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ABSTRACT
This paper presents the latest developments of the Exten-
sible Agent Behavior Specification Language (XABSL), a
modular and scalable tool for engineering complex multi-
agent behavior. It is based on hierarchical finite state ma-
chines. By the new extensions the development of cooper-
ative multi agent behavior is supported through language
elements which allow to conveniently specify how the state
machines of multiple agents interact. Basic properties of
XABSL are illustrated in direct comparison with Petri Net
Plans and the COLBERT language using examples of basic
robot behavior. More complex examples from robot soccer
are used to illustrate the new extensions of XABSL. The
complete system is available online on the XABSL website
(http://www.xabsl.de).

1. INTRODUCTION
In this paper complex behaviors for cooperative multi-

agent applications are investigated which pose a challenging
task in highly dynamic environments as they are encoun-
tered in many real-world applications. Pragmatic methods
are required for programming agent behaviors that are able
to cope with necessary real-time requirements, only partial
or noisy observability of the environment, and the unpre-
dictability of dynamic environments [8]. A formal method
for modeling and implementing cooperative multi-agent be-
havior is presented in XABSL, an agent programming lan-
guage which is based on hierarchical finite state machines.

The next section describes related existing agent behavior
engineering approaches. Section 3 describes the Extensible
Agent Behavior Specification Language (XABSL) including
recent extensions to support multi-agent cooperations. Sec-
tion 4 shows some applications. Section 5 gives concluding
remarks.
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act approach()
{
int x;
start patrol(-1) timeout 300 noblock;
checking:
if (timedout(patrol) || sfStalledMotor(sfLEFT))
fail;

x = ObjInFront();
if (x > 2000) goto checking;
suspend patrol;
move(x - 200);
succeed;

}

Figure 1: An example of a COLBERT procedure
(taken from [12])

2. EXISTING APPROACHES
Machine learning approaches have been shown to be effec-

tive even for large and complex problems, as for instance, by
using hierarchical reinforcement learning [1]. Nevertheless,
especially when dealing with dynamic environments, devel-
opers might want to specify explicitly what actions an agent
should select in certain situations. When using a machine
learning approach, such explicit directives can often only be
incorporated, by adapting reward functions or by modifying
the learning problem. Because of these difficulties, in many
real-world autonomous robot applications such approaches
prove to be inappropriate and, instead, agent behaviors are
programmed manually in standard programming languages.

Agent behaviors can be specified more efficiently by us-
ing formal specification methods for behavior programming
such as Behavior Language [4], the Configuration Descrip-
tion Language (CDL) [17], and PDDL [18]. But some of
these architectures are integrated very deeply in the soft-
ware architecture of a robot system. Therefore, integration
into an existing robot control software might prove to be
difficult.

COLBERT is a language for reactive behavior control
based on finite state machines [12]. State machines are im-
plicitly defined via procedure specifications. The architec-
ture facilitates hierarchical and concurrent execution of state
machines. Figures 1 and 2 show an example behavior in
COLBERT and how the same behavior could be addressed
using hierarchical state machines as described in this paper.

A formal approach using Petri nets for modeling robot



Figure 2: A possible translation of the COLBERT
example to XABSL

Figure 3: An example behavior modeled with Petri
nets (taken from [22])

behavior can be found in [22]. Common features of this ap-
proach and the architecture presented in this paper are, hier-
archical decomposition of complex behaviors, concurrent ex-
ecution of partial behaviors, and support for multi-robot co-
operation. Modeling behavior with hierarchical finite state
machines has a similar expressiveness while in our opinion
it is more intuitive by utilizing more compact behavior de-
scriptions. An advantage of the Petri nets formalism is the
possibility of the analysis and verification of certain proper-
ties of the specified behaviors. This has not yet been done
using hierarchical state machines. Figures 3 and 4 give an
exemplified comparison of Petri nets and state machine spec-
ifications for a small behavior routine. In this example the
behavior of a robot soccer player is modeled which is sup-
posed to search and approach a ball. To solve this task, the
partial or primitive behaviors seekBall, approachBall, and
trackBall are applied, which respectively let the robot search
for the ball, move towards the ball, and track the ball with
a camera located at the head of the robot. In both versions
the robot will first assume that the position of the ball is
unknown and search for it. When it finds it, the robot will
concurrently move towards the ball and track the ball with
the camera until the ball, and thus the target state of this
behavior is reached.

Another comparable formal approach for behavior spec-
ification which is based on hybrid automata and supports
model checking is described in [7]. A translator for creat-

Figure 4: A possible adaptation of the Petri nets ex-
ample using concurrent hierarchical state machines

ing specifications for the architecture presented in this paper
from hybrid automata specifications has been developed [21].

3. THE EXTENSIBLE BEHAVIOR SPECI-
FICATION LANGUAGE (XABSL)

XABSL is a tool for implementing agent behavior using
hierarchical state machines based on a pragmatic and formal
approach. It consists of the following components:

• The modular behavior architecture based on concur-
rent hierarchical finite state machines,

• The specification language used for describing hierar-
chical state machines,

• A compiler generating documentations and intermedi-
ate code to be parsed by the runtime system,

• The C++ runtime library used to execute the behavior
inside an agent software environment.

The first version of XABSL was developed by M. Lötzsch
in 2002 [13, 14]. Since then it has been improved in several
aspects, e.g. the original XML behavior description was re-
placed with the current specification language [15] and con-
current execution of state machines has been added [19].

3.1 Concurrent hierarchical finite state
machines

The architecture applied in XABSL uses hierarchical fi-
nite state machines. The behavior of an agent is subdivided
into simple state machines, known as options. These options
are composed into a complex hierarchical state machine as
described in the following. Each option defines a set of ac-
tions to be executed while each of its states is active. These
actions can include other options, which are executed for as
long as the respective state in the calling option is active.
Through these calls from one option to another, the set of
options is organized in a hierarchy. Similar to procedure
calls, options can have parameters, where parameter values
are specified by the calling option. Multiple options can also
be called simultaneously resulting in the concurrent execu-
tion of these options. The current state of the hierarchical
state machine is defined by the current states of the subset
of currently active options, which form a tree, the option ac-
tivation tree, starting with a distinguished root option. The



Figure 5: An example option from the robot soccer
scenario. The circles represent the two states of this
option. The circle with two horizontal lines is the
initial state. The arrows between the states rep-
resent possible state transitions. The boxes below
the option search for ball represent the subgraph of
the option graph containing the options called sub-
sequently. The dashed arrows show which options
get executed in each state.

set of options forms an acyclic directed graph, which is called
an option graph.

By employing a hierarchical structure, not only is it possi-
ble to compose complex behavior options from less complex
subordinated options, but also reusing behavior options in
different contexts is possible, since the same option can be
referenced from different calling options. This allows the de-
veloper to modularize the behavior. For example commonly
used and well-tuned behavior aspects can be placed in one
option which then can be used in several different options
without having to duplicate source code.

As above mentioned, the option graph is acyclic, i.e. re-
cursive option calls are not allowed (directly or indirectly).
Furthermore, it is illegal if the same option is called from
different concurrently executed options, i.e. each option can
only appear once in the current option activation tree.

The execution of the hierarchical state machines is per-
formed using discrete execution cycles, which can occur af-
ter fixed time intervals, or can be coupled to events such as
sensor cycle times. In each execution cycle the current state
of each of the active options is determined, starting at the
root option, subsequently checking each called option. Thus,
the complete option activation tree is updated in every step.
Whenever an option gets activated, which was not active in
the previous execution cycle, e.g. when it is activated for
the first time, the distinguished initial state of that option
is activated.

The states of an option can be marked as target states.
For instance, an option might reach a target state when the
subtask the option is supposed to achieve has been carried
out. A calling option can query whether a called option
has reached a target state, and, in that case, might decide
to change its state in order to execute another sub-option,
which, for instance, carries out the next subtask.

An example of an option and its sub-options from a be-
havior for a controlling the camera direction in autonomous
robot soccer is given in Fig. 5. Whenever the ball was
detected in the camera image the head should follow the
ball. This is done in the state look at ball which executes

the option of the same name which in turn calls the option
look at point in order to set the head joint values for letting
the head of the robot look at the desired position. When
the ball is not detected a scanning motion is started in the
state search for ball by calling the option head sweep scan.

3.2 Interaction with the software environment
Since the XABSL state machine is responsible only for ac-

tion selection of an agent, it is always embedded in the over-
all functional software environment. Responsibilities of the
surrounding algorithms could include, e.g., processing sensor
information, maintaining a world model, actuator control,
and communications with other agents. Thus, an interface
is required to provide input which the decision making can
be based on and to deliver output such as action commands
which describe the selected actions. The interface provided
in the XABSL architecture makes uses of user-defined sym-
bolic references to variables in the software environment and
also enables to directly execute already implemented behav-
ior routines from inside the hierarchical state machines.

3.3 Specification language
In order to have a compact and easy-to-understand method

of describing XABSL behavior conveniently a description
language was developed, replacing the XML dialect which
was used before. Fig. 6 shows example source code. Us-
ing the XABSL compiler the source code can be compiled
into an intermediate code, which can be parsed easily by the
runtime library. Furthermore the compiler is able to gener-
ate symbol files for code completion and syntax highlighting
in various editors and an XML representation can be gen-
erated. The XML representation can be processed further
using standard techniques such as XSLT processors e.g. in
order to generate documentation.

Expressions can be specified which are used in conditions
in decision trees, parameter values, and output symbol as-
signments. They can combine references to option parame-
ters, input symbols, output symbols (which evaluate to the
last value set during behavior execution), enumerations us-
ing arithmetic and logical operators.

3.4 Cooperative Multi-Robot Systems
XABSL provides the following features to support coop-

eration between multiple communicating agents:

• A typical requirement is that a certain state of a state
machine can only be executed by at most a given num-
ber of agents at the same time. The maximum number
of agents that can execute a state is called the capacity
of the state. A possible example might be a team of
robots navigating through a narrow passage which can
only be entered by a certain number of robots at once
without blocking each other. Another example and its
implementation in XABSL is shown in Fig. 7(a).

• Another requirement is that the actions of multiple
agents might need to be synchronized. This can be
realized by specifying, that all agents currently exe-
cuting an option are required to enter a certain state
of the option at the same time. If an agent tries to
enter the state it will wait until every other agent is
also ready to enter the state. A XABSL example is
shown in Fig. 7(b). Optionally a minimum number
of agents that are required to enter the synchronized



(a) State striker has capacity of one (b) State execute pass is executed synchronized

Figure 7: Example a) shows a state machine for role assignment in the robot soccer scenario. Only the field
player which is closest to the ball shall attack the ball. Therefore the state striker has a capacity of one.
Example b) also comes from the field of robot soccer: It shows an option for pass play. Only after both
robots are finished preparing for the pass, e.g. aligning towards the other player, they will enter the state
execute pass synchronously.

state can be specified. The set of agents which execute
an option synchronously can also be a subset of all the
agents of a cooperative scenario. Only the agents that
are currently executing the behavior option which re-
quires synchronization are taken into consideration.

These two features allow the programmer to specify most
common cooperation tasks using comfortable and compre-
hensible methods. More complex cooperation tasks with
specific communication requirements might not be realized
in the state machine directly. If access to incoming and out-
going messages is provided through symbols, they can be
integrated easily.

In a typical approach for realizing complex multi-robot
applications using XABSL there is a single hierarchical be-
havior which is executed by all of the robots. The behavior
can contain state machines for task allocation in the top lev-
els of the hierarchy. In case of heterogeneous multi-robot ap-
plications, the different capabilities and limitations of each
robot can be made available to the behavior through input
symbols. According to these symbols the robot specific sub-
behaviors can be selected.

In most multi-agent environments, e.g. in every real multi-
robot application, one cannot assume, that messages be-
tween agents will be sent and received instantaneously. There-
fore, conflicts may arise, e.g. when two agents try to enter
a state with a capacity of one nearly at the same time. In
order to prevent such conflicts, some form of negotiation is
necessary. In the proposed extension of XABSL the follow-
ing negotiation pattern is applied: Whenever an agent tries
to enter a state with a capacity it signals this to other agents
and waits for a certain amount of time before entering the
state. If the number of agents trying to enter exceeds the
available capacity of a state, a user-defined agent prioritiza-
tion is applied. It is easy to see, that increasing this delay
leads to an increased protection against capacity conflicts.
Only if the delay time is greater or equal to the maximum
round trip time of sending a message to all other agents

and receiving respective responses, it is guaranteed that the
number of agents executing a state will never exceed the
capacity of the state (cf. Fig. 8). On the other hand in-
creasing the delay time leads to a reduced reactivity of the
state machines. Thus, there is a trade-off between preven-
tion of possible conflicts and reactivity. In some applications
it might be critical to guarantee that the capacity of a state
never gets exceeded, not even for very small amounts of time.
In other applications it might be more important, that de-
cisions are made as fast as possible (e.g. in the robot soccer
scenario). Therefore the delay time is a parameter selectable
by the application programmer.

In order to show that multi-robot applications can be re-
alized easily using these features an example application
has been implemented. The scenario of the application is
the 2007 Passing Challenge of the RoboCup Four-Legged
League. Three Sony Aibo robots are supposed to pass an
orange ball back and forth between each other (cf. Fig. 10).
In this example both presented features for the specification
of cooperative behaviors are used. Utilizing a capacity state
a task assignment is realized similar to the one given in the
first example (cf. Fig. 7(a)) in order to decide which of the
robots will go to the ball and catch it while the others wait
until they receive a pass. When performing the pass both
robots synchronize their actions as described in the previous
example (cf. Fig. 7(b)). Fig. 9 shows the option graph used
for this application. This implementation also is a good ex-
ample for the support of code reuse as most of the required
options could be taken from the standard robot soccer ap-
plication such as behaviors for controlling the ball.

4. APPLICATIONS
Although XABSL was developed in the RoboCup robot

soccer context as the behavior architecture successfully ap-
plied by the GermanTeam [20] in the Four-Legged Robot
League since 2002 [13, 14]. It is not limited by any means
to the robot soccer domain or related applications. It is



Figure 6: Example XABSL source code of the op-
tion search for ball consisting of two state defini-
tions. Each state definition contains two parts. The
first is the specification of the decision tree, describ-
ing the transitions to other states and the conditions
under which they are taken. The second part de-
scribes the actions to be performed while a state is
active, consisting of option (or basic behavior) calls
and output symbol assignments. The code is shown
in the XABSL editor, which is available for down-
load on the XABSL website [16].

not even limited to robot applications at all, but can rather
be applied for describing the behavior of arbitrary software
agents. RoboCup serves as a common testbed and bench-
mark for research in different fields of robotics and artificial
intelligence.

In the Four-Legged Robot League teams of four of Sony’s
AIBO robots play soccer autonomously against each other.
One of the major challenges in this league is the limited
onboard computational power and the noisy and unreliable
perception based on a directed camera with a low resolution
of 208×160 pixel and an opening angle of 45 degrees, result-
ing in a very limited field of view, perceiving only small por-
tions of the playing field at once. Another major challenge
is four-legged locomotion, which generates a high amount of
uncertainty in the actions of the robot. XABSL has proven
successful in dealing with these kinds of uncertainties, as
it has been applied for complex competitive soccer playing
behaviors, which have helped the GermanTeam to become
world champion in the Four-Legged League twice in 2004
and 2005.

The successful application of XABSL in the GermanTeam
has also shown that the modular architecture supports the
cooperative development of a large team of robot program-
mers on a complex project. Options can be developed and
tested independently and new options are easily integrated
in an existing behavior.

In RoboCup XABSL is not only being applied by a large
number of teams in the Four-Legged Robot League, but also
on different robots by teams in all robot leagues: In the Hu-
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Figure 8: An example of the coordinated execution
of a state with a capacity of one by two agents.
Agent 2 has higher priority than agent 1. The
dashed arrows depict the amount of time required
for signaling a state change to the other agent. The
delay time before entering the state is chosen as
twice the amount of time required for transferring
a message from one agent to another. Therefore,
there are no capacity conflicts.

Figure 9: The option graph of the Passing Challenge
example

manoid Robot League XABSL is applied by several teams
including [6]. In the Middle Size Robot League the team
CoPS from Stuttgart developed a graphical behavior mod-
eling tool using Petri Nets which can automatically gener-
ate XABSL source code [23]. The Small Size Robot League
team B-Smart uses XABSL to control the behavior of their
robots [3].

Integration of learning approaches must be possible in
a formal behavior specification method suited for complex
multi-robot applications. Some subtasks in the robot soccer
scenario are very well suited for applying machine learning
approaches. In the Four-Legged Robot League ball grabbing
behavior has successfully been improved through policy gra-
dient learning [5]. Applying such approaches to subtasks of

Figure 10: A successful pass between two four-
legged robots (cf. Figs. 7, 9)



an agent behavior specified in XABSL is supported very
well due to the hierarchical decomposition. In a hierarchical
state machine different types of behavior programming, such
as machine learning approaches, can be applied easily on dif-
ferent layers of the hierarchy. For instance, the optimal pa-
rameters of the ball grabbing behavior of the GermanTeam
were optimized semi-automatically using Asynchronous Par-
allel Pattern Search [9, 11].

An application outside of the robot soccer domain has
been realized successfully in a case study of cooperating,
strongly heterogeneous, autonomous robots: the humanoid
robot Bruno and a Pioneer 2DX wheeled robot [10].

A small sample application, which is an example agent for
the ASCII Robot Soccer [2] simulation, is available online on
the XABSL website [16].

5. CONCLUSIONS
In this paper a comparison of the extensible agent behav-

ior specification language XABSL with Petri Net Plans and
COLBERT has been made by means of basic examples for
robot behavior. Furthermore, the extension of XABSL to
multi-robot systems has been presented and illustrated by
complex examples from robot soccer. Also, a large number
of successful applications in different domains from differ-
ent groups demonstrate that the approach is well suited
for realizing complex real-world robot applications. The
newly introduced features present a convenient and struc-
tured method of organizing multi-robot cooperations.

Ongoing research aims at investigating how behavior pro-
gramming can benefit from the further use of formal meth-
ods, for example in order to prove certain properties of im-
plemented behaviors. Also there will be continued investi-
gation of application domains outside of robot soccer and
large, complex multi-robot cooperations.
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