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ABSTRACT
Formal methods for multi-robot system analysis, especially logic-
based methods, operate on discrete models. Optimization methods
for simultaneous trajectory and task allocation, namely mixed in-
teger dynamic optimization, operate on hybrid dynamical models
which take into account a model of the motion dynamics of the
physical robot. In this paper, ongoing work towards a coherent
treatment of both approaches is described. A benchmark problem
from robot soccer is introduced and used as an illustrative exam-
ple.
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1. INTRODUCTION
The development of formal models and methods for multi-robot

systems (MRS) aims to provide tools for MRS analysis, includ-
ing formal verification, performance, or quantification. These ap-
proaches usually operate on a relatively high level of abstraction
and use discrete models, for example, logic-based methods [3, 14],
sequential decision-making approaches, graph-based formation con-
trol [9], or discrete system techniques. Usually within such frame-
works, properties of the underlying physical processes, which con-
sist of the physical motion of the robot (namely its kinematics and
dynamics) and the interaction with its environment, are either ne-
glected or can only be approximated very roughly. Whether these
approximations can lead to a satisfying analysis of the MRS de-
pends on the robots and tasks. Robot soccer is a prominent exam-
ple for a MRS task in a fast-changing environment, where utilizing
the robot motion dynamics in an optimal manner is essential for
successful task completion.

∗Parts of this research have been supported by the German Re-
search Foundation (DFG) within the research training group 1362
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Environments and the special priority program 1125 on Cooperat-
ing Teams of Mobile Robots in Dynamic Environments.

AAMAS 2008 Workshop on Formal Models and Methods for Multi-Robot
Systems, May 13 2008, Estoril, Portugal.

In order to represent MRS formally, we must be able to express
concurrency or parallelism of behavior. In addition, since the over-
all MRS may have high complexity, a hierarchical presentation is
desirable, so that different levels of abstraction can be expressed.
Statecharts as used in the Unified Modeling Language (UML) [20]
combine both features. Nevertheless, it is not possible to express
physical, continuous system behavior with them. However, hybrid
automata, which are normally used for embedded system descrip-
tion, can do this opportunity [2, 12].

The combination of both types of automata leads us to hierar-
chical hybrid automata. This is discussed in [10] and a procedure
is described that allows us to analyze MRS specifications by trans-
lating them into (simple) hybrid automata and employing standard
model checking tools, e. g. HyTech [13], for system verification.
Using these tools, mainly reachability analysis is possible. How-
ever, we are often interested not only in the question of whether a
certain state or situation can be reached by the whole system at all,
but also e. g. how fast it can be reached, i. e., optimality properties
have to be dealt with.

Computer algebra systems together with mixed-integer linear pro-
gramming (MILP) enable us to deal with optimization tasks ade-
quately. Since these optimization tools, most importantly, allow
users to express and solve (optimization) problems expressed as
a set of equations, the above-mentioned automaton representation
of MRS has to be mimicked by equations, in this case by integer
equations. This approach has been described in [21, 22]. Reach-
ability and worst-case analysis of MRS can be performed success-
fully with this method using MILP.

One disadvantage of this approach is the fact that the state hi-
erarchy and general structure are not expressed directly as in the
logic-based approach with standard hybrid model checkers [10].
Therefore, we propose a combination of the logic-based and the
MILP approach, namely with constraint logic programming (CLP)
[19]. This allows us to perform system analyses, on the one hand,
and system optimization on the other hand. MRS can be speci-
fied quite naturally with this method. Further, the power of mixed
integer programming (MIP), i. e., including nonlinear optimization
problems, can be combined by an abstract and logical representa-
tion of the whole system.

In the following, we first review the state of the art in modeling
multiagent systems and approaches for optimization and verifica-
tion, respectively (Sect. 2). Then, we introduce a representative ex-
ample from robot soccer which helps us to explain the methods pre-



sented in this paper. next, we define hierarchical hybrid automata
(Sect. 3.2), laying the formal foundation for the rest of the paper.
Furthermore, we discuss the MILP method (Sect. 4). Finally, we
describe the ongoing work on combining MILP with CLP (Sect. 5)
before we present our conclusions.

2. MODELING MULTI-ROBOT SYSTEMS
We will now briefly review related work, especially those involv-

ing robot soccer for we will use this as an example throughout the
paper. Formal soccer theories have been developed for or derived
from human soccer games in [8, 17]. They define certain strate-
gies for optimal defensive and offensive play. Thus, they can also
help to model behavior specifications in robot soccer. Hybrid mul-
tiagent systems with timed synchronization are introduced in [10].
They are used for specification and model checking. For this, the
agents can map soccer theories to their own and therefore to the
overall behavior. These statecharts allow us to simulate continuous
actions in states and discrete actions at state transitions. Synchro-
nization is made possible by using special synchronization points
— which can be e. g. a soccer ball — with wich each agent can
interact and which characterizes the team play.

Using hybrid automata [12] is a well accepted method to model
and analyze mobile multiagent systems [1, 2]. Hierarchical, hybrid
automata are used for building up and describing multi-layer con-
trol architectures based on physical motion dynamics of moving
agents [5]. In many applications they form a link between multi-
vehicle systems and theories of hybrid systems like in [24].

CLP is a programming paradigm where relations among vari-
ables are expressed via constraints. It combines logic programming
and constraint solving [7]. CLP has already been applied to model-
ing of hybrid systems including solving differential equations [14].
However, efficiency can only be expected if a full CLP language
is employed as e. g. Eclipse Prolog [16], where several constraint
solvers are available, including constraints over continuous and in-
teger variables and optimization on continuous variables.

Hybrid systems, CLP, and optimization are closely related, and
especially piecewise affine systems are studied by using MILP. [18]
gives a good overview of approaches and chances in combining
CLP an MILP. [3] presents a combined approach for investigating
the optimal control of hybrid systems.

3. ROBOT SOCCER AND AUTOMATA

3.1 Example from Robot Soccer
Robot soccer is a closed, secure scenario for MRS and also a

simple and descriptive example for robotic team play. Thus, it is
accepted as a step forward to investigations on open, uncertain, un-
explored, and insecure environments.

As a common benchmark problem we are looking at the setting
of Fig. 1 with two attacking robots, one defender and one ball.
Thus, we are considering a system containing a generalizable char-
acteristic with (in-)directly controllable and non-controllable mov-
ing agents i ∈ {1, 2, B, D}. Each one is characterized by its contin-
uous, dynamic state xi (e. g. position, velocity, etc.) and a discrete
state s that denotes a certain subtask or role. Together with the con-
tinuous control variable ui, the continuous state evolves subject to
ẋi = fs,i(xi,ui). As modes of motion s for the strikers we distin-
guish free_moving and dribbling (cf. Fig. 2).

Furthermore, certain logical expressed constraints have to be con-
sidered like the fact that a robot has to be close to the ball for being
able to kick. Eventually, by defining (usually unknown) switching
times tk and corresponding specifications (how to connect xi when s
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Figure 1: Setting of the robot soccer benchmark problem.

switches at tk), the individual trajectory for an object is determined.
Our intention is to answer questions like the following:

• What is the fastest way to score a goal?

• How many ball contacts are required to score a goal?

• What is the best tactical improvement for fixed time horizon?

3.2 Hierarchical Hybrid Automata
Let us now formally define hierarchical hybrid automata (abbre-

viated HHA here), following the lines of [10]. In order to describe
physical multiagent systems adequately, the definitions combine
aspects from UML statecharts and hybrid automata [12]. We start
with basic components and the definition of a state hierarchy.

DEFINITION 1 (BASIC COMPONENTS). The basic components
of a state machine are the following disjoint sets:

S: a finite set of states, partitioned into three disjoint sets: Ssimple,
Scomp, and Sconc — called simple, composite and concur-
rent states, containing one designated start state s0 ∈ Scomp∪
Sconc;

X: a finite set of variables, partitioned into two disjoint sets: Xreal
and Xint — the continuous/real-numbered and the integral/in-
teger variables, respectively; for each x∈ X we introduce the
variables x′ for the conclusions of a discrete change;

T: a finite set of transitions with T ⊆ S×S.

DEFINITION 2 (STATE HIERARCHY). Each state s is associ-
ated with zero, one or more initial states α(s): a simple state has
zero, a composite state exactly one and a concurrent state more
than one initial state. Moreover, each state s ∈ S \ {s0} is asso-
ciated to exactly one superior state β(s). Therefore, it must hold
β(s) ∈ Sconc ∪ Scomp. A concurrent state must not directly con-
tain other concurrent ones. In this case, the composite state s
is called region. Furthermore, it is assumed that all transitions
s1T s2 ∈ T keep to the hierarchy, i. e. β(s1) = β(s2). We write αn(s)
or βn(s) for the n-fold application of α or β to s, in particular,
α0(s) = β0(s) = s. Let us now have a closer look at variables. Vari-
ables x ∈ X may be declared locally in a certain state γ(x) ∈ S. A
variable x ∈ X is valid in all states s ∈ S with βn(s) = γ(x) for some
n ≥ 0, unless another variable with the same name overwrites it
locally.

In order to keep things simple, we focus on linear system dy-
namics in the sequel, because otherwise many problems with HHA
become undecidable. In addition, we subsume the notions flow



condition and invariant from the literature (see e. g. [12]) in the
notion state condition in our next definition. Invariants are con-
ditions that must hold all the time the automaton remains within
one state. For general, nonlinear dynamics, in particular with non-
monotonic value patterns of the real-numbered variables, these in-
variants would be difficult to test. Also, we will not introduce
derivatives ẋ or ẍ for the variables in X in our definitions, although
we may use it for the ease of notation. We e. g. allow predicates of
the form x = u · t + x0, what can be understood as a solution of the
differential equation ẋ = u, that is the flow condition itself or con-
junctions thereof. In our graphical examples, however, we mark
flow conditions with f and invariants with i.

DEFINITION 3 (JUMP AND STATE CONDITIONS). For each
transition, there exists a jump condition. This is a predicate with
free variables from the valid variables of X ∪X ′. Additionally, each
state s ∈ S contains a state condition which describes continuous
changes in s. It is a predicate with free variables from X ∪ {t}
where the time t may occur linearly.

Jump conditions are marked with j in our examples. In addi-
tion, we annotate so-called events with e. Events are well-known
in UML statecharts and hybrid automata. They can easily be ex-
pressed by (binary) integer variables in our formalism. Therefore,
we do not introduce them explicitly in our definitions. In contrast
to simple hybrid automata, we introduce hierarchies. The behavior
of an HHA cannot be described by a sequence of states but by trees
of states, called configuration.

DEFINITION 4 (CONFIGURATION AND COMPLETION). A
configuration c is a rooted tree of states where the root node is
the topmost initial state of the overall state machine. Whenever a
state s is an immediate predecessor of s′ in c, it must hold β(s′) =
s. A configuration must be completed by applying the following
procedure recursively as long as possible to leaf nodes: if there is
a leaf node in c labeled with a state s, then introduce all α(s) as
immediate successors of s.

The semantics of our automata can now be defined by alternat-
ing sequences of discrete and continuous steps. Following the syn-
chrony hypothesis, we assume that discrete state changes happen
in zero time. Continuous steps (within one state) may last some
time. Although this time is not fixed in advanced, often a clock-
ing mechanism is introduced, i. e. the flow of time is discretized. If
we do this instead of differential equations, we can use difference
equations (see Sect. 4).

DEFINITION 5 (SEMANTICS). The state machine starts with
the initial configuration, that is the completed topmost initial state
s0 of the overall state machine. In addition, an initial condition
must be given as a predicate with free variables from X∪{t}. The
current situation of the multiagent system can be characterized by
a triple (c,v, t) where c is a configuration, v is a valuation (i. e. a
mapping v : X → R, where the integral variables are mapped to
integers), and t is the current time. The initial situation at time
t = 0 is a situation (c,v, t) where c is the initial configuration and v
satisfies the initial condition. The following steps are possible in a
situation (c,v, t):

discrete step: a discrete/micro-step from one configuration c of a
state machine to a configuration (c′,v′, t) by means of a tran-
sition sT s′ with some jump condition in the current situation
(written c→ c′) is possible iff:

1. c contains a node labeled with s;

i: g2(ẋ2,u2)≤ 0
i: g1,B(ẋ1,u1)≤ 0
i: dist1,B ≤ εdribble

f: ẍB = f1,B(x1, ẋ1,u1)

i: g2,B(ẋ2,u2)≤ 0
i: g1(ẋ1,u1)≤ 0
i: dist2,B ≤ εdribble

f: ẍB = f2,B(x2, ẋ2,u2)
f: ẍ2 = f2,B(x2, ẋ2,u2)
Player 2 dribbles ball 4©

i: g2(ẋ2,u2)≤ 0

i: dist1,B > εdribble
i: dist2,B > εdribble
i: g1(ẋ1,u1)≤ 0

f: ẋB = fB(xb)

e: kick(2)

e: catch(2)
j: dist2,B ≤ εdribble

i: dist2,D ≥ γ2,D
i: dist1,D ≥ γ1,D i: dist1,2 ≥ γ1,2

i: distD,B ≥ γD,B

i: xB ∈ f ieldf: ẍ1 = f1(x1, ẋ1,u1)

f: ẋD = fD(x1,x2,xB)
f: ẍ2 = f2(x2, ẋ2,u2)

j: |xB| ≥ x f ield
j: |yB| ≤ ygoal

e: goal

Game is running 1©

Ball free 3©

j: dist1,B ≤ εdribble

e: kick(1)

Player 1 dribbles ball 2©
e: catch(1)f: ẍ1 = f1,B(x1, ẋ1,u1)

Ball in goal 5©
f: ẋ1 = 0 f: ẋB = 0
f: ẋ2 = 0 f: ẋD = 0 i: xB ∈ goal

i: g2(ẋ2,u2)≤ 0
i: g1(ẋ1,u1)≤ 0

Figure 2: Hierarchical hybrid automaton model of the switched
motion dynamics.

2. the jump condition of the given transition holds in the
current situation (c,v, t);

3. c′ is identical with c except that s together with its sub-
tree in c is replaced by the completion of s′;

4. variables in X ′ are set according to the jump condition.

continuous step: a continuous step/flow within the actual config-
uration to the situation (c,v′, t ′) requires the computation of
all x that are valid in c at the time t ′, according to the con-
junction of all flow conditions of the states s ∈ c, where it
must hold t ′ > t.

3.3 Automaton for the Soccer Example
For the proposed soccer application (cf. Fig. 2) we use two layers

as hierarchy. In this modeling we only distinguish whether the ball
is rolling free, being dribbled or inside the goal. The respective
motion dynamics of a dribbling robot is indexed by B. The initial
conditions are defined with the position xi(t0) of the objects i ∈
{1, 2, D, B}. Catching and kicking a ball are modeled by events

kick(♦) : (ẋB)′ = 3 · ẋ♦ , catch(♦) : x′B = x♦, (♦ ∈ {1,2}) .

All other state trajectories are required to be continuous at tk.
We are testing our approach with a simple model for the dynamic

of robots and ball and set for all states except 5© (cf. 2)

f: ẋB(t) = vB(t), f: ẍ♦(t) = v̇♦(t) = u♦(t) (1)

(♦ ∈ {1, 2}). For a dribbling robot the upper bound on its velocity
is reduced by a factor cv,dr.

Further constraints on state or control variables according to the
motion modes are modeled as invariants i. In this example, all con-
trols and velocities are bounded by quadratic expressions

i: gs,i(ẋi) = ||vi||2− vUB
s,i ≤ 0

with a constant upper bound vUB
s,i (us,i respectively). A distance

measure between objects i and j is represented by the auxiliary
variable disti, j . It is used to express, for example, collision avoid-
ance (with a constant threshold γi, j).

In order to apply efficient linear methods, we are approximating
the physical model by linearized reformulations. We are transform-



ing the differential flow conditions f into difference equations

ẋ = fs(x,u) Ã x(t +∆t)−x(t)
∆t

= As ·x(t)+Bs ·u(t) . (2)

Additional state variables and binary variables may be necessary
in general for accurate approximations. In the context of hybrid
automata, these case differentiations could be treated as new sub-
knots. This splitting up strongly depends on the degree of nonlin-
earity and the desired accuracy of the transformed model. Applica-
tion to the example results in

x♦(t+∆t )−x♦(t)
∆t

= vx,♦(t) ,
vx,♦(t+∆t )−vx,♦(k)

∆t
= ux,♦(t),

xB(t +∆t)− xB(t)
∆t

= vx,B(t) , vx,B(t +∆t) =
{

ctrac ∆t vx,B(t) 5©
∆t vx,♦(t) 1©

(♦∈ {1, 2}, ctrac ·∆t < 1, yi, vy,i, analogously). The solution space,
defined by the invariants, gets approximated in a polygonal manner.
This is modeled by logically combined linear inequalities. Jump
conditions j and events e are linearized respectively.

A simple, reactive defender that is always moving towards the
current ball position is controlled by

xD(t−∆t)− xD(t)
∆t

= ux,D(t) :=
vUB

D
Dmax

(xB(t)− xD(t))

(Dmax ≥ maxx,y,t{|xB(t)− xD(t)|, |yB(t)− yD(t)|}; yD, vy,D, analo-
gously). vUB

D again is the constant upper bound for ||vD||2.

4. OPTIMIZATION BASED ON MIP
Optimization of mobile cooperative MRS leads us in the general

case to mixed integer nonlinear optimal control problems (MIOCP),
also known as hybrid optimal control problems (HOCP). One way
to solve these problems would be to combine of branch-and-bound
techniques with direct collocation [11].

In order to find where it would be possible to combine efficient
MIP and CLP for optimizing and analyzing scenarios in multiple
mobile robot systems, we are looking on our simplified model to
treat with a common benchmark example. There is a need of effi-
cient CLP- and MIP-based control algorithms which consider the
intrinsic characteristics of the system, especially the tasks to be per-
formed and the agents’ physical abilities.

We are looking for optimal parameters or optimal controls for
a cooperative task according to detailed system’s characteristics.
This also is related to the main challenge for preparing a receding
horizon control algorithm, – a well-adapted method for cooperative
tasks in permanently changing and unstable environments.

As a general method to build up an optimization based algorithm
we are using a reduced linear model. The linear case can be solved
much more efficiently (cf. [6]) than the MIOCP.

The linearized problem allows us to answer different questions
like finding sub-optimal control inputs or computing costs for reach-
ing certain states. MILP models can cope well with non-convexities
and the combinatorial character which is an intrinsic feature in
modeling most MRS. Efficient solvers are making MILP applicable
even to deal with abrupt changes in uncertain environments [21].

4.1 Discrete-time MIP Formulation
We are introducing a time structure that allows us to discretize

the regarded point mass model. Thus we are defining

t0 = 0, tk+1 := tk +∆t

as a number of time steps with a constant sampling ∆t . The time
interval [0, t f ] for the system evolution is marked by t f = tN+1
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Figure 3: Optimal positions, velocities and controls for the at-
tackers ( ) and the ball ( ).
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Figure 4: Computed optimal behavior shown at time steps k = 8
and k = 13. Attacker 1 goes to ball, dribbles and kicks it to-
wards his teammate 2 who catches it there and kicks it towards
the desired direction. The defender ( ) follows the ball.

For each states s ∈ Scomp∪Sconc a binary variable bs ∈ {0, 1}
is introduced. bs(tk) = 1 iff the state s is active at the time tk. Thus,
we can use simple inequalities to model the transition sT s′ that
occur at tk+1

∀k ∈ {1, 2, . . . , N} : bs(tk)≥ bs′(tk+1)

and hierarchies

∀k ∈ {1, 2, . . . , N} : bs(tk+1) = ∑
s′∈{s′|β(s′)=s}

bs′(tk+1) .

Logical relations combined with inequalities are translated using
the Big-M technique (cf. [4]). Thus, flows get connected with the
respective binary variable, e. g.

IF bs = 1 THEN gs(x,u)≤ 0
⇔ [gs(x,u)≤ (1−bs)M]

with a constant M ≥ maxx,u{gs(x,u)}. As we model the moving
object using a point mass (cf. Eqs. 1 and 2), these expressions are
translated by using finite differences as follows:

x(tk+1) = x(tk)+∆t vx(tk), vx(tk+1) = vx(tk)+∆t ux(tk) .



Generally, the nonlinear expression for measuring a Euclidean dis-
tance

√
(x1− x2)2 +(y1− y2)2 ≤ r is approximated by a bunch of

nd ≥ 4 fixed linear constraints

sin(
2 i
nd

π)(x1− x2)+ cos(
2 i
nd

π)(y1− y2)≤ r (i = 1, . . . ,nd) . (3)

Thus, the respective invariants i and the distances disti, j got lin-
earized (with nd = 4 in our example).

To answer certain questions to the system (cf. Sect. 3.1), one has
to formulate the interesting feature with an objective function to be
minimized. For this, all non-fixed discrete or continuous values in
the system’s model could be weighted and combined, e. g. the val-
ues bs(tk) which are representing certain states in the automaton,
x(t) denoting positions or any auxiliary variable like the distance
distBD. In order to use efficient MILP/MIQP solvers, we are look-
ing for linear and quadratic formulations for the objective. As an
example, we looked at the following questions. An additional re-
sult for a similar model can also be found in [21], where we asked
for the best tactical improvements.

Farthest shoot on goal.
What is the longest possible distance that a ball may roll towards

the goal if at least one pass is required? More precisely, we require
that each of the attackers dribbles the ball at least one time. For
given time steps t1...tN+1 we add the constraints ∑N+1

k=1 bs(tk) ≥ 1
for s ∈ { 2©, 4©} to our MILP and minimize the objective function

−xB(tN+1)+qy(tN+1)+ ε · ∑
i∈{1,2}

N

∑
k=1

qu,i , (4)

with −qy ≤ yB ≤ qy and
√

(u2
i,x +u2

i,y)≤ qu,i which is transformed
into a set of linear constraints following the idea in Eq. (3). The last
sum in (4) is added with a low weight ε = 0.01 to get sensible values
for all controls – because of many remaining degrees of freedom in
the system otherwise.

Results for the linear implementation of the proposed benchmark
problem with following parameters are shown in Fig. 3 and 4.

∆t= 2
3 , N=12, εdr=5, cv,dr=60.7, vUB

♦,x=45
γ2,D=30, γB,D=30, Dmax=700, ctrac=0.8, vUB

B,x=135,

vUB
♦,y=45, uUB

♦,x=20, uUB
♦,y=20, vUB

♦,y=90, ♦∈{1, 2}
The MILP was solved with CPLEX [15] on a PC (Intel(R) Pen-
tium(R) M processor 1.86GHz; 1024 MB RAM) in 9 sec.

The time-optimal case.
Now we are interested in the minimal time for reaching certain

(sets of discrete or continuous) states. For instance, we pose the
question of the fastest way to score a goal. To answer this question
we give up the constant sampling time ∆k and replace it by a free
variable ∆k ∈ [tmin, tmax] to be minimized. Thus, we are resulting
in a MIP with quadratic constraints. Here, the objective function
becomes:

N

∑
k=1

∆k + ε · ∑
i∈{1,2}

N

∑
k=1

qu,i (5)

subject to the additional constraint b 5©(tN+1) = 1. The last sum in
(5) is necessary for the same reason as in (4). Otherwise, it would
not be clear for the second robot what to do while the first one is
handling the ball.

In ongoing work, we are looking forward to solving this prob-
lem with a mixed integer nonlinear programming approach using

%%% step(+Config,-Next)
%%% perform transitions
step([State|_],Tree) :-

trans(State,Next), !,
complete(Next,Tree).

step([Top|Sub],[Top|Tree]) :-
maplist(step,Sub,Tree).

step([],[]).

%%% complete(+State,-Tree)
%%% build completed Tree below State
complete(State,[State|Complete]) :-

init(State,Init),
maplist(complete,Init,Complete).

Figure 5: State machine in Prolog for discrete state changes.

start(game_is_running).

init(game_is_running,[ball_free]).
init(player_1_dribbles_ball,[]).
init(ball_free,[]
init(player_2_dribbles_ball,[]).
init(ball_in_goal,[]).

Figure 6: State hierarchy in Prolog for the example in Fig. 2.

sequential quadratic optimization (SQP) which can cope very well
with the quadratic structure in the motion dynamics here.

5. OPTIMIZATION CONSTRAINTS AND
CONSTRAINT LOGIC PROGRAMMING

With the approach presented so far, it is easily possible to ex-
press an entire MRS and perform optimality analyses. However,
structure information from the specification is lost because the state
machine for discrete state changes cannot be expressed explicitly,
but only by equations. Therefore, it is useful to employ CLP [19]
as then constraint solving for optimization tasks and logic program-
ming are combined. In the following, we will focus on implement-
ing HHA by using logic programming.

A pure state machine for discrete changes can easily be imple-
mented in the declarative programming language Prolog [7]. Fig. 5
shows a meta-program realizing the state machine. It mimics steps
according to Def. 5 in the predicate step and completion according
to Def. 4 in the predicate complete. Configurations are encoded
in Prolog lists, where the head of a list corresponds to the root of
the respective configuration tree. The initial, completed configu-
ration for the example in Fig. 2 e. g. can thus be represented as
[game_is_running,[ball_is_free]].

The Prolog code for the concrete specification (shown in Fig. 6)
contains the fact start denoting the state s0 and facts for the initial
states (predicate init). The latter predicate is also used for simple
states (in this case the list of initial states is empty) and concurrent
states (then this list contains more than one state – one for each
region). The predicate trans realizes the transitions; it contains
the jump conditions and actions of the respective transition in the
body. This Prolog implementation technique has been applied suc-
cessfully in the RoboCup 2D soccer simulation league (see [23]).

If we employ a CLP system like Eclipse Prolog [16], we can im-
plement the discrete state machine in pure Prolog, while the state



evolve(Sit1,Sit2) :-
discrete_step(Sit1,Sit2)

; continuous_step(Sit1,Sit2).

discrete_step((Conf1,Var1,T),(Conf2,Var2,T)) :-
transition(...).

continuous_step((Conf,Var1,T1),(Conf,Var2,T2)) :-
flow(...),
T2 $> T1.

Figure 7: CLP scheme for HHA.

transitions and the checking of all state and jump conditions can be
handled by the constraint solver. There are CLP systems that can
even solve differential equations [14]. Furthermore, optimization
tasks and more symbolic model checking can be done with con-
straint languages. The constraint solver supports two tasks: on the
one hand, simple Prolog queries allow us to express reachability
analysis, as can be done with standard model checkers like HyTech
[13]; on the other hand, optimization tasks can be solved by em-
ploying built-in constraint solvers for integers and reals [16].

Fig. 7 shows the scheme for HHA in CLP. It allows the treatment
of HHA descriptions in Prolog notation. Optimization, jump con-
ditions, and flows can be expressed by constraints. The respective
predicates are prefixed with $. This leads to efficient processing
in reachability and optimization analyses. This is the subject of
ongoing work.

6. CONCLUSIONS
In computer science, the design and analysis of multiagent sys-

tems has been treated extensively. Unlike agents in the virtual
world, MRS performance is governed by the laws of physics, real-
time and uncertainty. In this paper, MRS are considered, whose
physical motion dynamics, disturbances, and uncertainties allow a
deterministic model consisting of logic operations, differential, and
algebraic equations. The aim is to optimize and analyze system be-
havior. With a combination of constraint logic (CLP) and mixed
integer programming (MIP) the whole system can be modeled for
optimization while retaining its structure information. Thus, we
can produce highly efficient multiagent systems as far as the mo-
tion dynamics can be linearized with sufficient accuracy. Using
CLP and MILP, makes it possible, e. g., to create, analyze, and con-
trol a team of robots playing soccer or, for a more serious propose, a
swarm of robots monitoring and checking a sewage network. Even
the design of rescue robots could benefit from this work and lead
to a consistent and verified behavior control.
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