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Abstract

In this paper a humanoid robot simulator based on the multi-robot simulation framework
(MuRoSimF) is presented. Among the unique features of the this simulator is the scalability
in the level of physical detail in both the robot’s motion and sensing systems. It facilitates
the development of control software for humanoid robots which is demonstrated for several
scenarios from the RoboCup Humanoid Robot League.

Different requirements exist for a humanoid robot simulator. E.g., testing of algorithms
for motion control and postural stability require high fidelity of physical motion properties
whereas testing of behavior control and role distribution for a robot team requires only a
moderate level of detail for real-time simulation of multiple robots. To meet such very dif-
ferent requirements often different simulators are used which makes it necessary to model
a robot multiple times and to integrate different simulations with high-level robot control
software.

MuRoSimF provides the capability of exchanging the simulation algorithms used for
each robot transparently, thus allowing a trade-off between computational performance and
fidelity of the simulation. It is therefore possible to choose different simulation algorithms
which are adequate for the needs of a given simulation experiment, for example, motion
simulation of humanoid robots based on kinematical, simplified dynamics or full multi-
body system dynamics algorithms. In this paper also the sensor simulation capabilities of
MuRoSimF are revised. The methods for motion simulation and collision detection and
handling are presented in detail including an algorithm which allows the real-time sim-
ulation of the full dynamics of a 21 DOF humanoid robot. Merits and drawbacks of the
different algorithms are discussed in the light of different simulation purposes. The simu-
lator performance is measured and illustrated in various examples, including comparison
with experiments of a physical humanoid robot.
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1 Introduction

In a soccer game of autonomous humanoid robots many different humanoid robot
motions must be selected online for fast, goal-oriented motions like fast walking,
turning and getting up as well as for ball manipulation with the feet and for colli-
sion avoiding navigation. High-level control software for soccer playing humanoid
robots consists of several modules like image processing, world modeling, behavior
control and motion generation, e.g. [1]. A typical (though simplified and general-
ized) control application is depicted in Fig. 1.
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Fig. 1. Data flow in a robot control application. Boxes depict modules of the application,
ellipses depict exchanged data. A real robot can only provide information about the sensor
data it receives, thus allowing only tests of the whole control software. A simulation of the
robot can provide and process further information (dashed arrows) which can be used for
testing selected parts of the robot control application.

Testing these modules with the real robot’s hardware is not only expensive with
respect to time and experimental cost. It is also usually quite difficult to find the
reason for an observed robot’s misbehavior due to the complexity of its hard- and
software. Using offline or in the loop” simulations of the robot’s motion and/or
sensing capabilities enables isolated and repeatable investigations of the robot’s
high-level software and hardware.

Requirements on the physical correctness of the simulation vary for different simu-
lation purposes and scenarios. For successful tests it is crucial to select an adequate
simulation, which not necessarily needs to be the most accurate one. Testing coor-
dination and control algorithms for a whole team of robots requires high compu-
tational efficiency. Testing and optimizing a humanoid robot’s motion capabilities
requires high physical correctness but no simulation of external sensors.

For testing the self localization of the robot, external sensors like cameras and the



robot’s motion must be simulated. As the main concern is not on the sensor pro-
cessing or motion generation, a sound - but not necessarily too detailed - simulation
of these properties is sufficient. Sometimes also a too accurate simulation may even
be harmful, as simulated effects like vibration of the robot or blur and noise of the
camera may mask errors of the algorithms under observation.

When testing behavior of a team of robots, the main concern is which decisions are
made by each robot depending on its knowledge of the world. This information can
be generated directly from a simulation without using the image processing and
world modeling software modules. Likewise the robots motion capabilities can be
simulated in a simplified manner.

In this paper a flexible and modular simulation for humanoid robots is presented
which fosters adequate simulation by providing several different algorithms for
motion simulation and collision detection. It differs significantly from the majority
of robot simulations used currently in the context of the RoboCup Humanoid Robot
League. The algorithms have been implemented within the framework MuRo S imF
[2], which provides means for integration of different simulation algorithms within
one simulation framework.

The remainder of this paper is structured as follows: The next section presents an
overview on algorithms for robot dynamics simulation, existing simulation pack-
ages and simulations. In Section III the structure of simulations and models built
with MuRoSimF are described. Section IV, V and VI present the algorithms used
for motion simulation, collision-detection and handling and sensor simulation which
are presently available. Results are presented in Section VII. The paper concludes
with a discussion of the results.

2 Overview

2.1 Multi-body System Dynamics

Humanoid robots usually consist of rigid kinematic chains in a tree structure. As
postural stability is of outmost importance the robot dynamics must be considered.
The inverse dynamics of a multi-body system (MBS) with a fixed base and an open
rigid, kinematic chain of n degrees of freedom (DOF) is generally described by the
n-dimensional system of nonlinear second order differential equations

T =M(q)4+ C(q,q) + G(q). (D

In this equation 7 is the vector of joint-forces required to yield the acceleration ¢ in
the joints. M is the symmetric and positive definite mass-matrix describing the in-
ertia of the bodies of the system, C' are the Coriolis-forces acting onto the joints, G



are the gravitational forces. For bipedal and four-legged robots with varying contact
situations and forces, the resulting system of differential algebraic equations can be
transformed to a similar second order system using a reduced dynamics approach
as described in [3]. Further external forces which may be caused by collisions or
friction can be introduced by adding a vector F'(q, ) depicting the impact of these
external forces on the single joints. This leads to

T=M(q)4+C(q,q) + G(q) + F(q, ). )

Calculating 7 from ¢ is known as the problem of inverse dynamics. It can be solved
efficiently by the well known Recursive Newton-Euler Algorithm (RNEA, e. g. [4])
in O(n) runtime without explicitly calculating M.

Solving the equation for q (for given 7) is known as calculation of the forward
dynamics. Prominent algorithms for solving this problem are the Composite Rigid
Body Algorithm (CRBA) [5] and the Articulated Body Algorithm (ABA) [6], cf.
[3]. The CRBA explicitly calculates the mass matrix M column wise by evaluating
the RNEA n+ 1 times for = O resp. q = u; where u; denotes a unit vector where
the i-th component is 1. The resulting linear equation is solved leading to an order
of O(n?). Instead of that the ABA solves this equation implicitly yielding an O(n)
algorithm. For a small DOF the CRBA will perform better with a break even at a
DOF of 6 to 9 (depending on the implementation) [7].

For a reasonable simulation of the robot’s dynamics, additional robot data not in-
cluded in the kinematical data is needed. These include mass, center of mass and
inertia tensor for each rigid link and joint of the robot as well as models describing
the torques generated by the robot’s joint drives.

2.2 Simulation Packages

For simulating the motion of multi-body systems, several packages exist which
provide algorithms for numerical integration, collision detection and handling and
robot modeling.

The Open Dynamics Engine ODE [8] is an open-source-project that provides colli-
sion detection and handling for several geometric primitives like box, cylinder and
sphere as well as meshes and an algorithm for rigid body dynamics. Each joint of
the robot and each collision is modeled as a geometric constraint that removes one
or more DOF from the system. ODE provides two methods for solving the system’s
equation: an accurate solver with O(n?) runtime complexity and a less accurate
iterative solver with O(m - n) runtime complexity (where m is the number of itera-
tions). Numerical integration is done using a first order integrator which was chosen
by ODE’s developers to emphasize speed and stability over accuracy. To speed up



collision detection ODE supports multi-resolution hash-tables and quad-trees. ODE
has been used on several platforms including Linux, Windows and MacOS X.

Bullet-Physics [9] is an open-source package providing rigid-body physics and col-
lision detection for primitive shapes as well as for meshes. To speed up collision
detection it makes use of axis aligned bounding boxes. It is available for Linux,
Windows and MacOS X platforms.

AGEIA PhysX [10] is a physics engine providing rigid body dynamics and collision
detection mainly used in games. It is possible to accelerate the calculations with
specialized add-on cards. A software-development-kit is available for Windows,
Linux and the XBOX game-console.

The Newton Game Engine [11] is a closed-source package for physics simulation
and collision detection. The binary libraries are distributed freely for Windows,
Linux and MacOS X. It uses a deterministic solver, unlike other physic engines
that use iterative algorithms.

Karma [12] is a physics engine developed by Epic Games. Collision detection is
only performed with bounding volumes. It can be decided for each body whether
the motion simulation should be accurate (but slow) or quick (but not very precise).

SOLID [13] is a collision detection library that is available either under a public
license (GPL or QPL), which requires to publish programs using SOLID as open
source, or for commercial use for a fee depending on the usage of the library. The
collision detection pipeline consists of three phases: the broad phase, where the in-
tersection between axis aligned bounding boxes is calculated, the complex phase,
where each complex object is seen as a hierarchy of primitives, and the exact phase,
where the intersection of potentially colliding primitives is computed. SOLID sup-
ports a lot of different shape types, including boxes, cones, cylinders, spheres, ellip-
soids, line segments, triangles, quadrilaterals, general convex polygons, and convex
polyhedra. As SOLID only provides collision detection, the collision response has
to be added by the user.

GIMPACT [14] is an open source collision detection library that supports concave
meshes and deformable bodies. GIMPACT is available under a free license. It is
used for mesh-collisions in the Bullet-Physics library.

2.3 Existing Simulators

SimSpark [15] is a simulation framework which is used in the RoboCup 3D simu-
lation league. It uses ODE for physics simulation. New robot models and environ-
ments can be added using a description language.



USARSim [16] is a simulation environment based on a the Unreal Engine by epic
games [17], which provides not only physics simulation, but also tools for visual-
ization and integration of description languages. The physics simulation in Unreal
Engine 2 is based on Karma, Unreal Engine 3 uses AGEIA PhysX. With USAR-
Sim a variety of different robots can be simulated, including humanoids as shown
in [18]. A variety of sensors is provided. A simulator based on USARSim is used
in the RoboCup Rescue Simulation league.

SimRobot is a simulator based on ODE. In [19] the simulation of wheeled and four-
legged robots was shown. Other robots and different environments can be defined
with RoSiML [20], a description language based on XML. Many sensors like cam-
eras and different distance sensors can be simulated.

Microsoft Robotics Studio [21] provides tools for programming robots as well as
a 3D simulator. The simulation of many different sensor types is available. The
dynamics are based on AGEIA PhysX.

Webots [22] is a commercially available simulation that deals with wheeled, legged
and flying robots and provides a lot of different sensors. The physics simulation is
based on ODE.

Gazebo is the 3D-simulator of the player/stage project [23], [24]. It supports the
simulation of cameras and distance sensors. Motion simulation is based on ODE.

OpenHRP [25] is a simulator for humanoid robots based on CORBA. Collision
detection and forward dynamics are realized as CORBA-servers, each of them can
be exchanged by other implementations.

2.4 Discussion

As mentioned in Sect. 1, different purposes and test scenarios have quite different
requirements and needs.

All of the above mentioned simulators rely on some externally developed physics
engine for motion simulation. Even though many of these engines provide good
performance and accuracy, some problems may arise from this approach. For closed
source packages, it is impossible to change the provided simulation algorithms. Of-
ten it is not even documented, which kind of algorithm is used. Open source pack-
ages obviously enable inspection and adaption of the source code. Nevertheless this
is an error prone effort, as often the only available up-to-date documentation is the
source-code itself. To the authors best knowledge, none of the packages discussed
before provides a flexible exchange of the simulation algorithms used. By choosing
one of these packages and developing a simulation based on them, a developer will
be stuck to these specific algorithms. Additionally, exchanging one package for an-



other is complicated by the fact that each package uses its own data representation.

To overcome these problems and limitations, MuRoSimF provides a way to com-
bine different simulation algorithms and models. Several algorithms differing in
accuracy and run-time requirements are provided. Unlike in simulations which are
based on a specific simulation package, it is possible to use the provided algo-
rithms in any combination within one simulation simultaneously. A possible use of
this feature is the investigation of one robot’s reactions on the actions of a whole
team of other robots. To do this, the robot under investigation can be simulated with
high accuracy while for the other robots a reduced level of detail can be applied.

3 Structure of Simulation

A simulation consists of two main parts: Models of the systems under consideration
(e. g. robots, ball or environment) and simulation algorithms computing the behav-
ior of these models (e. g. motion simulation, collision detection or visualization, an
example setup is given in Fig. 2). Within MuRoSimF each model is described as a
set of objects where each object contains a set of constant and variable properties
describing the object. Constant properties are assigned to an object during creation
of the model, variable properties are assigned during simulation setup if they are
needed by a simulation algorithm as input or output data.

After setup the simulation algorithms are executed. The rate for each algorithm can
be adjusted individually. During execution the simulation can be connected to the
robot control software. An interface is provided to run low-level control modules
synchronously with the simulation.
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Fig. 2. Structure of a simulation, consisting of models for robot and ball, algorithms for
motion and camera simulation and collision detection.



Table 1
Basic objects for modeling the robot’s structure.

Object modeling parameters

Base no parameters

Rigid translation | length and direction

Rigid rotation axis and angle
Revolute joint direction of axis
Prismatic joint direction
fork no parameters
endpoint no parameters
Table 2
Some of the properties which may be added to an object during modeling of a robot.
Property symbol | type used by algorithm
mass m R
center of mass com R3 dynamic motion simulation
inertia tensor I R323
shape see Sect. 5 collision detection / visualization
surface parameters collision handling
color / texture visualization

3.1 Robot Modeling

Robots are modeled as sets of objects connected in a tree structure. An object es-
sentially is a container holding several constant or variable properties. As shown
in [26] it is desirable to have a limited set of basic objects for modeling the robot.
In MuRoSimF these objects are the robot’s base, rigid translations, rigid rotations,
revolute joints, prismatic joints, forks and endpoints. Each of these objects basically
describes a homogeneous transformation relative to the last link of the kinematic
structure. With the exception of endpoint and fork after each object one following
object is added to the structure. Forks are used to add two following links. End-
points describe the end of one limb and thus have no following link.

Using these seven basic objects the robot’s kinematic structure is modeled. The
objects initially only hold information describing its kinematic structure (see Ta-
ble 1). When modeling the robot, additional constant properties may be added to
each object. Which properties are added strongly depends on the level of detail of
the model as well as on the simulation algorithms which are to be used. Examples
of available properties are given in Table 2.



Two subsets of the robot’s objects are of special interest. The set of bodies consists
of all objects which can experience external forces. These are all objects with the
property mass (the object will experience gravity) or shape (the object can collide
with other objects in the simulation). The set of joints consists of all revolute and
prismatic joints of the robot.

All properties are stored at the bottom of a three-level hierarchy: The simulation
provides access to each robot, each robot provides access to a set of object, each
object provides access to a set of properties. It is possible to access each prop-
erty through this hierarchy for monitoring and manipulation of the simulation. This
allows an easy expansion of the simulation with new algorithms.

3.2 Simulation Setup

When setting up a concrete simulation, simulation algorithms have to be chosen
and connected to the models of the simulated systems. During setup, the algorithms
investigate the models they are connected to and may add additional variable prop-
erties (e.g. Table 3) to the model’s objects (see Fig. 3).

Direct Kinematics
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Fig. 3. Left: Modeling of a 1 DOF robot arm. Only the known properties are added to
the model. Right: When connecting a simulation algorithm (here: direct kinematics) to the
model, additional properties needed or calculated by the algorithm are added to the model.
Table 3

Some of the properties which may be added to an object by a specific simulation algorithm.

Property symbol type
Position of Object r R3
Orientation of Object R R3#3
Velocity of Object v, w R3,R3
Acceleration of Object v, W R3,R3
joint position q R
joint rate q R
joint acceleration q R
external forces and moments | fext, Next | R°




3.3 Execution of Simulation

After creation of the models and setting up the algorithms the simulation may be
executed. To do this, a scheduler of all algorithms is set up. Each algorithm can be
executed at its own rate, for example 1 ms for motion simulation, but 100 ms for
camera simulation.

After setup the schedule is processed by a runtime-system. This runtime-system is
used to provide execution of the algorithms, graphics windows and communication
with external control software. It is used as an abstraction layer from the underlying
operation- and windowing-system. The runtime-system provides means to execute
the simulation in soft-real time triggered by the computer’s clock. It is also possible
to run the simulation faster or slower than real time. If the computation time of the
algorithms exceeds the simulated time interval, a warning is issued as real-time
simulation is not possible for the given setup.

Algorithms which are to be executed with the same rate and which access disjunct
sets of properties may be executed in parallel. First results on the scalability are
presented in [27].

For simulations which do not need visualization (e. g. if no cameras need to be
simulated), it is also possible to run the simulation without a windowing system
and without a timer at the maximum speed of the CPU.

3.4 Integration With Control Software

Two possibilities exist to integrate the control software with the simulation. For
higher-level modules (e.g. self localization or behavior control) asynchronous inter
process communication (IPC) is used to transfer data like motion requests or sim-
ulated camera images between simulation and control software. Several communi-
cation methods like TCP/IP or (virtual) RS232-connections can be used. Control
software integrated by IPC may be run on a different computer than the simulation.

For software modules which are run in hard real-time on a real robot’s controller
(e.g. motion generation) a different approach is used. This software can be inte-
grated directly into the simulation using dynamic linked libraries. By this it is pos-
sible to execute the low-level control functions synchronously with the simulation.
Control software integrated this way is always executed on the same machine as
the simulation.
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4 Motion Simulation

To simulate the motion of a robot, several algorithms have been implemented.
Each of these algorithms can be used with any humanoid robot modeled using
the methodology described above. All algorithms yield information on the motion
of the robots base and limbs, but they differ in realism and runtime consumption.
The algorithms may be exchanged transparently within MuRoSimF. It is therefore
possible to choose an algorithm which is most appropriate for a given simulation
experiment.

4.1 Kinematic Walking Simulation

This is the most basic algorithm provided for biped motion simulation. It assumes,
that the robot is walking on a plane. For each time-step the algorithm calculates the
direct kinematics of the robot while keeping the standing foot from the last time-
step in a fixed position on the walking plane. If this leads to a configuration of the
robot in which the other foot penetrates the plane, the roles of the feet are swapped
(see Fig. 4).

Fig. 4. Kinematic walking simulation of a humanoid robot. The current standing foot is
marked yellow.

Obviously this algorithm will produce sound results only if proper walking mo-
tions are executed. The algorithm can be used to evaluate sensing abilities of the
robot which are influenced by the robots motion (e. g. the changing pitch of the
camera). It is also useful for testing behavior control for teams of robots as it is
computationally cheap.

As the algorithm does not consider the dynamic behavior of the robot’s servo mo-
tors, there is no need for simulating the servo’s properties. Instead the desired po-
sition is used as current position of the joint.

When using the algorithm it is not possible for a simulated robot to fall over. This
quality of the algorithm can be very helpful when performing the experiments men-
tioned above, as wobbling of the robot or other disturbances may mask faulty be-
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havior of the algorithms under consideration. If postural stability or other motions
beyond slow walking are of interest, another algorithm should be chosen.

4.2 Simplified Dynamics Simulation

To allow the robot to perform motions beyond slow walking in a more realistic man-
ner a simplified dynamics simulation algorithm has been developed. This algorithm
uses the common center of mass and inertia tensor of the robot. This information
is used to calculate the motion of the robot’s base depending on external forces the
robot experiences by gravity or contact. To do this, all external forces are summed
up and transferred to the robots center of mass, where the dynamics are calculated
for the robot as if it was a single rigid body.

Just like the kinematic walking simulation this algorithm only needs information
on the current position of the servos. Only if frictional forces are to be introduced
to the system by the collision handling algorithm (see Sect. 5.3), it is necessary to
take the rate of the joints into account as well.

The algorithm can be used to simulate a wide variety of motions including falling
down and getting up. As the robot’s feet are not fixed to the plane, the algorithm
will generate some shaking of the simulated humanoid robot.

Even though the algorithm yields sound results for many types of motion (e.g.
Fig. 11), it is not a simulation of the full MBS dynamics of the robot. As the algo-
rithm does not consider the reactive forces caused by motion of the robot’s joints,
it cannot be used to simulate any effects based on these forces like balancing.

4.3  Full Dynamics Simulation

To overcome the limitations of the simplified dynamics simulation a full dynamics
simulation has been developed.

The algorithm considers the positions, velocities and accelerations of a given trajec-
tory of the robot’s joints. These are calculated from the desired positions provided
by the motion generation software under the assumption that the desired position is
reached within one control cycle.

By this a simulation of the individual servos is avoided and the forward dynamics
problem is reduced to six degrees of freedom, as the only accelerations not known
are those for the free base of the robot. These are calculated by an adaption of the
CRBA which only considers the first six rows of Eq. (2), yielding the upper left
6 x 6 submatrix M of M as well as the first six components F' of (C(q,q) +
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G(q) + F(q,q)). As the robot’s base is free, it does not experience any forces, so
that the accelerations of the base can be calculated by solving

0= Mg+ F. (3)

If the acceleration of the base is calculated this way, all internal reacting forces
caused by accelerations of the joints are considered as well as any external forces
from the term F'(q, ). This leads to a more realistic simulation of the robot’s mo-
tions, as effects like balancing can be displayed. In combination with a simulation
of inertial sensors this property can be used for testing stabilization algorithms like
the one presented in [28].

Obviously this algorithm is not able to simulate any effects caused by the robot’s
servos like limited torque of the motor or tolerance of the gear. These limitations
can be overcome by using a dynamics algorithm considering the torque of the mo-
tors (e.g. the ABA) in combination with an appropriate model of the servos.

S Collision Detection and Handling

The simulated scene contains several sets of objects, called compounds. A com-
pound, e.g., consists of all objects belonging to a robot or all static objects in the
scene. To speed up collision detection, each compound is organized in a bound-
ing volume hierarchy. Currently, spheres are used as bounding volumes, but due to
the modularity of the framework, other bounding volumes like oriented bounding
boxes (OBBs), axis aligned bounding boxes (AABB), capsules, etc., can easily be
added. It is a well-known fact that the choice of the bounding volume is always a
tradeoff between accuracy (fitting of the bounding volume) and complexity (com-
putational effort for the intersection test and possibly re-calculation after rotation,
memory usage) [29]. The flexibility of MuRoSimF allows to select the appropri-
ate bounding volume for each simulation, to make sure that the hierarchy is best
adapted to the current setup. To improve performance the detection of inner colli-
sions can be disabled for each compound separately.

Two classes of compounds exist: Unstructured compounds are used to store arbi-
trary sets of objects while structured compounds are used to store sets of objects
having a defined relation (e.g. tree structured robots).

5.1 Building the Tree

For the sake of simplicity binary trees are used. Only the leaves represent bodies of
the robots. All inner nodes store the bounding volume for their succeeding subtree.
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For unstructured compounds a top-down-approach is used, that divides a set of
objects into two disjunct sets in each step. The iteration is stopped, when each node
contains one single object. With this method the resulting trees automatically fulfill
the requirements mentioned above. In the RoboCup simulation, the playing-field is
the sole unstructured compound. As it is static, the hierarchy has to be calculated
only once during initialization.

Each robot is a structured compound. The structure described in Sect. 3.1 has to be
transformed to meet the requirements mentioned above. From a robot’s compound
(see Fig. 5) only the bodies are needed for collision detection. As first step every
node without a physical body is replaced by an empty node. Then empty nodes with
less than two successors are deleted (e. g. the camera-node and the joint-nodes in
Fig. 5). After this transformation, the structure has been reduced a lot, but there
are still some nonempty inner nodes, e.g. the base node in Fig. 5. These nonempty
nodes are moved to the leaves by inserting additional empty inner nodes (see lower
part of Fig. 5).

As the structure of a robot does not change, the tree has to be calculated once, only
the bounding volumes have to be recalculated after the robot has moved.

translation

translation

Fig. 5. Top: Tree-structure of a simplified humanoid robot, consisting of a body, two arms
with one joint each, two legs with one joint each and a head with a camera. Bottom: The
transformed tree that fulfills the requirements for collision detection.
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5.2 Intersecting Two Trees

To detect collisions of two compounds, only the respective trees have to be inter-
sected. There are several approaches for intersecting two trees. If the bounding vol-
umes have an intersection it is possible to descend simultaneously in both trees, to
descend first completely in the tree with the bigger bounding volume, or to descend
in the tree that currently has the bigger bounding volume.

When intersecting a robot with the environment, it is not reasonable to descend in
both trees simultaneously, as the playing field is much bigger than a robot. When
intersecting two robots of the same size, it usually takes more time to first descend
completely in the tree that seems to be bigger. Descending always in the tree with
the currently bigger bounding volume requires a comparison of the sizes in each
step. As this can be determined easily by comparing the radii of the spheres this
approach is taken for the regarded application.

5.3 Collision Response

To calculate the resulting forces of a collision, a soft contact model is used, which
allows the bodies to penetrate each other. The collision depth ¢, and the collision
normal c,, calculated by the collision detection are used for calculating the normal
force

1-Sc- Caepth - € (Objects getting closer)

f, = “4)

Sp* Sc * Cdepth - Cn, (Objects separating)
that uses a spring model with different spring constants s. and a scaling factor
sp. The friction fy,;. between two colliding bodies is calculated depending on the
relative linear velocity and the constant s,, which is defined for each pair of surface-
materials. As there is only one contact point an additional pseudo friction ng,;.
depending on the relative angular velocity is calculated

ffm'c = Vrel " Sy ° fn

®)

Nyfric = Wrel * Sy ° fn .

6 Sensor Simulation

For closed loop testing of the robot control software a simulation of the robot’s
sensing devices or an adequate replacement is necessary. In this section several
possibilities for sensor simulation provided by MuRoSimF are discussed.
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6.1 Sensors Providing Scalar Values

Several sensors with scalar values like inertial sensors, joint position encoders or
contact sensors are applied in humanoid robots. Inertial sensors like gyroscopes,
accelerometers or joint position encoders can be simulated, as their respective val-
ues are provided by the motion simulation. Contact sensors can be simulated using
data from the collision detection which provides information, if a contact has oc-
curred. Additionally contact forces can be simulated using the collision handling
module.

A common property of all of these sensors is, that properties (e.g. the acceleration)
of a simulated object are mapped to a scalar value. For the development of new sen-
sor simulations a common base class is provided. When deriving new simulations
from this base class, only the mapping from the respective property to a scalar value
must be implemented. The base class already provides commonly used post pro-
cessing functions like simulation of sensor saturation, random noise and simulated
A/D conversion which can be adapted to the newly derived sensor simulation.

6.2 Cameras

The main external sensor for robots playing soccer under the rules of the RoboCup
Humanoid League are cameras. The camera simulation uses the visualization sub-
system of MuRoSimF, which is based on OpenGL real-time rendering.

After rendering the scene from the camera’s point of view, the image can be post-
processed to reproduce some features of the camera (see Fig. 6). The image can be
blurred using a Gaussian filter and it is possible to simulate the distortion caused
by the lens of the camera. The latter is done by measuring the distortion of the real
camera’s lens using the well known Camera Calibration Toolbox for Matlab [30]
and applying the same distortion to the image. The lens is described by focal center,
focal length and a sixth order polynomial for the distortion of a view ray depending
on its direction.

As the simulated camera images are easier to process than images from real cam-
eras, the simulation’s main use is to test and debug the robot’s image processing
software under optimized conditions. The simulation of the lens distortion has
proven very helpful when debugging the software module used to calculate view
rays to detected objects.
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Fig. 6. Simulation of a camera with an aperture angle of 85 deg, mounted in the upper chest
of a humanoid robot. Left: the simulated scene. Left middle: plain image from the camera.
Right middle: same image with gaussian blur. Right: same image with lens distortion.

6.3 Testing Without External Sensors

When debugging the behavior module of a robot’s control software, it is often de-
sirable to avoid errors caused by image processing or self localization which can
mask errors of the behavior control. To do this kind of testing, it is possible to send
ground truth of position and orientation of all robots and the position of the ball
within the simulation to the robot control software.

7 Results

The simulation algorithms presented in this paper have been used successfully in
testing the control software for a 21 DOF kid-size humanoid robot used by the
authors’ team in the RoboCup 2006 and 2007 [1] competitions.

7.1 Testing of World Modeling

All decisions of the robot’s autonomous behavior are based on its knowledge of its
environment, which is provided by the world modeling module. The simulation has
been used in testing the self-localization (see Fig. 7) and ball modeling modules.
The modules’ quality is evaluated by comparing their results with the “true” values
provided by the simulation.

Using such tests several sources of error (e.g. blur of camera, changes in lighting
or jiggling of the robot) which happen in normal operation of the hardware can be
avoided. By this it is much easier to track errors in the algorithms being monitored.

7.2 Testing of Behavior Control

The simulation has been proven very useful when testing the robot’s behavior. At
first a behavior is tested by using the position of robots and ball provided by the sim-
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Fig. 7. Interactive testing of self localization. Left window: Interactive simulation. Right
window: The data provided by the self-localization software (red arrows depict particles,
dark blue arrow is pose estimate) can be compared to the robot’s position and direction in
the simulation (sole blue arrow).

Resolution: 160p * 120px Mouse: 66,118

Fig. 8. Testing the behavior for the obstacle challenge. Upper left window: interactive sim-
ulation. Lower left window: simulated camera-image. Right window: debug information
from the control software: black circles depict detected obstacles, the red curved arrow is
the currently planned collision free way to the goal.

ulation, thus avoiding any potential complications caused by the computer-vision
or world-modeling modules of the software. If this test is successful, the behavior
can be tested with simulated camera images (see Fig. 8). As the simulation provides
the possibility to repeat experiments under exactly the same circumstances debug-
ging of unexpected behavior is facilitated very much. The simulation is not limited
to single robots, but can be used to test the behavior of whole teams of robots, too
(see Fig. 9).
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Fig. 9. Testing of three player team behavior. Only the cameras for the team under consid-
eration (the robots watching the yellow goal) are simulated in this setup.

7.3 Quality of Motion Simulation

With the dynamic algorithms presented in Sect. 4 the motions of the simulated
robot are comparable to the real robot’s motions. This especially includes falling
and get-up motions (see Fig. 10 and Fig. 11) which cannot be simulated correctly

by the kinematic walking simulation.

Fig. 10. Top: Goal keeper motion on the real robot. Bottom: the same motion simulated
with the simplified dynamics algorithm.
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Fig. 11. Top: the real robot while getting up. Bottom: the same motion simulated with the
simplified dynamics algorithm.

7.4 Evaluation of New Hardware

Besides testing of software for existing hardware the simulation also can be used for
evaluating alternative robot hardware components or environments. For example,
the simulator can be used to evaluate several possible camera configurations (open-
ing angle, resolution) to meet the requirements of different tasks or environments
(as a greatly enlarged playing field for humanoid soccer in RoboCup 2008).

As the algorithms for dynamics simulation are not limited to biped robots, the sim-
ulation also has been used during the design of a new four-legged robot platform
[31]. By this it was possible to optimize the design of the robot’s neck for viewing
capabilities. First experimental gaits could be developed before the hardware was
available, thus reducing the development time.

7.5 Performance of Simulation

Due to the introduction of the newly developed collision detection (see Sect. 5),
the performance of the simulation could be improved significantly compared with
the data given in [2]. In an experimental setup the collision of a model-car (seven
bodies) with ten 21-DOF humanoid robots (each 20 bodies) (see Fig. 12) could
be simulated in real time using the simplified dynamics algorithm (with a rate of
1000Hz) on a standard laptop computer (Intel Pentium M CPU (1.86GHz), 1GB
of RAM, ATI mobility Radeon X700 graphics chip set). On the same computer
6 robots, each equipped with a camera on 20 fps, could be simulated in real-time
using kinematic walking.

To measure the absolute performance, the intersection tests in each time-step were
counted. Simulating the RoboCup field with two robots, without using the bound-
ing sphere hierarchy, requires 973 intersection tests in each time-step. With the
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Fig. 12. Test scenario: collision of a model-car with ten humanoid robots.

collision detection described in Sect. 5, depending on the configuration of the mov-
able objects, on average 178 intersection-tests between bounding spheres and 45
object-intersection tests are performed per time-step. The distribution can be seen
in Fig. 13. This shows, that on average there have to be performed only 23% of
the initial tests per time-step. Most of them are intersection tests between spheres
which are very fast to calculate. Even in the worst case only about 40% of the tests
have to be performed, compared to the collision detection presented in [2].
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Fig. 13. Left: Bounding sphere tests that have to be performed during a simulation with two
robots. Right: Object intersection tests that have to be performed in the same scenario.

8 Conclusions and Outlook

In this paper a humanoid robot simulator based on the multi-robot simulator frame-
work MuRoSimF has been presented which enables adequate motion simulation
for different needs (e.g. physical accurate simulation for testing a robot’s motions
or efficient simulation of larger teams for testing autonomous behavior, commu-
nication and cooperation) without the necessity to model the robot several times
for different simulators. A kinematic walking simulation and a simplified dynam-
ics simulation were used for testing behaviors. In addition an algorithm for full
dynamic simulation of a multi-body system was discussed. The simulator is freely
available for other researchers for non-commercial research purposes from the au-
thors.

The performance of the simulation could be highly improved compared to [2] with
the help of bounding sphere hierarchies. In that way a collision between a model
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car and 10 humanoid robots could be simulated in real-time on a standard laptop.
Real-time simulation for six robots equipped with one camera each is possible thus
allowing tests for 3-on-3 games. Several videos of humanoid robot simulations can
be found at www.dribblers.de/murosimf.

One of the central features of the underlying MuRoSimF is the decoupling of the
simulation’s data model and the algorithms used for the simulation. This allows an
easy expansion of the simulation with new algorithms. The next steps in the devel-
opment of MuRo S imF will be the integration of full multi-body-systems dynamics
and the expansion of the collision detection system to arbitrary convex shapes rep-
resented by triangle meshes.

Integration of these algorithms will help to improve the simulation towards more
physical realism. An obvious next step is validating the simulation and the models
it uses by comparing the performance of real and simulated robots. One central tool
for validation will be well defined test-sets (like the ones used for vehicle physics
in [32]). In the context of the simulator described in this paper, it will be necessary
to consider the differing levels of physical detail by providing differing test-sets for
the differing levels of detail. For validation of the physical correctness of the robot
dynamics and motor models used by means of experimental data, approaches like
presented in [33] can be used as it has been done for quadruped robots and will be
adapted to the models presented in this paper.

The hierarchically structured data model of the simulation allows easy access to
any model information used or calculated by the simulation. A plugin-interface
allowing access to this data is currently under development to allow easy integration
of user defined code for control and monitoring of the simulation. This interface
will be used to integrate a scripting engine into the simulation to allow automation
of the simulation.
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