state model even
if no joint information is available.

To evaluate the robustness of the controller design with respect to modeling
errors and external disturbances, model parameters of the simulation model were
altered (Fig. 11(a)) and external forces (Fig. 11(b)) were applied to the robot
arm. The additional weight on the end effector effectively doubles its weight.
The controller is not able to prevent overshoot at high accelerations, as can be
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(a) Missing joint sensor information.

0 2 4 6 8
40

60

80

100

120

140

160

180
Trajectory of joint 2

Time [s]

A
n
g
le

[◦
]

 

 

q2
q2,d
θ2

0 2 4 6 8

−10

−5

0

5

10

Motor torques of joint 2

Time [s]

T
o
rq
u
e
[N

m
]

 

 
τ2

(b) Full state vector used for control.

Fig. 9. Comparison of the performance of the full state feedback controller and a
reduced controller only using motor sensor information.

seen at t = 3 s, but the overall performance is still good and robust. This is also
the case for external disturbing forces.

For videos of the implementation of the pick and place application (Figure
10) with the BioRob arm see [2].

7 Discussion

The presented controller is based on the steady state model. The remaining
dynamics are seen as disturbances on joint level, which are compensated for by
a linear full state feedback controller. This design limits the end effector loads
and acceleration. With high end effector loads and at high accelerations, the
controller is not able to completely damp the oscillations caused by the joint
elasticity. The main advantages of the approach are low requirements on the
accuracy of the dynamics model parameters. The steady state parameters that
are used can be identified with substantial lower effort and higher accuracy than
the dynamics parameters.
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Fig. 10. Pick and place application with the BioRob robot arm [2].

(a) Parameter changes: fourth link
weight (doubled), joint and motor fric-
tion (doubled).

(b) External forces (marked with square
brackets): 5 Nm applied on the second
joint from 0.9 to 1.1 s and the on first
joint from 2.5 to 2.6 s.

Fig. 11. Effect of modeling errors and disturbances.

8 Conclusion and Outlook

This paper presented the kinematics and dynamics models and a position track-
ing control scheme for a series elastic joint robot arm with cable and pulley
actuation. We pointed out how the desired motor trajectory can be calculated
for a given joint trajectory and how it can be used for damping and tracking
control. The performance of the controller design was evaluated in simulation.
Future research concentrates on control structures for fast feedforward move-
ments, requiring a model-based extension of the presented controller.
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