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Dynamic Parameter Identification for the CRS A460 Robot

Katayon Radkhah, Dana Kulic, and Elizabeth Croft

Abstract— Dynamic Parameter Identification is a useful tool
for developing and evaluating robot control strategies. However,
a multi degree of freedom robot arm has many parameters, and
the process of determining them is challenging. Much research
has been done in this area and experimental methods have
been applied on several robot arms. To our knowledge, there is
currently no set of inertial parameters, either by modelling
or by estimation, available for the CRS A460/A465 arm, a
popular laboratory table top robot. In this paper we review
and compare a number of methods for dynamic parameter
identification and for generating trajectories suitable for esti-
mating the identifiable dynamic parameters of a given robot.
We then present a step by step process for dynamic parameter
identification of a serial manipulator, and demonstrate this
process by experimentally identifying the dynamic parameters
of the CRS A460 robot.

I. I NTRODUCTION

This paper describes the process, methodology and results
for the identification of the dynamic parameters of the CRS
A460 robot, a typical laboratory scale robot with a payload
of 1kg, by applying a direct procedure [1]. The inertial
parameters of manipulator loads and links mass, center of
mass and movements of inertia are required in order to
design model based controllers for high speed, accurate,
robot motion and force interaction.

Robot manufacturers typically do not release such infor-
mation and may not have complete information at hand.
Since the PID controllers which are provided by the manu-
factures do not take link dynamics into account, there is also
no inducement for them to determine these parameters.

Estimating the parameters by disassembling the robot
and weighing and balancing the components is complex
and time consuming. Another method would be to enter a
computer model of the arm into a CAD/CAM database, but
the accuracy of these models is not clear and would likely
require at least some disassembly of the robot to produce
an accurate model. Thus, dynamic parameter identification
methods have gained importance for developing model based
controllers.
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Some link inertial parameters may not be identifiable
due to the manipulator’s particular geometry. Reasons for
unidentifiable parameters include restricted motion near the
base and the lack of full force-torque sensing at each joint.

In order to identify the dynamic parameters of a robot arm
the dynamic robot model is formulated as:

τ = φ(q, q̇, q̈)θ , (1)

whereτ is the torque,φ(q, q̇, q̈) represents anxr regressor
matrix. The regressor matrixφ(q, q̇, q̈) depends on the joint
angles, velocities, and accelerations. The dimensionr indi-
cates the number of robot parameters andn is the number of
degrees of freedom of the robot. Ther-vector, θ , contains
the unknown inertial parameters. In order to determine the
inertial parameters, a simple least-squares (LS) method can
be applied. However, the regressor matrixφ retrieved from
the kinematic calculation of the manipulator arm leads to a
non-invertible matrix-productφT ∗φ since it is not full rank.

Khosla [2] proposes a parameter categorization technique
(also “robot model reduction” [3], [4]). By categorizing
dynamic parameters, a minimum set of parameters affecting
the equations of motion of anN-degrees-of-freedom (DOF)
manipulator can be determined. Furthermore, this set of pa-
rameters is used to determine whether a given identification
trajectory is persistently exciting, leading to a more robust
estimation procedure. The maximum number of parameters
to be estimated depends on the trajectory used and the
kinematic structure of the manipulator.

The generation of trajectories that excite the robot dynam-
ics is the main issue discussed by Armstrong in [3]. Analysis
of two identification experiments described in [5] show that
intuitively chosen trajectories are likely to provide poor
excitation. Employing optimization to maximize excitation
considerably improves the accuracy of the parameter esti-
mates. In general, a good choice of trajectory results in good
excitation and accurate estimates of the robot parameters.
Parametric optimization in frequency domain was tried by
Sweverset al. [4] with some success.

Swevers [4] claimed that existing excitation trajectory
design do not consider the uncertainties of the measurements
of the parameter estimates. Their approach differed from
previous methods in the parametrization of the excitation
trajectory and in the optimization criterion. The authors
chose a finite fourier series for each joint to guarantee
periodic excitation. Periodic excitation enables time-domain
data averaging and estimation of the characteristics of the
measurement noise which is useful for maximum-likelihood
(ML) parameter estimation. Furthermore, the joint velocities
and accelerations can be calculated in an analytic way from
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the measured position response. It also becomes possible to
specify the bandwidth of the excitation trajectories. Instead of
the often used condition number of the parameter estimation
problem which only applies to a deterministic framework,
the optimization criterion is the uncertainty on the estimated
parameters or a lower bound for it. This second approach
applies to the case at hand, namely a stochastic (errors
in variables) framework. The authors show in simulations
that, this criterion yields parameters estimates with smaller
uncertainty bounds than trajectories optimized accordingto
the classical criterion.

In the following section we will explain the methodology
for dynamic parameter identification. Section 3 explains our
implementation and Section 4 presents our experimental
results. In Section 5 we discuss our approach and section
6 concludes the paper.

II. M ETHODOLOGY

Each rigid link is described by 10 inertial parameters: its
mass, the position vector of its center of gravity with respect
to the base frame scaled by the link mass, 3 inertia moments,
and 3 inertia products. Thus, an n-link manipulator has 10n
dynamic parameters to be estimated. The algorithm consists
of the following several steps:

• Using the Newton-Euler formalism, generate a robot
model that is linear in terms of the inertial parameters;

• reduce the inertial parameters set to a base set;
• determine the optimal trajectory parameters and opti-

mize the excitation of the trajectories;
• estimate the link parameters using a standard least-

squares procedure.

A. The Newton-Euler formulation

The Newton-Euler formulation computes the inverse dy-
namics in two sets of recursions: the forward and backward
recursions. Considering the limited number of pages we do
not present the Newton-Euler (NE) equations in full length.
For the complete derivation of the dynamic robot model
please see [6].

To achieve a linear formulation of the NE equations the
inertias need to be expressed in their respective joint frame
instead of their center of mass frame by using the parallel-
axis theorem (Steiner’s law) as mentioned in [5].

The actuating torque of every joint can then be described
as follows:

τi =

(

(Ri−1
i )t(1−σi)k̂
(Ri−1

i )tσi k̂

)t

γi . (2)

whereRi−1
i is the orthogonal rotation matrix from linki−1

into link i, σi is 1 in case joint i is a rotational joint, else 0,
and k̂ is the standard unit vector for thez-axis. γi is the 6x1
vector containing the forcefi and momentni exerted on link
i by link i −1:

γi =
(

fi ni
)t

= Di
i+1γi+1 + Γi, (3)

whereDi
i+1 is the 6x6 pseudo-rotationmatrix,

Di
i+1 =

(

Ri
i+1 0

[pix]Ri
i+1 Ri

i+1

)

, (4)

with [pix] being the skew symmetric matrix of the vector
pi . Γi contains the net force and moment exerted on link
i. The categorization of the dynamic parameters requires
explicit expressions for the vectorγi . Therefore the vectorΓi

is decomposed as the productΓi = Ki ∗θi of matrix Ki , which
is a function of the kinematic parameters and the desired
trajectory, and a vectorθi whose elements are the dynamic
parameters of the manipulator as described in [2].

Assuming that the vector of externally applied forces and
moments is zero, with the above expansions the equation of
γ6 of a robot arm with 6 joints can be rewritten as:

γ6 = Γ6.

Implementing the backwards recursion for all remaining
joints, we obtain the finalized linear model (1). Since, the
regressor matrix for a 6 joint robot is a 6x60 matrix, i.e., six
equations and sixty unknowns, the torque of all joints must
be sampled in at least 10 different manipulator configurations
to solve forτ for all joints. Because of measurement noise
more configurations are obviously even more desirable. The
joint torques are inferred from the motor current. However,to
infer the torques from the motor current a knowledge of the
motor/torque constant is required. Since the motor constant
of all joints might not always be known, experiments are
required to experimentally determine this value, as described
in Section 5.

The regressor matrix retrieved from this procedure is
not invertible due to loss of rank from restricted degrees
of freedom at the proximal links and linear dependencies
between the columns ofφ . Thus, in the following we describe
a numerical procedure for the parameter categorization.

B. Model Reduction

The model reduction divides the inertial parameters into
the three sets: identifiable, unidentifiable, and identifiable
in linear combinations. To categorize the parameters the
retrieved matrix-vector formulation of the dynamic robot
model (1) is numerically analyzed, similarly to [7], in order
to determine the linear dependencies of the columns ofφ .

For this step letU , S, andD be the set of unidentifiable
parameters, identifiable parameters, and parameters that are
identifiable in linear combinations respectively. The final
base set of identifiable parameters received from this pro-
cedure is calledDBS.

1) ChooseN random sets of joint positionsq(k), velocities
q̇ and accelerations ¨q (N ≥ 10).

2) Build for each of these setsk the matrix
φ(q(k), q̇(k), q̈(k)) and combine them into one
matrix

φtot =











φ(q(1), q̇(1), q̈(1))
φ(q(2), q̇(2), q̈(2))

...
φ(q(N), q̇(N), q̈(N))











=
(

fc1 fc2 · · · fcr
)

.

fci represents thei-th column of matrixφtot.
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3) Calculate the rank r ofφtot. The rank of φtot then
determines the size of the base setDBS, i.e. the number
of linearly independent columns.

4) Eliminate the columns ofφtot whose norms are equal to
zero. The eliminated columns correspond to the set of
unidentifiable parametersU .

Repeat step 5 for all columnsfci of the reduced matrixφtot

and their corresponding parametersθi .

5) Calculate the rank of the matrixφtot without the i-th
column fci (rwi). If rwi is less than the rank r calculated
above, then addθi to the set of identifiable parameters
S. Furthermore, addθi to the base setDBS and to the
matrix L. Matrix L contains the linearly independent
columns related to the parameters already present in
subsetDBS. Else, check the linearity betweenfci and
the rest columns as follows:

– Calculate the rank of matrixL. Add fci to the matrix
L.

– If fci increases the rank of L, then addθi to DBS.
– Else, eliminate columnfci from both matrixL and

φtot. Add θi to the set of identifiable parameters in
linear combinationsD. Calculate the linear depen-
dency betweenfci and the columns ofL:

fci = Lαi

αi = (LtL)−1Lt fci.

Vector αi determines the linear dependencies be-
tween fci and the columns ofL. Let DBSV be
the vector containing the parameters inDBS. Then
θi can be represented by a combination of the
parameters inDBSV.

θi = Dt
BSV∗αi .

At the end of this procedure matrix L is equal to the final
reduced matrixφtot. Equation (1) with the new reduced
matrix φtot is the basis for the optimization of the robot
excitation and the estimation of the dynamic parameters.

Since the categorization of parameters is a function of
the trajectory, it is possible to change the category of a
parameter by selecting a different trajectory. If the complete
set of dynamic parameters has been determined then it is
not possible to upgrade the category to which a parameter
belongs, but as we have discussed earlier the reverse is not
true. It is possible to degrade a parameter’s category by a
suitable choice of trajectory.

C. Parametrization of the Robot Trajectories

For excitation trajectories we use the finite Fourier series
suggested in [4], i.e., finite sums of harmonic sine and cosine
functions. The angular positionqi for the ith joint can thus
be written as:

qi(t) =
Ni

∑
l=1

(
ai

l

ω f l
sinω f lt −

bi
l

ω f l
cosω f lt )+qi0,

∀i ∈ [1. . .n],

wheren is the number of joints andω f is the fundamental
pulsation of the Fourier series and thus the series have a time
periodTf = 2π/ω f . The motion of each jointi depends on
2Ni +1 parameters,ai

l , andbi
l for l = 1 to Ni , which are the

amplitudes of the sine and cosine functions, andqi0 which
is the offset on the position trajectory. In order to preserve
the periodicity of the overall robot excitation, the trajectory
frequency is common for all joints. As already mentioned,
it is now possible to average the motion and torque data
and estimate the variance of the noise on these data using
the following formulas in [6]. Time-domain data averaging
improves the signal-to-noise ratio of the experimental data
which is important because motor current (torque) mea-
surements are very noisy. Furthermore, joint velocities and
accelerations can be calculated from the measured response
in an analytic way.

D. Optimization of the Parameterized Robot Excitation Tra-
jectories

Under the assumption the measured joint angles are free
of noise, the covariance matrix of the estimated model
parameters equals

(φ t
totΣ−1φtot)

−1. (5)

The above expression depends on the exact joint angles,
velocities and accelerations which correspond to the designed
excitation trajectory. Thus, the optimization of the inertial
parameter covariance matrix as a function of the trajectory
parametersδ does not require the knowledge of the exact
inertial parameter vectorθ . Since the covariance matrix of
the Maximum-Likelihood-Estimation converges asymptoti-
cally to the Cramér-Rao lower bound, the inverse of the
Fisher information matrix, only the knowledge of the exact
model parameter vectorθ is required. However, an exact
model parameter vector is not known. Initial experimental
data, can be obtained from a robot excitation that has been
optimized according to the condition number of matrixφtot.
In the Implementation section we will describe our method
to obtain a “good initial guess”.

In an iterative procedure the Cramér-Rao lower bound
is minimized as a function of the trajectory parametersδ ,
resulting in a new excitation trajectory. Robot excitation
and parameter estimation can be repeated until convergence
occurs. Since the covariance matrix or its Cramér-Rao lower
bound can not be optimized in matrix sense, we use a
representative scalar measure suggested by Ljung [8], the
d-optimality criterion: − logdetM, with M the covariance
matrix or its Cramér-Rao lower bound. This scalar measure is
beneficial because its minimum is independent of the scaling
of the parameters and it also has a physical interpretation:
the determinant ofM is related to the volume of the highest
probability density region for the parameters.

E. Link Estimation of the Robot parameters

Due to model reduction the regressor matrix is now
invertible; i.e., we can proceed with a standard least-squares
estimation procedure. The procedure can be used to average
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many data points and compensate for noise. The optimization
of the parameterized robot excitation trajectories gave us
the most optimal coefficients for the finite fourier series.
With these parameters the optimal joint trajectories, respec-
tively the regressor matrix can be calculated. As previously
mentioned, at least 10 different manipulator configurations
are necessary to solve forτ for all joints. Trajectories with
more than 10 time instants will give better and more reliable
results. The regressor matrices at time instantst1, . . . ,tN are
combined in one large matrixφtot. Equation (1) can thus be
solved as follows:

θ = (φ t
totΣ

−1φtot)
−1φ t

totΣ
−1τ. (6)

In the following section we describe the implementation for
the link estimation.

III. I MPLEMENTATION

The identification procedure is implemented off-line since
there is no need to perform these calculations online. The
implementation contains several steps which are describedin
their appropriate order in the following. Since the problem
we are looking at is an optimization problem, first it is
necessary to make a good initial guess for the trajectory
parameters. Our approach estimates the fourier series param-
eters and the robot parameters simultaneously by minimizing
the global optimality criterion (d-optimality criterion). The
model parametersθ are estimated from the data measured
during a robot excitation experiment. The data are sequences
of joint angles and motor currents from which a sequence
of joint velocities, accelerations, and motor torques are
calculated.

A. Initial trajectory parameters

A good initial guess of the trajectory parameters should
not create joint trajectories that violate the physical robot
limits. Here it should be noted that the initial trajectory,or
respectively any trajectory should not cause the robot collide
with itself or its environment.

In order to generate good initial values for the trajectory
parameters we use a simple least-squares method. Since, for
the CRS A460 robot, the joint velocity constraints (specified
by the robot manufacturer) tend to be the limiting constraints
on the allowable trajectories, the joint velocity constraint
equation is taken as the basis equation for all joints. We
reformulate the finite fourier series for the joint angular
velocity, shown in Section 2, as a single matrix-vector
equation:

Aδi = q̇i , ∀i ∈ [1. . .P], (7)

where:

q̇i =
(

q̇i(1) · · · q̇i(M)
)t

δi =
(

ai
1 bi

1 · · · ai
Ni

bi
Ni

qi
0

)t

A =









s(t1,1)
ω f

c(t1,1)
ω f

· · ·
s(t1,Ni)
ω f Ni

c(t1,Ni )
ω f Ni

1
...

...
...

...
...

s(tM ,1)
ω f

c(tM ,1)
ω f

· · ·
s(tM ,Ni)

ω f Ni

c(tM ,Ni )
ω f Ni

1









TABLE I

FOURIERSERIESPARAMETERS FOR THETRAJECTORIESUSED IN THE

EXPERIMENTS

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
a 0.156 0.064 0.634 -0.197 0.499 0.435

-0.478 -0.335 -0.421 -0.282 -0.135 0.111
0.078 0.451 0.216 0.173 -0.112 -0.245

-0.388 0.292 -0.310 0.154 -0.263 -0.162
-0.070 1.046 -0.357 -0.095 -0.086 -0.442

b 0.088 -0.125 -0.359 0.408 0.552 -0.017
0.253 0.292 0.112 -0.714 0.085 -0.178

-0.207 -0.369 -0.128 0.267 -0.184 0.340
0.549 0.557 -0.069 0.291 -0.065 -0.552
0.150 0.964 0.183 0.751 0.116 -0.089

q0 0 1.813 -1.184 0.087 -0.415 0.124

with s(t, l) = sinω f lt and c(t, l) = cosω f lt . By using a
random set of 100 possible velocities we ensure that a
wide range of exciting position and acceleration trajectories
in space are obtained. The coefficient vectorδi is then
determined by the following equation:

δi = (AtA)−1At q̇. (8)

In order to check the trajectories on possible violations
of the constraints, the position, velocity, and acceleration
trajectories are evaluated. This is discussed later in this
section.

B. Optimization

For the optimization part we used the constrained mini-
mization function “fmincon” of the Optimization Toolbox of
Matlab. This function uses a sequential quadratic program-
ming method. The Matlab function requires: (1) a Matlab
function calculating the value of the d-optimality criterion
given a set of trajectory parameters, (2) a Matlab function
calculating a value which is negative if all constraints are
satisfied and positive if one of them is violated. If knowledge
of the possible boundaries on the trajectory parameters is
available, it is also possible to use unconstrained optimization
functions such as “fminsearch” or “fminunc”. Due to the
optimized starting values for the trajectory parameters the
optimization was completed after 3 iterations. Thus, it was
possible to quickly retrieve the values for the inertia values.
The finally retrieved coefficients for the most optimal design
of the trajectories for the robot are presented in Table I.

The generated joint trajectories are presented in Fig.(1).

IV. EXPERIMENTS

In order to validate the above introduced methodologies
and run the experiments, the CRS A460 Open Architecture
Controller [9], [10] was used.

A. Measurement of the Robot Motor Electrical Constants

As explained in Section 2, both the torque and the re-
gressor matrix can be experimentally estimated from the
robot. However the torque is often not directly available.
It can be received from a multiplication of the current
and the torque constant. But the torque constant being an
important parameter in modeling and controlling a robot axis
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Fig. 1. Trajectories for joints 1,2,3,4,5,6

may vary considerably from the manufacturer’s specification.
Therefore it might be necessary to measure the torque
constant. For the CRS A460 robot the torque constants of
joint 4,5, and 6 were known. However, to be able to compare
our results, we determined all the torque constants. For
this in situ measurement we used a simple experimental
method based on the equivalence of the motor torque and
back EMF (electro-motive forcemeasured in Volts) constants
developed by Corke [11]. For further details concerning the
characteristics of the robot we refer to the CRS manual [12].

B. Velocities and Acceleration

Since the trajectory is designed to be smoothly contin-
uous, no filtering is done to calculate the derivatives of
the input signal. First order difference equations are used.
The derivative calculations on encoder inputs, however, are
filtered because the joint angle signal is quantized due to
the finite resolution of the encoders. One can note that, we
are not analytically determining the data sequence for the
joint velocities and joint accelerations, but we are using the
experimental values.

C. Analysis of the Results

For the estimation results 10000 data points were sampled.
The manipulator executes 6 sets of finite fourier series
described in Section 2 with the following starting and ending
points in degrees:

Joint 1: -23.04, -22.99
Joint 2: 82.94, 82.86
Joint 3: 38.01, -38.00
Joint 4: -28.08, -28.07
Joint 5: -73.00, -72.99
Joint 6: 20.64, 20.66

Mean values of joint positions, velocities, accelerationsand
currents of 18 periods were calculated and used to retrieve
the dynamic parameters. As already mentioned in the intro-
duction, we intend to identify the 60 dynamic parameters
of the robot arm. The results of our experiments are that 9

dynamic parameters are not identifiable, 15 parameters are
identifiable only in linear combinations of the identifiable
parameters, and 36 parameters are identifiable. However,
a small number of parameters (10 out of 51 combined
parameters, but only 4 out of the 36 identifiable parameters)
do not have reasonable values [13], [14]. The remaining 32
identified parameters are presented in Table II. By compari-
son, in [4] only 15 out of the 30 parameters of the axis 1,2
and 3 are identified, and 7 out of the identified ones are not
valid.

Our exciting joint trajectories were optimized based on
the condition number, since, contrary to statements in [4],
[7] there was a small improvement in the condition number
over the d-optimality criterion. The number of invalid values
increases the more the condition number increases. Because
of the past and existing research on dynamic parameter
identification we were not expecting to identify all of the
parameters. The missing parameters seem not to have any
effect on the control of the arm, particularly the masses of
link 4, 5 and 6. If we install the robot on a mobile base,
we might also be able to identify also the 9 unidentifiable
parameters of axis 1.

V. D ISCUSSIONAND FUTURE WORK

It may not be possible to experimentally identify all
parameters of a dynamic model and identification of reduced
models and direct measurement of some parameters should
be considered. It should be mentioned that the following
sources of error may exist:

- Sensor Error: The ultimate source of error is the random
noise inherent in the sensing process itself. The noise
level in position sensing is probably negligible and can
be further reduced with a model-based filter such as the
Extended Kalman Filter.

- Unmodeled dynamics: Flexibility in the robot joints
and load might be one source of unmodeled struc-
tural dynamics. Another source of greater concern is
the potential compliance of the force sensor itself. To
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TABLE II

IDENTIFIABLE DYNAMIC PARAMETERS

Iyy1 4.5870 Ixx4 1.1344
m2 17.3190 Ixy4 0.2872
m2∗ rcx2 -6.4811 Ixz4 0.6251
m2∗ rcy2 1.5141 Iyz4 0.0593
m2∗ rcz2 -0.7113 m5∗ rcx5 -0.8743
Ixy2 0.2604 m5∗ rcz5 -0.2604
Iyz2 1.4234 Ixy5 -0.5673
m3∗ rcx3 -1.1787 Ixz5 0.0145
m3∗ rcz3 1.4229 Iyz5 0.7508
Ixx3 1.5213 m6∗ rcx6 0.7508
Iyy3 1.0473 m6∗ rcy6 -0.0221
Ixy3 -1.0187 Ixx6 0.6623
Ixz3 -0.2617 Izz6 0.4579
Iyz3 -0.9041 Ixy6 0.5240
m4∗ rcx4 -0.1602 Ixz6 0.6552
m4∗ rcy4 -1.2604 Iyz6 0.3980

(masses are expressed inkg, first order moments inkgm,
inertia moments and products inkgm2)

avoid exciting these unmodeled dynamics smooth robot
trajectories should be chosen. This way the continuity of
velocities and accelerations can be maintained. A possi-
ble approach is to damp out the vibrations mechanically
by introducing some form of energy dissipation into
the structure tuned to permit measurement at desired
frequencies. Much more relevant are the friction and
the effects of the rotors of the motors. We are currently
continuing work to extend our model to include the joint
friction as well.

- Torque Constant: A systematic error in the unknown
motor torque constantsKT , might be reflected as well
in the dynamically estimated parameters.

VI. CONCLUSIONS

This paper presented a clear and complete development
of the full procedure for estimating the dynamic parameters
of any multi-link robot structure. We were able to determine
how well the inertial parameters can be estimated through the
presented approach, given sources of noise in sensors and in
signal processing and limitations in robot position, velocity
and acceleration. Furthermore, we also presented a model
reduction and parameter classification for the CRS A460/465
robot. We characterized which link inertial parameters can
be separately identified or need to be identified in linear
combinations, given limitations on sensing and restrictions

on movement near the manipulator base. Using optimally
designed joint trajectories we were able to identify the
dynamic parameters for the CRS A460/465 arm. In our
experiments we observed that the optimization based on
the condition number had advantages over the d-optimality
criterion. Further investigations are necessary to prove the
validity of this statement in general for dynamic parameter
identification experiments.
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