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Abstract— In the area of mounting and spot-welding of body-
in-white, absolutely accurate robots are installed as measuring
instruments, replacing expensive coordinate and other exter-
nal measuring machines. Measurement technologies based on
industrial robots play an increasingly important role. Such
applications require highly accurate robots. Prior to deploy-
ment of highly accurate robot, however, it needs to be ensured
that the implemented robot model fits the real model. Robot
calibration can offer a significant opportunity to improve the
positioning accuracy and to cut production costs. Existing
calibration approaches fail to capture geometric and elastic
effects occurring in the robot forward kinematics. Therefore, in
this work an extended forward kinematic model incorporating
both geometric and elastic effects has been developed in which
the positioning accuracy of a manipulator, with or without
an accurate internal robot model in the robot controller, is
improved.

I. BACKGROUND AND INDUSTRIAL MOTIVATION

Automated manufacturing involves increasingly complex
systems integration problems. In order to achieve a highly
automated and precise performance of tasks, it is often
necessary to redesign the entire work-cell and analyze the
assembly process itself. The increasing task complexity of
robots has raised particularly the interest in off-line pro-
gramming. Off-line programming, however, cannot bring
advantages as long as the internal robot model does not fit the
real model. Besides, due to manufacturing competitiveness
and economic criteria, the tendency to deploy industrial
robots as measuring instruments in both automobile and
general industry is increasing. Therefore, it is aimed to install
accurate robots.

The discrepancies between the internal kinematic model
of an uncalibrated robot and the real robot model are due to
manufacturing tolerances and can be minimized by applying
robot calibration methodologies. The non-ideal geometry
of the links and joints of a manipulator causes geometric
errors or deviations that are constant in all robot config-
urations. The geometric changes affect essential deviations
in the position and orientation of the robot end effector.
These errors are systematic and can be compensated with
proper modifications of the robot model and a subsequent
calibration procedure. The second important kind of error
sources involves the nongeometric errors in joints and links
and depends on the distortion of a manipulator’s mechanical
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Fig. 1. Stages of the developed calibration approach.

components, thermal effects, and loads as well as on the
current joint angles. Elastic effects represent a particularly
important source of error not only because elastic material
deforms under stress, but also because the elasticity in
the joints plays a crucial role in the achieved positioning
accuracy.

In this paper, we propose a model-based calibration
methodology consisting of five steps, none of which is trivial:
modeling, measurement, identification, compensation, and
validation (cf. Fig. 1).

The focus of this paper lies on the modeling step; the
other steps are implicitly explained in a case study in Section
V. . To the best of our knowledge, this is the first explicit
development of an extended forward kinematic model that
accounts for both the geometric and the nongeometric ef-
fects and that can easily be applied to any other industrial
robot. Furthermore, the identifiability of both the geometric
and nongeometric parameters of a highly precise model of
an industrial robot arm with revolute joints is thoroughly
investigated. We first survey the various kinematic modeling
approaches for industrial robots with rotational joints and the
usual measurement methodologies. In Section 3, we present
the extended robot kinematic model. The parameter identi-
fication and the experimental setup are described in Section
4. In Section 5, numerical results attained by application of
the model to a typical 6-DOF manipulator are presented.

II. RELATED WORK

History of kinematic modeling of robots for the systematic
assignment of frames to each link in a multi-link robot
structure began with the famous Denavit-Hartenberg con-
vention DH. The nominal DH-model is based on several
simplifying assumptions such as perfect orthogonality of
consecutive joint axes or the absence of manufacturing
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errors in the manipulator geometry. Improving the variations
in the kinematic model arising from imprecisions in the
manufacturing process is very costly. In [1] suggestions to
consider the elastic deformations for serial robot models can
be found. A general method to model a robot with flexible
links and joints is presented in [2] . The authors argue that
link deformations are not as important as joint flexibility.
However, joint flexibility represented by a linear spring is
only considered about the joint axis of revolute joints. In [3],
the authors make use of a wrist F/T sensor and a high preci-
sion Cartesian position sensor to estimate the joint stiffness
matrix. Several researchers [4], [5] consider only geometric
deviations. Many approaches to robot calibration, however,
do not even account for the geometric effects [6], [7]. The
proposed parameter sets contain the translation parameters
along x-, y-, and z-axis and the rotation parameters about the
x-, y-, and z-axis of the homogeneous transformation matrix.
In [4], three more parameters for the joint elasticities in x,
y, z are considered.

In our approach we propose a fully extended model
incorporating the geometric parameters with two additional
distortion parameters and three parameters for the elasticities
about all axes of the relevant joints. The model is easily
understandable and and can be applied to any typical indus-
trial robot with rotational joints. In total, our model extends
the DH-convention by five additional parameters for each
link. In order to ensure reliable calibration results, we set up
a ranking of the various errors, also generally accepted by
[8] (1) joint zero positions, (2) kinematic geometry of the
robot, (3) joint elasticity, (4) other robot model parameters,
(5) robot location in the work-cell, (6) robot calibration
with respect to (w.r.t.) the workpiece, (7) tool calibration.
In this work we consider the first three error sources, but
also implicitly take into account the remaining influences.
Furthermore, we avoid the use of the implemented robot
error model for the calibration of the robot, as performed
in [5].

The calibration of the extended model is carried out by
means of an eye-in-hand system, i.e., a CCD camera as the
only needed sensor is attached to the end effector measuring
an immobile calibration object.

III. EXTENDED ROBOT KINEMATIC MODEL

Based on the three basic requirements completeness,
model continuity, and minimality, that every kinematic model
should meet , we have developed an extended parameterized
forward kinematic model for an industrial robot with rev-
olute joints. Our initial equation to be extended is based
on the DH-convention. To each link i, including the end
effector, with i ranging from 0 to n for an n-degrees-of-
freedom (DOF) manipulator, a frame Si is attached. The final
coordinate system Sn is referred to as the end effector or tool
frame. The position and orientation of a reference frame Si
w.r.t. the previous reference Si−1 is represented by a 4× 4
homogeneous matrix i−1T DH

i .
Each homogeneous transformation i−1T DH

i is a product of

Fig. 2. Denavit-Hartenberg frame assignment [9].

four basic transformations:

i−1T DH
i := R(z;oi)Tr(z;di)Tr(x;ai)R(x;αi)

=


coi −soicαi soisαi aicoi

soi coicαi −coisαi aisoi

0 sαi cαi di
0 0 0 1

 , (1)

with c. = cos(·), s. = sin(·). R represents a rotation and Tr a
translation. The four quantities oi, ai, di, αi are parameters as-
sociated with link i, i = {1, . . . ,n} and given the names joint
offset, link length, link offset and link twist. To every joint i,
the corresponding joint variable qi is associated (cf. Fig. 2).
The composition of all homogeneous transformations in this
kinematic chain represents the relationship of a given set of
joints and the position and orientation of the end effector.

In our model, the joint offset o is modified to include the
constant offset θ and the variable joint angle q, oi = θi +qi.
The elements of the matrix i−1T DH

i depend directly on the
joint configuration parameters q ∈ IRn. The matrix 0T DH

n ,
describing the position and orientation of the end effector
frame w.r.t. the base frame, is formed by multiplying all
i−1T DH

i matrices in the kinematic chain from S0 to Sn:

0Tn = 0T1 · 1T2 · . . . · n−1Tn.

Note that ·DH has been omitted for brevity. In the remainder
of this paper, the term DH is replaced by the appropriate
name of the corresponding model.

A. Geometric Issues

We overcome the limitations of the DH-convention by
defining and adding necessary parameters that account for
the variations in the kinematic model. For a robot arm
that has consecutive near parallel axes (zi and zi+1), the
angle αi is very small. The nominal value of this angle is
zero. Consecutive rotation axes, however, are neither exactly
orthogonal nor parallel (cf. Fig. 3). Consequently, two further
parameters sx,i and sy,i are included in the model. These
parameters describe distortions of the axis of motion zi
from its ideal orientation and are modeled as two rotations
performed before the joint angle rotation in the extended
kinematic model. Equation (1) is modified as follows:

i−1T DH,s
i := R(x;sx,i)R(y;sy,i)R(z;qi)R(z;θi)Tr(z;di) ·

Tr(x;ai)R(x;αi). (2)
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B. Non-Geometric Issues

In this work, amongst the non-geometric issues the focus
lies on the elasticities of the joint actuators. When apply-
ing calibration techniques, the elasticity of rotary joints,
in particular those with non-vertical rotation axes, should
be considered- especially when the accuracy requirements
are very tight. In order to model elasticity, it is necessary
to compute the static reaction forces and torques that are
induced by the payload of the robot and its own body
mass. It even might be necessary to produce varying reaction
torques through the generation of different robot poses.
Nevertheless, some robot axes such as the primary axes of
SCARA robots are not identifiable. In general, the backlash
or elasticity of rotary axes that are always parallel to the
gravitational direction cannot be determined. Depending on
the center of mass of the link, however, elasticities caused
by the remaining axes might be identifiable. Therefore, we
model elastic deformations as additional, configuration and
parameter dependent rotations about all x-, y- and z-axes.
The elastic effects in each axis depend mostly on the acting
torques. The resulting rotation angles about the three axes
of each link frame depend on (1) the spring constants kl,i
for the elasticities along the joint motor drive axes, where
l ∈ {x,y,z}, i ∈ {0, . . . ,n}, (2) the location of the center of
mass of each link, (3) the mass mi of the links, and (4) the
current joint configuration q ∈ Rn of the n actuated joint
angles. Hence, for each axis of every link frame Si, one
additional rotation angle is defined: γl,i for the rotation about
the l-axis.

We assume the relationship of the elastic deformations
and the moments acting on each joint axis to be linear:
the joint elasticity is modeled as linear spring, similarly to
the approaches in [4]. Mathematically formulated, the above
angles can be determined by γl,i = kl,inl,i, where the moment
exerted on link i about axis l is denoted as nl,i. The torque
τ on a particle with the position p in any arbitrary reference
frame can be defined as the cross product of p and the force
F acting on the particle:

τ = p×F.

The torque τ is a vector which points along the axis of the
rotation it tends to cause. It represents the magnitude of force
applied to a rotational system at a distance from the axis
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Fig. 3. Distortions in the moving axis z around the x- and y-axis.

of rotation. For the determination of the moment nl,i, we
make use of an iterative procedure in which torque nl,i is
not directly dependent on the consecutive torque exerted on
joint nl,i+1. In general, the resulting torque on each joint
axis is the sum of three partial torques, (1) the moment
caused by the local load, (2) the moment caused by the
load of all successive links, and (3) the free moment of the
consecutive joint. We establish a compact way of formulating
the calculation of the acting moments.This is particularly
helpful when the location of the center of mass of the
mechanical subsystems cannot be easily retrieved. In order
to determine the moments, the following quantities need to
be computed first:
• the mass of the mechanical subsystem composed of the

manipulator links from i to j with i < j:

mi, j =
j

∑
k=i

mk,

where mk is the mass of link k, and
• the center of mass of the mechanical subsystem w.r.t.

the base frame:

0ci, j =
1

mi, j

j

∑
k=i

mk
0ck,

where 0ck = 0ADH,s
k

kck +0 rDH,s
k .

ic j denotes the center of mass of link j w.r.t. frame Si. 0Ai
represents the rotation matrix of Si w.r.t. S0, and ir j the
positioning vector of the consecutive frames Si and S j. Note
that we use the extended forward kinematic model given in
Equation (2) for the calculation of the link frames. The torque
applied on the ith link within the base frame is computed by:

0Ni = (0ci,n− 0rDH,s
i−1 )×mi,n

0gi. (3)

0gi represents the gravitational vector and is normalized.
Finally, the acting torque in frame Si can be computed by pre-
multiplying Equation (3) by the necessary rotation matrices:

iNi = R(y;sy,i)TR(x;sx,i)T i−1A0
0Ni.

The torque nl,i at each joint axis can now be easily retrieved
by selecting the appropriate component:

nz,i = (0,0,1)iNi, ny,i = (0,1,0)iNi, nx,i = (1,0,0)iNi.

Note that we do not re-calculate the link frames based
on the already determined elastic deformations since the
model is already highly complex and nonlinear. Besides, in
simulative tests these neglected effects proved to be ignorably
small. Therefore, we consider the static, once set-up model
DH,s given in Equation (2). The computation of the static
torques enables the identification of the spring constants
kl,i. Concerning modeling accuracy, we like to hint to the
dependencies of the static torques on the given dynamic
parameters such as the mass or the center of mass of a link.
These dynamic parameters usually are not exactly accurate
and slightly differ from their real values.
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Fig. 4. An external measurement system measures the position of the
point U on the calibration object. The camera attached to the robot flange
measures the position of the same point w.r.t. the camera frame.

C. Complete Extended Forward Kinematic Model

Including the elastic deformations around the zi-, yi- and
xi-axes described by the new additional parameters γz,i, γy,i
and γx,i, the extended kinematic model DH,s formulated in
Equation (2) can be extended further to obtain the complete
extended forward kinematic model. Considering, however,
the logical order of the physical effects taking place, the
following logical chain of homogeneous transformations
seems to be adequate:
i−1T DH,s,e

i := R(x;sx,i)R(y;sy,i)R(z;qi)R(z;θi)R(z;γz,i) ·
R(y;γy,i)R(x;γx,i)Tr(z;di)Tr(x;ai)R(x;αi)

The distortions about the x- and y- axis purpose the pre-
correction of the actual link frame; thus, these two correc-
tions are placed at the very beginning of every transforma-
tion. The rotations due to the joint elasticities are dependent
on the joint configuration; hence, they are performed after
the rotation about the joint angle q in each axis. For an
efficient identification algorithm the extended model func-
tion’s Jacobian containing the partial derivatives for all model
parameters ν needs to be derived analytically. Due to the
model’s complexity this is no trivial process [10].

IV. SETUP FOR PARAMETER IDENTIFICATION

A. Adaption of the Experimental Setup

We propose an experimental setup consisting of an in-
dustrial robot, a camera system that is attached to the robot
flange, and appropriate calibration objects, as partially shown
in Fig. 4. This setup prepares for the intended use of
industrial robots as measurement tools as described in [11].

The attached camera measures the position of points
on calibration objects that are placed somewhere in the
workspace of the robot. The analogue information that is
being calculated by the extended model DH,s,e is retrieved
from the composition of all homogeneous transformations
in the kinematic chain of the robot, the subsequent trans-
formation from the flange frame Sn into the camera frame
Sc and the transformation from the camera frame Sc into a
measured point U . The calculated positioning vector of point
U is denoted as uDH,s,e(ν ,q j) and computed as follows:

ûDH,s,e(ν ,q j) = 0T DH,s,e
n (ν ,q j)nTc

cû,

where ν represents the parameter set and q the joint config-
uration. Note that ûDH,s,e, cû ∈ R4:

ûDH,s,e =
(

uDH,s,e

1

)
, cû =

(cu
1

)
.

cu represents the positioning vector of point U directly
measured by the camera. The analog measured information
of uDH,s,e(ν ,q j) is represented by um

j .

B. Problem Formulation

The nonlinear least squares regression function is formu-
lated by:

min
ν

nm

∑
j=1

ρ j
∥∥um

j −uDH,s,e(ν ,q j)
∥∥2

2 ,

where nm stands for the number of used different joint config-
urations. The weights ρ j > 0 may account for measurement
errors if chosen different to ρ j = 1.

A 1D calibration is applied when only the measured
distance dm between the robot base and the robot flange is
available. The higher the number of calibrated dimensions
the higher the amount of information of each measurement.
Consequently, the results are more accurate and easier to
retrieve.

The feasibility of multi-dimensional calibration clearly
depends on both the used metrology system and the ex-
perimental setup. Obviously, a multi-dimensional calibration
is more beneficial. The most important advantage is that
the calibration of n dimensions requires only 1

n of the
required number of measurements for the corresponding 1D
calibration.

In most experimental setups, either a 6D or a 3D cali-
bration is performed. The necessary information is usually
provided by an external measurement system such as a laser
tracker. Besides the orientation and position of the robot
flange, further information might be available such that even
more than six dimensions can be considered.

C. Initial Estimates and Boundaries

A reliable solution of the nonlinear least squares regression
function requires “good” starting values for the identification
parameters. According to [4] the real positioning deviations
cover a quite small range of ± 1 cm at maximum. Therefore,
we use as starting values for the standard DH-parameters
the provided nominal values by the manufacturer. For all
other novel additional parameters such as the distortions or
elastic deformations, the starting values are set to zero as
these parameters are assumed not to exist in an ideal model.
Besides, we set neither lower nor upper boundaries on the
angular parameters. Rather, it is necessary to set realistic
boundaries on the occurring length deviations of the links
since the numerical optimization method tends to compensate
the positioning deviations by means of length modifications
of the links [4].
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D. Sequence of Identification Steps

The parameters of the extended kinematic model cannot
be calibrated at once. Instead, the influence of every single
parameter regarding the positioning accuracy should be taken
into account. In simulative tests, it could be observed that
reliable results can be retrieved by the following sequence
of identification steps:

1) The offsets θi of the joint zero positions are calibrated
in a first step and then used as constants afterwards.

2) The remaining angular parameters di,ai,αi,sx,i, and sy,i
are calibrated in a separate sequence. Their values are
used as constants in the subsequent steps.

3) The elastic deformations kx,i,ky,i, and kz,i are deter-
mined in the third step.

4) Finally, all parameters are released for re-identification.
A simultaneous calibration of all parameters in a single step
would neither re-identify the position of the points on the
calibration objects nor the model parameters.

V. CASE STUDY

The proposed model and parameter identification method-
ology was applied to the KUKA KR 125/2, an industrial
robot with six revolute joints. The calibration objects, visu-
alized in Fig. 5, consist of two sides with points marked in
fixed distances of 25 mm.

The mounted CCD camera completes the kinematic chain
from the robot base to the measured points on the calibration
objects and can be considered as 8th link connecting the
robot and the calibration objects. It yields the positions of
the points on the calibration objects. During the recording
of one image, the robot stands still. The camera records
on every side six images, i.e., each of the three blocks is
captured in two different joint configurations. We assume the
elastic deformations to be most important in the first three
joints, particularly in the link arm and arm. We ignore any
possibly elastic deformations caused by the wrist, consisting
of joints 4, 5, and 6. Hence, nine nongeometric parameters
are assigned to the elastic errors. The number of geometric
parameters takes the value 36. For our simulative tests, the
parameters of the camera frame are assumed to be quite
exact. Therefore, in total 45 parameters are released for the

Fig. 5. Complete experimental setup.

Step Norm of residual Iterations
oi 8.4207EE-7 m 10

di,ai,αi,sx,i,sy,i 1.3356EE-8 m 51
oi,di,ai,αi,sx,i,sy,i 5.6802EE-16 m 61

TABLE II
COURSE OF OPTIMIZATION.

identification. For the robot specific technical data such as
the DH- and the dynamic parameters or crucial practical
questions see [10]. The used parameter deviations are based
on the experiences with the approximate changes of the
angular and length parameters of a typical KUKA 6-DOF
industrial robot with a payload of 125 kg, gained by [4].

A. Numerical Results

The calibration procedure was validated with simulatively
generated data. Our tests were conducted with different
parameter sets. Also the existence of input noise on the
camera measurements was considered. In Table I we present
the real parameter values, the initial estimates, and the
identified parameter values of one exemplary calibration
of the extended model DH,s. The identification procedure
was performed with the steps given in Table II. The plots
in Fig. 6 indicate the real positioning deviations with the
standard model, the positioning deviations obtained after the
parameter identification of the extended model DH,s, and
the positioning deviations obtained for the identification of
the complete extended model DH,s,e with initial positioning
deviations of about 2e-2 m.

In all tests, the end positions on the calibration
objects were hit with the desired accuracy in the
[1EE-9 m, 1EE-4 m] range. This accuracy range was
achieved although the initial positioning deviations prior
to the parameter identification was lying within the
[7EE-3 m, 2EE-2 m] range. The results are also highly pre-
cise for joint configurations that are not considered in the
calibration process. Note that experimental validation is of
major importance and therefore still needs to be conducted.

VI. CONCLUSIONS

In this paper we established the theoretical and experi-
mental basis for the deployment of industrial robots with
revolute joints as measuring instruments taking over the
role of fast and reliable warning systems. We conducted a
feasibility study on achieving absolute positioning accuracy
through static calibration. A parameterized extended forward
kinematic model incorporating both geometric and elastic
effects was developed and implemented. Furthermore, an
appropriate procedure for the optimal and quick solution of
the nonlinear least squares occurring in the calibration of the
model parameters was developed. By means of simulatively
generated data, the developed calibration procedure was
applied to a typical 6-DOF industrial robot. We were able to
show that the proposed model and procedure allows for the
correct identification of the parameters even for joint configu-
rations that are not considered during the calibration process.
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Real Initial Identified Real Initial Identified Real Initial Identified
values estimates values values estimates values values estimates values

o1 0.002 0 2.1231EE-3 d1 0.8651 0.865 0.8651 sx,1 1EE-4 0 1.0001EE-4
o2 0 0 -3.2701EE-8 d2 0 0 2.5591EE-5 sx,2 5EE-4 0 2.6182EE-4
o3 1.572 1.5708 1.5724 d3 0 0 2.4965EE-5 sx,3 2EE-4 0 1.0182EE-4
o4 0 0 -2.1644EE-4 d4 1 1 1 sx,4 2EE-4 0 0
o5 0.004 0 4.4162EE-3 d5 0 0 2.1068EE-8 sx,5 1EE-4 0 4.8172EE-5
o6 3.1416 3.1416 3.1416 d6 0.20998 0.21 0.20998 sx,6 1EE-4 0 5.1841EE-5
a1 0.41 0.41 0.41 α1 1.5708 1.5708 1.5711 sy,1 0.0002 0 1.9995EE-4
a2 1 1 1 α2 0 0 9.998EE-5 sy,2 3EE-4 0 1.774EE-4
a3 4.509EE-2 0.045 4.509EE-2 α3 1.5708 1.5708 1.5709 sy,3 0.0001 0 9.9943EE-5
a4 0 0 2.4181EE-8 α4 -1.5708 -1.5708 -1.5707 sy,4 2EE-4 0 -1.7329EE-4
a5 0 0 8.111EE-9 α5 1.5708 1.5708 1.5708 sy,5 4EE-4 0 1.8346EE-4
a6 0 0 -4.3562EE-9 α6 0 0 3.025EE-8 sy,6 2EE-4 0 -2.1617EE-4

TABLE I
THE ROTATION ANGLES ARE EXPRESSED IN RAD, AND THE LENGTH PARAMETERS IN M.
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Fig. 6. From left to right: Positioning deviations obtained by the standard DH- model, after identification of the extended model DH,s, and after
identification of the complete extended model DH,s,e.

Moreover, it could be observed that highly accurate results
are achievable with the proposed model and experimental
setup.
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