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Abstract. Efficient and powerful methods are needed to overcome the inherent

difficulties in the numerical solution of many simulation-based engineering design

problems. Typically, expensive simulation codes are included as black-box function

generators; therefore, gradient information that is required by mathematical op-

timization methods is entirely unavailable. Furthermore, the simulation code may

contain iterative or heuristic methods, low-order approximations of tabular data,

or other numerical methods which contribute noise to the objective function. This

further rules out the application of Newton-type or other gradient-based methods

that use traditional finite difference approximations. In addition, if the optimization

formulation includes integer variables the complexity grows even further. In this

paper we consider three different modeling approaches for a mixed-integer nonlinear

optimization problem taken from a set of water resources benchmarking problems.

Within this context, we compare the performance of a genetic algorithm, the implicit

filtering algorithm, and a branch-and-bound approach that uses sequential surrogate

functions. We show that the surrogate approach can greatly improve computational

efficiency while locating a comparable, sometimes better, design point than the other

approaches.

Keywords: Mixed-integer nonlinear optimization, Computational engineering, Si-

mulation-based optimization, Groundwater management, Surrogate optimization
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1. Introduction and motivation

The focus of this work is the formulation of simulation-based optimal

design problems in the context of water resources management. A con-

siderable challenge in combining simulations and optimization for this

scenario is that widely-used subsurface flow simulators, e.g., FEFLOW

[15] and MODFLOW [36], are not designed for the specific needs of

classical mathematical optimization methods. The development of new,

closely tailored simulation and optimization codes is not the method

of choice given the enormous effort required to provide such a package.

Also, simulation packages are typically of a size or type (e.g., only closed

source) such that automatic differentiation methods are not applicable.

However, the demand for efficient handling of water resources problems

will only be reached by applying optimization methods, as pointed out

in [38], which is a common approach in other fields.

We consider two applications proposed in the literature as bench-

mark problems [33], a water supply problem and a hydraulic capture

problem. Both require determining the appropriate number of wells,

well locations, and pumping rates in a well-field to meet a manager’s

goal at a minimum cost. We are interested in how changes in the mod-

eling of the optimization problem can change the range of applicable

minimization methods and how the results can differ. The cost model

considered here depends on the number of wells in the final design

by including a fixed installation cost for each well in addition to an

operational cost over the simulation period. Inclusion of fixed costs

leads to a discontinuous objective function, and one must consider how

to add or remove wells from the design space. The problems would

naturally be formulated as mixed-integer, simulation-based, nonlinear

programs, as it is mentioned in e.g., [8]. For an overview of applicable
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techniques see [23]. In the context of water resources, a method based

on outer approximation for handling simulation-based constraints in

the context of subsurface flow is described in [39].

These benchmark examples are part of a challenging class of prob-

lems that arise across computational engineering disciplines. In [35],

these types of problems are studied with classical gradient-based meth-

ods for nonlinear programming and optimal control theory approaches.

In particular, the coupling of numerical simulation and optimization

yields an objective function that can be nonconvex, nondifferentiable,

discontinuous, and contain undesirable local minima. The feasible re-

gion may also be disconnected. The black-box formulation and lack of

gradient information implies that algorithms which use only objective

function values to guide the minimization are a natural choice for this

class of problems.

The computational cost of traditional mixed-integer approaches com-

bined with expensive simulations and lack of gradient information is the

motivation to consider alternate formulations. We apply three different

optimization methods to the resulting problem formulations, chosen as

subset of the available direct sampling, random sampling, and surrogate

optimization approaches frequently used in the optimization commu-

nity. None of the optimization methods need any additional information

other than function values for minimization.

For the first approach, we introduce a mixed-integer problem for-

mulation combined with an iterative stochastic modeling technique

to build surrogate functions that approximate the simulation-based

parts of the objective function. With this procedure, we can then use

a branch-and-bound technique to solve the mixed-integer problem in

contrast to methods working directly on the simulation results, which

impedes relaxation of integer variables. For the second approach, we by-
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pass the number of wells as a decision variable by defining an inactive-

well threshold, and in a third approach proposed in the literature [37],

we use penalty coefficients to transform the mixed-integer problem into

a continuous one. For the two above formulations, we use the implicit

filtering algorithm [22] to solve the resulting optimization problem.

We compare the above approaches to results obtained with a genetic

algorithm (GA), since GAs have gained popularity in the optimal de-

sign community and have been successfully applied in the groundwater

engineering community, e.g., [27, 7, 31].

We describe the optimization application in §2 with details of the

objective function and constraint in §3. The mixed-integer formulation

applied to an approach based on sequential surrogate functions is given

in §4, and the reference formulations from the literature are given in §5.

We present promising numerical results on the benchmarking problems

in §6. Finally, in §7 we discuss the results and point the way towards

improvement and future work.

2. The community problems

The so-called community problems (CPs) posed in [33] were developed

after an extensive literature search and serve as a suite of bench-

marking applications for both the optimization and water management

communities. The CPs consist of models, physical domains, objective

functions, and constraints resulting in thirty design applications. In

[34], there is a complete set of data to define the physical domains which

range from simple homogeneous, confined aquifers to complicated, un-

confined aquifers with hydraulic conductivities that are represented

using correlated random fields corresponding to typical values observed
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in nature. The CPs provide an opportunity to apply recent advances

in subsurface simulators, numerical methods, optimization algorithms,

and computing capabilities to better understand the solutions to these

applications.

2.1. Model problems

We consider two of the community problems, a well-field design problem

and a hydraulic capture problem. The applications will be defined in

terms of an objective function that measures the cost to install and

operate a set of wells and constraints that define the goal of each

application. These are described in detail in section 3 below. For both

problems, the decision variables are the number of wells, n, the pumping

rates, {Qi}n
i=1, and well locations, {(xi, yi)}n

i=1.

The objective of the well-field design problem is to supply a specified

amount of water while minimizing the cost to install and operate the set

of wells. We consider the problem in two hydrological settings described

in [33]. The first is a homogeneous confined aquifer, while the second is a

homogeneous, unconfined aquifer, which leads to additional challenges

and complications as is pointed out in [29].

The objective of the hydraulic capture application is to prevent an

initial contaminant plume from spreading by using wells to control

the direction of flow. Several approaches exist to control the migration

of a contaminant plume including particle tracking advective control,

flow based gradient control, and constraining a target concentration

contour. For this work, we use the gradient control approach, which

uses only flow information since it is the most straightforward to im-

plement and is common in practice [1]. To capture the plume with

the gradient control method, we impose constraints on hydraulic head
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differences at certain points around the plume. The hydrological setting

for the hydraulic capture problem is the same homogeneous, unconfined

aquifer used in the well-field problem. A detailed description about

the groundwater flow model and hydrological settings can be found in

[34, 19, 20, 18].

2.2. The Simulation environment

To simulate groundwater flow, we use the U.S. Geological Survey code,

MODFLOW [36]. MODFLOW is a block-centered finite difference code

that is well-supported and widely used. In this context, MODFLOW is

the black box simulator that provides the system state (hydraulic head

values) of for a certain system design. At the end of the simulated time

horizon, the hydraulic heads at installed wells and at monitoring wells

are used to calculate the objective function and the constraints.

3. Objective function and constraints

If we take a closer look at the formulation of the underlying design

problem, we see that a mixed-integer optimization application naturally

arises. This can be viewed not only by the total number of wells installed

in the system, which is an integer, but also in determining which well is

to be de-installed in order to reduce the number of wells in the design.

Such approaches were earlier proposed in the context of subsurface flow

problems by [41, 47, 33]. For the sake of comparability to earlier work

on the community problems, we use the notation proposed by Mayer

[33] and also applied by Fowler [19, 20].
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Part of this framework is that the general optimization problem is

formulated as

min
z∈Ωz

f(z),

where z = (u,w), Ωw is the feasible domain for the system control

parameter w, and Ωu is the feasible domain for the system state u as

simulation output. It follows Ωz = {(w, u)|u ∈ Ωu, w ∈ Ωw}.
We recognize a division between different types of infeasibility, deter-

mined by Ωw and Ωu, since two situations can arise based on simulation

results for a set of parameters w ∈ Ωw. First, if the simulation fails to re-

turn reasonable (or any) output then the state u can not be determined.

The output from these simulation runs can not be used quantitatively

by an optimization approach, only as qualitative information that the

parameter set leads to a infeasible system state u. The second case is

that simulation returns a reasonable output for u, but a u that is not

element of Ωu, and therefore not feasible.

Kelley [5] described the simulation based constraints bounding of

Ωw as hidden constraints on the control parameter w. If only w can

be varied by the user, then u is a function of w defined by the black-

box simulator, thus the behavior of w is not understood a priori. The

difference between the two cases becomes important if we take a closer

look at the optimization methods that can be applied for such problems.

If constraints can be included explicitly, then the returned system state

u becomes additional information. To get the most use out of a small

number of objective function evaluations, any information obtained

from a simulation run should be used in order to reduce the overall

computational effort.

We proceed by defining u,w, f,Ωu, and Ωw in terms of the water

resources applications.
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3.1. Decision variables

In our case the relevant system state u is provided by MODFLOW as

hydraulic heads h at specified locations in the physical domain with

u = h, and h ∈ IRn+2M . Specifically, hi, i = 1, ..., n are the evaluated

hydraulic heads at the position of all installed wells. The hydraulic

heads at 2M , monitoring positions hi, i = (n + 1), ..., (n + 2M), with

M ∈ IN, are used to define additional hydraulic gradient constraints for

the hydraulic capture application.

The decision variables are given by the vector of the control parame-

ters w, but in a slightly different way than they are used in the reference

approach from [19]. The position of each installed well is given by its x

and y position on the domain, the operating rate of each well is given

by Q, and the total number of wells in the system is n. In the reference

formulation, the number of potential wells in the design is fixed and the

decision of which wells are installed or de-installed is directly connected

to the operation rate Q of each well. We will give more details about

the reference approach in the subsequent sections. To conform to the

numerical experiments that are made not only in [19] but also in [20] we

introduce a switching vector s, with s ∈ {0, 1}n, that controls whether

or a not a well is installed and ultimately included in the simulation.

It follows that our optimization variables are given by w = (s, x, y, Q),

with Ωw ⊂ {{0, 1}n × IRn × IRn × IRn}. The constraints formulated

in section 3.3 will define the boundary of the feasible domain for w

explicitly and implicitly by constraints on the system state u. Further

we can describe the system state h that is returned by the simulation

as a unknown function of the optimization variables, h = h(s, x, y, Q).

Now the optimization problem is completely reduced to a problem of
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s, x, y, and Q.

3.2. Objective function

The above definition of the optimization variables leads to a slightly

different objective function in comparison to the proposed formulation

of [33]. We define the total cost of a system design as a sum of the

installation cost, f c, and the operational cost, fo, given by

f(h, s, x, y, Q) =
n∑

i=1

sic0d
b0
i +

∑

Qi<0.0

sic1|1.5Qi|b1(zgs − hmin)b2

︸ ︷︷ ︸
fc

(1)

+
∫ tf

0




n∑

i,Qi≤0

sic2Qi(hi − zgs) +
n∑

i,Qi≥0

sic3Qi


 dt

︸ ︷︷ ︸
fo

,

where the total number of possible wells is given by n. Note that Q < 0

m3/s for extraction wells and Q > 0 m3/s for injection wells. In (1),

the first term accounts for drilling and installing each well and the

second term is an additional cost for an extraction well pump. In fo

the first term accounts for the cost to lift the water to surface elevation

while the second term accounts for operation of the injection wells,

which are assumed to operate under gravity feed. In (1), if s = 1 then

the objective function matches the one in the reference approach and

an alternate modeling approach for removing a possible well from the

design space must be applied. The values for the constants used in (1)

are given in table 1.

As pointed out above, f can be divided into two parts, one depending

explicitly on the optimization variables,

fex(s, x, y, Q) = f c +
∫ tf

0




n∑

i,Qi≥0

sic3Qi


 dt, (2)
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and one depending implicitly on the optimization variables given by,

f im(h, s, x, y,Q) =
∫ tf

0




n∑

i,Qi≤0

sic2Qi(hi − zgs)


 dt. (3)

Note that f im depends on the simulation output via h and can be

highly nonlinear due to the subsurface flow simulator. This term also

leads us to a potentially noisy, black-box problem as mentioned in the

introduction.

Table 1

3.3. Constraints

Constraints are enforced during the optimization so that the wells are

located appropriately in the physical domain and are operating at rea-

sonable levels. The location constraints and well capacities are defined

by

(smin, xmin, ymin, Qmin) ≤ (si, xi, yi, Qi) ≤ (smax, xmax, ymax, Qmax).

(4)

We also require that two wells can not be placed at the same grid cell,

min(max(|xi − xj |, |yi − yj |)) ≥ sisjδ, ∀ i, j = 1, ..., n, i < j, (5)

where xi = int(xi/δ), yi = int(yi/δ) is a grid cell identifier along the

x and the y axes from MODFLOW. We also bound the net pumping

rate. For the well-field design problem the objective is to meet a spec-

ified demand of water and in the hydraulic capturing application the

maximal net rate is bounded,

Qmax
T ≤ QT =

n∑

i=1

siQi ≤ Qmin
T . (6)

Besides these explicit constraints on the the variables, we have implicit

constraints for the system state h. For both applications, we bound
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hydraulic head by,

hmin ≤ hi ≤ hmax, i = 1, ..., n, (7)

to control the water level in the aquifer. In addition, for the hydraulic

capture problem, we bound the hydraulic gradient to control the mi-

gration of the plume. This is given by

hi − hi+M ≥ d, i = n + j, j = 1, ..., M. (8)

where i is the hydraulic head inside the plume and i+M is a neighbor

just outside the allowed plume boundary. The constraint values are

given in the table below. The constraints (4) to (6) bound the feasible

design space Ωw, (7), and (8) the feasible system states domain Ωu.

Table 2

4. Surrogate optimization for mixed-integer problems

Solving mixed-integer nonlinear problems is a challenging task, even

when the objective is described completely analytically, because the

process combines difficulties from both continuous and discrete opti-

mization. A short overview of optimization methods for problems with

integer and real valued variables is given in [4].

The first approach uses the objective function and the constraints

as defined above, leading to a mixed integer optimization problem. The

integer variable s is handled explicitly as an optimization variable. In

[2] problems of this kind are defined as mixed variable problems. In

this work, the use of a subsurface flow simulation impedes a relaxable

formulation, which according to [4], would be the first step to apply a

mixed-integer nonlinear programming method. This is the motivation

to use a surrogate approach.
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4.1. Sequential surrogate optimization

The idea behind sequential surrogate optimization for simulation-based

and constrained mixed-integer problems is to approximate and replace

the black-box parts of the objective function and the constraints of

the original problem by a stochastic surrogate. The idea is based on

approximating the whole objective function using design and analysis

of computer experiments (DACE) [42]. The resulting surrogate problem

consists of the analytic part given by the original objective function

and an approximated surrogate function replacing the implicitly given,

simulation-based part. Additionally, potential underlying noise induced

by the numerical simulations is smoothed out. The resulting approx-

imated problem leads to relaxable integer variables of the original

problem and allows for gradient based mixed-integer nonlinear pro-

gramming methods.

To build the surrogate, the simulation-based components of the prob-

lem are approximated by a multivariate DACE model (f̂ im T , ĝim T )T .

Under the assumption of a real-valued s ∈ [0, 1]n, these surrogate

satisfies the interpolation constraints

 f̂ im(w(j))

ĝim(w(j))


 =


 f im(w(j))

gim(w(j))


 , (9)

where w(j) = (s(j), Q(j), x(j), y(j)), and gim stands for the implicit

constraints given by (7) to (8). Here gim is part of a vector

g =


 gex

gim


 ,

of functions that summarizes all non-box constraints, (5 to 8) directly

transformed into g(s, x, y,Q) ≥ 0. As proposed in [42] we assume a

DACE model (f̂ im, ĝim) with constant mean, and a covariance bas-

ing on the product R of one-dimensional correlations functions. The
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DACE-models here are evaluated by the MATLAB Kriging Toolbox

of Lophaven et.al. [30], and for more details in the theory of computer

experiments, please refer to [28]. By using a surrogate approach, we get

a completely analytic mixed-integer, nonlinear programming problem,

min f̂ = fex + f̂ im, s.t. ĝ =


 gex

ĝim


 ≥ 0 (10)

with the variables (s, x, y, Q) bounded by the box-constraint (4). The

new problem no longer depends on simulation evaluations and under

the assumption that the DACE-model reflects the major characteristics

of the original problem, a minimum of (10) is a promising system design

for the original problem. To avoid the influence of different sizes and

ranges of the variables, the variable domain was scaled in all dimension

to the interval [0, 1].

As the first step of a sequential surrogate optimization procedure

only a few points are used to build a DACE-model for the first surro-

gate problem. The sequential update starts by using additional basis

points obtained from optimization results to improve the quality of the

surrogate functions. In [43] different sequential update strategies are

discussed, but in contrast to the update strategies discussed therein,

this approach uses convergence to previously determined points as cri-

teria to switch from searching for the point that minimizes the surrogate

to searching for the point that maximizes the mean square error (MSE)

of the surrogate function. The MSE information is a valuable byproduct

from using the stochastic modeling approach DACE to determine a

surrogate as described in [28] in detail. The optimization on the result-

ing surrogate problems during each iteration is performed by a basic

Branch-and-Bound algorithm [23, 17] to guarantee an integer-valued s

of new candidates, so that these candidates can be evaluated by the

original objective function through simulation. The resulting nonlinear
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programming subproblems generated by the Branch-and-Bound algo-

rithm are solved with a sequential quadratic programming code, in our

case with SNOPT [21]. This procedure was also used successfully for

mixed-integer black-box optimization problems in [25, 24].

The key feature of such surrogate optimization approaches is that

the optimization process in each iteration dies not run in a loop with the

numerical simulation. The emerging computational costs to determine

new candidates to be simulated can be neglected if the costs to run the

underlying simulation are taken into account. In addition to the DACE-

Toolbox, SNOPT and MODFLOW are also called from MATLAB,

where the complete sequential update procedure is implemented.

5. Reference approaches

The following two optimization formulations use the objective func-

tion directly as defined in (1), but minimization is subject only to

the real-valued optimization variables. The constraints are included

by a penalty function value fpen. If a design set is not feasible with

respect to the explicit constraints (5) or (6) or if no simulation run is

obtained, then fpen is used. For this work, fpen is the function value of

the initial design set plus 20%. The two reference approaches differ in

how values for s are assigned. Implicit filtering (IF), described below,

was used for the inactive-well threshold approach as well as for the

penalty coefficient approach.
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5.1. Inactive-well threshold

The reference approach from [19] to determine the number of wells in

the design is to set an inactive-well threshold. If a well rate becomes

low enough, the well is removed from the design space thereby avoiding

any integer variables. For this work

si =





0 for |Qi| < 10−6m3/s,

1 otherwise.
(11)

This means that the well rate is set to zero and well i is not included in

the installation cost. Incorporating (11) leads to large discontinuities

in the minimization landscape and a drastic decrease in cost once the

well rate falls into this region of the design space, but s is removed

from the optimization problem and only continuous variables have to

be taken into account.

5.2. Multiplicative Penalty Coefficients

To reformulate a mixed-integer water management application as a con-

tinuous nonlinear program, the authors of [37] introduce a polynomial

penalty coefficient method (PC). Here the penalty coefficient β is given

by

βi = Qi/(Qi + m), (12)

where 0 < m << 1 is a small number. This penalty term is then

multiplied by the fixed costs for each well in f c. Note that in (12), if

Qi = 0, then βi = 0 and the fixed cost for well i does not contribute to

the objective function at all. For this work we used m = 10−6.
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5.3. Optimization by implicit filtering

Implicit filtering (IF) was used for the Penalty Coefficient approach

as well as for the Inactive-well threshold approach. It is a projected

quasi-Newton method that uses a sequence of finite difference gradients

[22]. The difference increment is reduced as the optimization progresses

to take advantage of the fast convergence of quasi-Newton methods

near a local minimum. Because IF relies on finite difference gradients,

only function values are needed to guide the minimization. For this

work, we use a FORTRAN implementation called IFFCO (Implicit

Filtering For Constrained Optimization), with the symmetric rank one

quasi-Newton update [6]. We used the default optimization parameter

settings. There are several convergence theorems for implicit filtering,

which was particularly designed for the optimization of noisy functions,

and indeed IFFCO has been successfully applied to other groundwater

management problems [19, 20, 3].

5.4. A genetic algorithm for comparison

For comparison purposes, we also use a GA for both applications, since

GAs are popular derivative-free approaches for black-box optimization

problems. For this work we use the non-dominated sorting genetic al-

gorithm (NSGA-II). The NSGA-II has been shown to perform well in

comparison to a number of other genetic algorithms for multi-objective

optimization problems [14, 48]. As its name suggests, NSGA-II is a

multi-objective genetic algorithm based on non-dominated sorting [14]

that includes elitism and does not require a sharing parameter for

maintaining solution diversity in multi-objective problems. Although
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it is a multi-objective optimizer, we use the single-objective problem

formulation introduced as equation (1) in order to facilitate comparison

with the other optimization methods below.

As it is typical for GAs, NSGA-II uses a binary tournament operator

for selection. It includes crossover and mutation operators for both

real and binary-coded variables and uses simulated binary crossover

for real-coded problems [11, 14]. Box constraints, like equation (4), are

automatically enforced in the generation of candidate design variables,

while constraints such as equations (5) to (8) must be reformulated

as non-negative functions g(s, x, y, Q) ≥ 0. These are then enforced

through the GA tournament selection process in a straightforward

manner without the use of penalty parameters [9, 12, 20].

Parameters like the population size, number of generations, as well

as the probabilities and distribution indexes chosen for the crossover

and mutation operators effect the performance of a GA [40, 33]. The

population size used in the numerical experiments, 30, was the lower

bound of the suggested range, while a maximum of 30 generations

were allowed. The crossover and mutation operator parameters were

chosen based on the performance of NSGA-II for a multi-objective test

problem with several local Pareto-optimal fronts [13]. We performed

a limited number of experiments with other crossover and mutation

operator parameter settings, but found no combination that gave better

performance across the test problems considered here. The values used

are listed in Table 3. NSGA-II is implemented in C and is available for

downloading from [10].

Table 3

Lastly, we note that the GA formulation differs in its treatment of

the integer variable, s, in some respects. For the hydraulic capture prob-

lem, a switch si ∈ {0, 1} is used to determine if well i was active or not.
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In the well-field design problem, the active-inactive well information in

s is collapsed into a single integer variable, p in the range 1, . . . , pmax.

A value of p ∈ 1, . . . , n corresponds to shutting off the associated well,

while a value greater than n means all wells are active.

6. Numerical Results

All of the above approaches provided feasible solutions with expected

characteristics in the numerical experiments. The number of active

variables is bounded by the number of maximal installed wells, which

is four for the hydraulic capturing problem, and six for both well-field

design problems. In the well-field numerical experiments, pmax is set

to 8 for n = 6 in the GA formulation. The resulting unequal ranges

of p associated with five well designs and six well designs skews the

GA’s formulation to favor five-well designs. This reflects a heuristic

that installing the minimum number of wells is likely to be cheaper

given the relative magnitudes of the installation and operational costs.

In addition, the designs for both problems were also subject to the

inactive-well threshold given in (11), regardless of the value of s.

For all benchmark examples, the number of installed wells is mini-

mized and the results are comparable to those found in the literature.

The solutions differ only in the real-valued variables which are of minor

influence within the feasible domain for the total objective function

value. Table IV shows the cost of the well design at the initial iter-

ate and at the final design for each optimization model and for each

application. The number of calls to the simulator is used to measure

performance and is in parentheses. We include some general observa-
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tions here and give more details for each application in the subsequent

sections.

Table 4

The surrogate optimization method found system designs using the

smallest number of simulation calls for the all three applications. How-

ever, the increasing number of points for interpolation and the com-

putational time during each iteration should be considered, especially

if many knots of the branch-and-bound tree have to be explored. We

also observed in further numerical experiments that no improvement

was made by increasing the stopping criteria to be larger than 150

simulation calls.

Two interesting observations can be seen with the PC and the

inactive-well threshold formulations for the well-field design problems

as solved with IFFCO. The penalty formulation originally applied by

McKinney in [37] is not able to handle positive and negative pumping

rates for a well, because the penalty coefficient becomes negative and

drives the iterates of the optimization into a bad direction. IFFCO had

nearly the same convergence pattern for both formulations because the

stencil landed on an exactly zero well rate. Secondly, if the bounds

on the pumping rate are varied so that 0 is not the middle of the

range of possible pumping rates, the PC combined with IFFCO, is not

able to find a solution where a well is de-installed from the design, in

contrast to the threshold method which turns a well off. Additionally

we tried to apply the “Pseudo Integer” (PI) approach from [37], but

after extensive parameter testing not one optimization run could be

performed that lead to a decrease of the objective function. In the

reference PI approach of McKinney only switches for a larger number

of fixed wells were included as decision variables, so that the resulting
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optimization problem was of a different characteristic than the ones

considered here.

We used simulation calls as a measure for a comparison between the

methods, but clearly parallel runs would have reduced the wall clock

times. The GA would have found, in almost all cases, its solution first,

but the objective function values of the GA are the highest compared

to the other approaches.

Feasibility is a challenge for these applications and adds complexity

in choosing an efficient optimization algorithm. Feasibility is not known

until the simulation is complete and therefore computational effort is

wasted on infeasible designs. The explicit inclusion of the constraints of

the flow direction by surrogate functions could be a second advantage

besides the direct handling of integer variables to explain the small

number of simulation runs required by the surrogate approach.

As mentioned above we only provide numerical results for one initial

system design, which was determined from an engineering perspective.

In particular, we observed sensitivity to initial system designs for the

unconfined aquifer problems. The GA was unable to find an optimal

solution for a wide range of algorithmic parameters including popula-

tion sizes and the number of generations, when the feasible reference

system design was not included in the initial population. To evaluate

the GA’s sensitivity for the hydraulic capture problem, we considered

10 different random number seeds for the initial population. With the

feasible reference design included in the initial population, the GA

found optimal solutions in 9 out of 10 cases. Without inclusion of the

reference design, the GA found suboptimal solutions with 9 out of 10

different random number seeds. This sensitivity was consistent with

the fact that a small population size was used. For a larger population
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size of 100, the GA found an optimal solution after 30 generations

independent of the random number seed.

However, we should note that the results for each of the optimizers

are sensitive to both the initial design and the technique for handling

infeasible points due to constraint violation.

Figure 1

6.1. Well-field design problem

For the well-field design problem all methods found solution where

the number of wells is reduced to five for both hydrological settings. To

fulfill the constraints on the total extraction rate (6), Q = −0.0064m3/s

for each of the five remaining wells.

Table 5

In Figure 1 and Figure 2 we see that all optimization methods reduce

the objective function value by the installation costs of one well in

less than 20 optimization iterations. But afterward, as is given in the

subfigures, the rate of improvement varies for the different approaches.

The characteristic is similar for both well-field problems.

Figure 2

Figure 1d and 2d illustrate the final well designs for each approach

for the confined and unconfined aquifers. The final positions of the

wells are nearly the same with the exception of the wells from the GA

solution. Tables 5 and 6 give the specific points found and explains why

the total costs barely differ.

Table 6
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6.2. Hydraulic capture problem

Figure 3

The hydraulic capture example is the most challenging of this set

of problems. The unconfined hydrological setting is sensitive to the

positions of the wells with respect to the drawdown constraint (7),

and there is the additional capture constraint (8) on the flow direction

at the monitoring positions. The capture constraints are particularly

sensitive to variations of the well positions within the catchment area,

especially if only one well is placed on the whole domain. With only

one well in the design, if the well moves outside the capture zone, the

head gradient constraints are violated. Feasibility is a major difficulty

to overcome, even in generating an initial feasible solutions to start the

optimization. As in the two well-field problems the solution with the

different optimization approaches are clustered around one location.

Table 7

7. Discussion and conclusion

All of the optimization methods used here are designed for black-box

problems yet are not limited to water resource applications. Moreover,

the benchmark set provides not only a framework for optimization on

subsurface flow problems, but also serves as a set of problems for bench-

marking any simulation-based optimization method. In particular, this

set consists of black-box problems where parts of the underlying objec-

tive function and constraints are noisy and computationally expensive

to evaluate.
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A first conclusion drawn from this work is that the modeling of

the analytical formulation is important regarding (1) the properties

of the problem that has to solved and (2) the optimization methods

that can be applied. The focus of this work is the different handling

of the integer variables in the problem formulation, which are chosen

appropriately for each of the considered optimization methods. The

results of the surrogate optimization method in combination with a

mixed integer problem formulation are promising in comparison to the

reference approaches from the literature. Another point in this context

is that if the initial number of candidate wells n is large, the complexity

of the integer part of the optimization problem increases if the optimal

number of wells is significantly smaller than n. Note that as the dimen-

sion of the real-valued variables of the problem gets bigger it will take

more simulation calls for a derivative-free method to succeed.

Besides the formulation and modeling, new optimal designs for this

set of benchmark problems were found and each applied optimization

method has returned an acceptable system design of equal characteris-

tic. The only difference between solutions is in the real-valued problem

variables. However, despite the small differences in the final costs,

the methods’ iterations histories differed significantly in the number

of function evaluations required for convergence. Although for these

problem formulations we are only using flow information, optimization

with fewer function calls is attractive when more sophisticated physical

models and computationally expensive simulators must be used.

This study helped to identify specific challenges in the area of opti-

mal well-field design. Future work will focus on improved methods for

simulation-based, constrained black-box optimization problems with

an emphasis on how to handle the “hidden” constraints. These non-

convex, nonlinear constraints were identified in [39] as problematic for
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efficient optimization methods and lead to a large number of infeasible

simulation calls for this work as well. This is a fundamental difficulty,

especially if “engineering-perspective” initial designs are not available

as initial iterates for the optimizer. Better handling of these constraints

would also lead to more robust methods that can find the same optimal

point from a variety of starting points.

Finally, we would like to extend this work and explore hybrid opti-

mization approaches to overcome the weaknesses of using a single search

approach. Hybrid algorithms can include calling optimizers sequentially

or using different optimizers together within a search procedure. See

[46] for a classification of hybrid approaches. Coupled methods are

beginning to emerge in the area of water resources management (see

[26], [45],[16],[44],[32]), although there are open questions regarding

how to optimally couple two different methods, to define switching

criteria for changing from the initial to the second method, and to

look for parallelization opportunities for processes that arise during the

design a hybrid method. The hydraulic capture problem is a promising

candidate for research is this area.
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Figure 1. Objective function reduction versus iterations for confined well-field

problem and a comparison of the final positions
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Table 1. Constants included in the objective function f .

constant well-field well-field hydraulic units

confined unconfined capturing

b0 0.3 0.3 0.3 -

b1 0.45 0.45 0.45 -

b2 0.64 0.64 0.64 -

c0 5.5× 103 5.5× 103 5.5× 103 $/mb0

c1 5.75× 103 5.75× 103 5.75× 103 $/[(m3/s)b1 ·mb2 ]

c2 2.9× 10−4 2.9× 10−4 2.9× 10−4 $/m4

c3 1.45× 10−4 1.45× 10−4 1.45× 10−4 $/m3

di 60 30 30 m

zgs 60 30 30 m

tf 5 5 5 years

hmin 40 10 10 m
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Table 2. Additional constants in use for the constraints.

constant well-field well-field hydraulic units

confined unconfined capturing

smin 0 0 0 -

smax 1 1 1 -

xmin 0 0 0 m

xmax 800 800 800 m

ymin 0 0 0 m

ymax 800 800 800 m

Qmin −6.4× 10−3 −6.4× 10−3 −6.4× 10−3 m3/s

Qmax 6.4× 10−3 6.4× 10−3 6.4× 10−3 m3/s

Qmax
T n.d. n.d. −3.2× 10−2 m3/s

Qmin
T −3.2× 10−2 −3.2× 10−2 n.d. m3/s

δ 20 20 10 m

hmax 60 30 30 m

d n.d. n.d. 10−4 m/s

M n.d. n.d. 5 -
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Table 3. GA parameters for simulations.

30 size of population

30 max number of generations

0.9 crossover probability

0.1 real-coded mutation probability

20 distribution index for real-coded crossover

10 distribution index for real-coded mutation

0.5 binary-coded mutation probability

Table 4. Final objective function values and obtained simulation calls in brackets.

problem optimization well-field well-field hydraulic

formulation method confined unconfined capturing

Initial - $170,972 $152,878 $80,211

MINLP NSGA-II $140,610 (391) $125,226 (273) $24,854 (659)

Threshold/NLP IFFCO $140,175 (362) $124,527 (320) $24,032 (363)

PC/NLP IFFCO $140,190 (402) $124,512 (316) $23,640 (580)

MINLP Sur Opt $140,159 (113) $124,387 (87) $23,491 (22)
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Table 5. Solutions for confined well-field problem.

location initial NSGA-II IFFCO IFFCO Sur opt

(meters) MINLP Threshold PC MINLP

x1, y1 350, 725 366.0, 791.8 341.0, 798.1 350.0, 798.1 135.6, 800

x2, y2 775, 775 788.6, 799.0 799.4, 775.0 799.4, 775.0 800, 22.7

x3, y3 675, 675 769.6, 676.5 656.6, 794.6 668.9, 772.5 399.8, 800

x4, y4 200, 200 181.1, 376.4 102.5, 797.2 102.5, 797.2 800, 20

x5, y5 725, 350 788.3, 302.6 792.0, 300.0 792.0, 300.0 800, 800

x6, y6 600, 600 674.4, 602.3 600.0, 600.0 600.0, 600.0 800, 567.7

integer - s = 5 q6 = 0 q6 = 0 s2 = 0

decision

Table 6. Solutions for the unconfined well-field problem.

location Initial NSGA-II IFFCO IFFCO Sur opt

(meters) MINLP Threshold PC MINLP

x1, y1 350, 725 350.1, 725.0 453.6, 798.1 453.6, 798.1 466.9, 800.0

x2, y2 775, 775 788.3, 797.1 775.0, 775.0 775.0, 775.0 800.0, 800.0

x3, y3 675, 675 722.2, 579.7 796.9, 467.8 796.9, 467.8 800, 456.2

x4, y4 200, 800 170.8, 800.0 151.3, 800.0 151.3, 800.0 136.7, 800

x5, y5 725, 250 710.0, 324.2 725.0, 250.0 725.0, 250.0 800, 144.2

x6, y6 800, 300 800.0, 152.0 800.0, 92.8 800.0, 92.8 800, 143.7

integer p = 6, q5 ≤ eps q5 = 0 s6 = 0

decision q5 ≤ 10−6
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Table 7. Solutions for hydraulic capturing problem.

location Initial NSGA-II IFFCO IFFCO Sur opt

(meters) MINLP Threshold PC MINLP

x1, y1 150, 750 183.5, 342.2 165.3, 750.0 165.3, 750.0 10.0, 746,8

x2, y2 400, 750 143.3, 528.8 400.0, 750.0 400.0, 750.0 411.9, 717.4

x3, y3 250, 650 272.2, 652.2 250.0, 671.0 257.7, 642.3 264.3, 638.9

x4, y4 250, 450 231.5, 626.1 250.0, 450.0 250.0, 450.0 266.9, 413,9

well rates

(m3/s)

q1, s1 6.4E-3, 1 6.4E-3, 0 0.0, - 0.0, - 6.4E-3, 0

q2, s2 6.4E-3, 1 -3.362E-3, 0 0.0, - 0.0, - 6.2969E-3, 0

q3, s3 -6.4E-3, 1 -6.185E-3, 0 -5.7499E-3, - -5.4999E-3, - -5.3984E-3, 1

q4, s4 -6.4E-3, 1 -6.306E-3, 1 0.0, - 0.0, - -0.0064, 0

main.tex; 24/04/2008; 10:18; p.39



Preprint of a manuscript submitted to:
Optimization and Engineering

40 Hemker, von Stryk, Fowler, Farthing

List of Figures

1 Objective function reduction versus iterations for con-

fined well-field problem and a comparison of the final

positions 32

2 Objective function reduction versus iterations for uncon-

fined well-field problem and a comparison of the final

positions 33

3 Objective function reduction versus iterations for hy-

draulic capturing problem and a comparison of the final

positions 34

main.tex; 24/04/2008; 10:18; p.40



Preprint of a manuscript submitted to:
Optimization and Engineering

41

List of Tables

1 Constants included in the objective function f . 35

2 Additional constants in use for the constraints. 36

3 GA parameters for simulations. 37

4 Final objective function values and obtained simulation

calls in brackets. 37

5 Solutions for confined well-field problem. 38

6 Solutions for the unconfined well-field problem. 38

7 Solutions for hydraulic capturing problem. 39

main.tex; 24/04/2008; 10:18; p.41


