
Preprint of a manuscript submitted to:
IEEE Transactions on Magnetics

1

Mixed-Integer Nonlinear Design Optimization of a
Superconductive Magnet with Surrogate Functions

Thomas Hemker∗, Herbert De Gersem‡, Oskar von Stryk∗, and Thomas Weiland†
∗ Simulation, Systems Optimization and Robotics, Department of Computer Science,
Technische Universität Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany,

{hemker, stryk}@sim.tu-darmstadt.de
‡ Subfaculteit Wetenschappen, Katholieke Universiteit Leuven, Campus Kortrijk, Belgium,

herbert.degersem@kuleuven-kortrijk.be
† Institut für Theorie Elektromagnetischer Felder, Fachbereich 18 Elektrotechnik und Informationstechnik,

Technische Universität Darmstadt, Schloßgartenstr. 8, 64289 Darmstadt, Germany
thomas.weiland@temf.tu-darmstadt.de

Abstract—The numerical optimization of continuous param-
eters in electrotechnical design using electromagnetic field sim-
ulation is already standard. When integer-valued variables are
involved, the complexity of the optimization problem rises dras-
tically. In this paper, we describe a new sequential surrogate
optimization approach for simulation-based mixed-integer non-
linear programming problems. We apply the method for the
optimization of combined integer- and real-valued geometrical
parameters of the coils of a superconductive magnet.

I. INTRODUCTION

Besides random search and sampling methods, surrogate
optimization techniques have been found to be powerful for
overcoming the specific difficulties involved in the numerical
solution of simulation-based nonlinear programming (NLP)
problems, especially as occurring in engineering design.

Typically, optimization algorithms rely on simulation codes
that are organized as black box objective function generators.
A function evaluation may require much computational time
and usually do not provide any gradient information, which
is required by efficient mathematical optimization methods.
Furthermore, iterative procedures, heuristic decisions, low-
order approximations of tabular data, spatial and temporal
discretization technique or, in general, any kind of numerical
method embedded in the simulation code results in noisy
objective function evaluation, which rules out the application
of Newton-type or, in general, other gradient-based methods.
The use of finite differences as approximation to the gradi-
ents is not recommended. If, in addition, some optimization
variables are integers, the problem complexity grows even
further. Even when functions evaluations in analytical form
are available, mixed-integer nonlinear programs (MINLP) are
challenging optimization problems. MINLPs receive more
and more attention from the optimization community. In
the context of simulation-based optimization, however, only
computationally expensive random search methods like e.g.
genetic algorithms are commonly applied. Especially in the
presence of integer-valued optimization variables beside of
continuous-valued ones and in the presence of constraints that

do not reduce to box constraints, it is clear that more efficient
solvers are necessary.

For the application considered in this paper, the homogene-
ity of the magnetic field in the aperture of a superconductive
magnet is determined by the geometry of the coil. Especially
the position of the coil blocks and the number of turns in each
coil block are influencing the quality of the aperture field.
The layout of the coils has to obey mechanical constraints
such as, e.g., a minimal distance between two adjacent coil
blocks. Invoking a separate real-valued optimization for every
possible distribution of the integer number of turns over
the coil blocks is not feasible by the underlying numerical
simulation. Hence, a constrained, mixed-integer nonlinear op-
timization has to be carried out. The main idea of this paper
consists of the application of sequentially improved surrogate
functions to approximate the objective function for this design
optimization problem. By that, the main barriers for applying
well-known MINLP strategies are removed and a branch-and-
bound approach can be applied in order to reduce the MINLP
problems in each iteration to a number of analytically given
and differentiable NLP problems. The NLP subproblems are
solved by using a sequential quadratic programming method.
The proposed approach is illustrated by an optimization task
involving a superconductive-magnet design.

II. PROPERTIES OF THE CONSIDERED DESIGN
OPTIMIZATION PROBLEM

The function evaluations involve 2D nonlinear magneto-
static field simulations. The partial differential equation
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where ν is the reluctivity, Az(x, y) is the z-component of
the magnetic vector potential and Jz(x, y) is the z-component
of the applied current density, is discretized by linear finite-
element (FE) shape functions. Due to symmetry, only a quarter
of the magnet cross-section has to be modeled (Fig. 1).
The FE solver is equipped with adaptive mesh refinement
controlled by a heuristic error estimator based on the locally
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stored magnetic energy [1]. This is absolutely necessary to
guarantee a reliable function evaluation for every geometry
suggested by the optimizer. The nonlinearity caused by the
ferromagnetic saturation in the iron yoke is resolved by the
Newton method. The BH-characteristic has been improved in
order to accelerate the convergence of the Newton method and
to reduce the numerical noise due to measurement errors [2].

The quality of the design depends on the homogeneity of the
magnetic field in the center of the magnet aperture. The radial
component Br of the magnetic flux density at a reference
radius rref is represented by the series expansion, i.e.,

Br (rref , θ) = B1

∞∑

n=1

bn sin(nθ) + an sin(nθ) . (2)

Here, B1 denotes the magnitude of the vertically oriented
dipole magnetic flux density and bn and an are the relative
normal and skew components, evaluated at rref , respectively
[3]. By construction, b1 (rref) equals 1. For a exact dipole
field, all other components are 0. Acceptable values for bn
and an are in the range of 10−4. These field properties are
extracted from the FE solution by evaluating the magnetic
vector potential Az(rref , θ) at a circle with the reference
radius. The potential distribution is converted into a Fourier
series

Az (rref , θ) = <
{∑

n∈S0
cne
−jnθ

}
. (3)

The relative normal and skew components follow from evalu-
ating Br = 1

r
∂Az

∂r at r = rref , yielding bn = n<{cn}/<{c1}
and an = −n={cn}/<{c1}. The field quality factor is defined
by

Q =
√∑

n∈Sb

b2n +
∑

n∈Sa

a2
n (4)

where Sb ⊂ S0 and Sa ⊂ S0 select the relevant components.
The optimization goal is the minimization of Q with the
geometrical constraints mentioned above. Typically only the
continuous valued variables are considered for optimization
which describe the azimuthal distance for each of the np coils
by p, with p ∈ IRnp . Additionally, the optimization algorithm
has to decide on the number of turns applied in each of
the coil blocks, which determines the size of the individual
blocks. These data are represented by integer numbers s, with
s ∈ INns .

The sum of turns on all coil blocks is fixed, and furthermore
a gap of the size of one winding has to be respected between
two neighboring coil blocks. These geometric restrictions lead
to lower and upper bounds as well as linear constraints on the
optimization variables p and s, which are summarized by

pl ≤ p ≤ pu, sl ≤ s ≤ su, (5)

with pl,pu ∈ IRnp , sl, su ∈ IRns , and by

A(pT , sT )T ≤ b, b ∈ IRnb , A ∈ IRnb×(np+ns). (6)

The resulting set of tuples (p, s) of feasible design candidates
for the device is defined by Ω. Equation (4) provides the simu-
lation based objective function value for a certain combination

of (p, s), which has to minimized for a good design. Finally,

min f(p, s) := Q(p, s), subject to (p, s) ∈ Ω. (7)

defines the resulting mixed integer nonlinear optimization
problem.

III. SURROGATE OPTIMIZATION FOR MIXED-INTEGER
NONLINEAR PROBLEMS

The MINLP is summarized in (7). The parameter settings
for p and s are supplied to the magnetic-field simulator,
which returns the resulting objective function value f(p, s)
obtained as a post-processing result to the optimizer. As
already indicated, the real optimization routine is not applied
to the original function f but to a surrogate f̂ for f . The
surrogate function allows to filter the noise introduced by the
underlying numerical simulation and allows the relaxation of
the discrete variables in s.

A. Approximation of a surrogate problem

The approximation of the surrogate problem is based on
an extension of the classical approach from Sacks et al. [4],
known as Design and Analysis of Computer Experiments
(DACE). This extension, proposed in [5], allows to handle
not only continuous, real-valued variables but also discrete,
integer-valued ones in such a way that the simulation-based
objective function is approximated by a stochastic model. The
resulting approximation f̂ is a two component model,

f̂(p, s) =
k∑

j=1

βjhj(p, s) + Z(p, s).

The first and more global part approximates the global trend
of the unknown function f by a linear combination of a
vector β ∈ IRk, and a known fixed function h, with h :
IRnp × IRns → IRnk . For the considered application the idea
of ordinary kriging is followed with a one dimensional β, and
a constant also one dimensional basis function h.

The second part Z guarantees that f̂ fits to f for a number
of feasible system designs, i.e.,

B := {(pi, si)}i=1,...,n ⊂ Ω,

and the related objective functions values,

f(p, s) = f̂(p, s), ∀ (p, s) ∈ B. (8)

This lack-of-fit-part is assumed to be a realization of a
stationary Gaussian random function as originally proposed
by Sacks et al. [4]. The regression parameter β, as well as
the process variance and the correlation parameters for Z, are
estimated by maximum likelihood approach, such that they
bring a maximal consistency to the present objective function
values to which f̂ has to fit, as given in (8).

Under the assumption that the approximated function really
behaves like a Gaussian random process, the expected mean
square error (MSE) of the approximation by DACE gives an
estimation of the approximation quality for a certain tuple
(p, s). This information is needed later during the sequential
update procedure. The main effects of f should be covered
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Fig. 1. 2D design optimization problem of the location and size of the coil blocks (a), the resulting mesh of a considered design (b), and the visualization
of the computed electromagnetic field in the aperture of the magnet (c).

by f̂ , but it is obvious that f̂ is only exact for elements from
the set B. For all other feasible tuples (p, s) /∈ B, the MSE is
larger than zero.

B. Solving a surrogate problem

The approximated surrogate problem carries out a computa-
tional cheap, completely analytically given, and differentiable
surrogate function f̂ , defined on a completely real-valued
domain Ω̂, which is the continuous relaxation of Ω. Therefore,
the use of a decomposition method developed for MINLP, such
as e.g. branch-and-bound (BB) [6], is made possible. Such
methods are normally not applicable to the original objective
function because the underlying simulations are often not
defined for relaxed integer-valued variables. Furthermore, the
surrogate model is not influenced by the noise induced by the
numerical simulation into the original objective function and,
hence, the step by step generated BB-tree of NLP subproblems
can be solved efficiently by sequential quadratic programming
methods, as e.g. described in [7]. It also allows to include the
explicitly given linear and box constraints from equations (5)
and (6) directly into the optimization process on the surrogate
problem.

C. Sequential optimization procedure

The often limited, available computational power requires
to avoid the simulation of a space-filling set of possible system
designs at once. This suggests a more efficient sequential
optimization procedure. First, a small initial set of system
designs Bin = {(p(l), s(l))}l=1,...,k is selected and simulated
in order to generate an initial surrogate optimization problem.
To start the iteration, the minimizer (p(∗in), s(∗in)) of the
initial surrogate problem as the next candidate is evaluated
by the electromagnetic field simulation and added to Bin to
become a new basis B1 of a new surrogate function f̂ (1). This
is repeated in each iteration in order to build new surrogate
problems by extending the previous basis. But if a minimizer
(p(∗j), s(∗j)) during iteration j is inside an ε-ball around
the elements of Bj , the process is forced to find a design
(p(�j), s(�j)) which maximizes the MSE of f̂ (j) in order to get
more information about unexplored areas of Ω̂, respectively Ω.
Another effect of this switching criteria is that the optimization

can not stuck into a local minimum. The described proce-
dure ensures that all earlier obtained information as results
from computationally expensive simulations is included for
the selection of new promising designs during the iterative
approximation and optimization procedure. This is done until a
stopping criteria is satisfied, in our case, after a limited number
of objective function evaluations by the underlying simulation,
or when a design is found with an objective function value
equal or below prescribed value determined by theoretical
consideration about the model.

IV. NUMERICAL RESULTS

A. General settings

The described approach using surrogate functions is imple-
mented using MATLAB and a DACE toolbox [8], combined
with an electromagnetic field simulation software [1]. The
optimization problem is invoked for a fixed number of four
coil blocks and a total number of 32 turns, equivalent to
the variables p ∈ IR3 and s ∈ IN3. The number of linear
constraints resulting from the geometric requirement given by
A and b is 5. The minimal distinction allowed between two
considered design candidates controlled by the size of the ε-
balls introduced in Section 3 is motivated by the manufacturing
tolerance of the real device, which is assumed to be met by
ε = 10−4. During our numerical experiments, it turns out that
best found designs of different applied optimization methods
without mesh adaptation in the numerical simulation are
unstable with regards to small changes in the positions of the
coil blocks, which indicates the necessity of mesh adaptation.
An impression of the discontinuity in the optimization surface
without mesh adaption is given in Fig. 2, where function values
of f are plotted for a grid of 26 variations of the second and
the third coil by steps of 4ε. The resulting change in f is ten
times higher without mesh adaptation, and more than ten times
higher than the lowest found objective function value.

B. Optimization process results

Fig. 3 illustrates the quality improvement of the magnetic
field according to the applied number of simulation calls.
The progress of three optimization runs with an Evolutionary
Algorithm (EA) shown in Fig. 3. Three expert’s guesses for
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(b) Mesh adaptation applied

Fig. 2. Comparison of the optimization surface smoothness without (a.) and
with (b.) one mesh adaption step.
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EA with guess 1, s=[11 8 4]T, p free

EA with guess 2, s=[9 7 5]T, p free

EA with guess 3, s=[8 8 6]T, p free

Surrogate optimization, p and s free

Fig. 3. Progress of three different optimization methods, three runs with
an Evolutionary Algorithm, each with a different discrete design and only
free continuous design variables, and one run with the proposed surrogate
optimization method, with free discrete and free continuous design variables.

the distributions s of the turns over the coil blocks are used
to optimize position of the coils given by p. Around these
three initial expert’s guesses the initial set of points Bin for
approximation is built. It is done by varying each dimension
of each of expert’s guesses separately in both directions as
proposed in [9]. During 3 out of the 4 different optimization
runs a design with an objective function value of less than
10−4 is found in less than 300 simulation calls. It is to
emphasize that the EA was run on the three dimensional NLP,
whereas the surrogate approach was run on a 6 dimensional
MINLP.

All generated design candidates, given by tuples (p, s),
during all iterations of the surrogate optimization approach
are plotted in Fig. 4. The finally obtained best design has an
discrete part s which was not suggested as one of the expert’s
guesses and was not a part of a tuple out of the set Bin. Further
applied approaches of classical design of experiments [10] to
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Fig. 4. Different design candidate separated in p and s evaluated during all
iterations the proposed MINLP approach by surrogate functions.

generate a spacefilling initial sets Bin like Latin Hypercube
sets, grids, or just random sets of points have not carried out
any candidate (p, s) with an objective function even close
to 10−4.

As a further optimization approach, a test version of a
commercial EA is applied. This optimization package is able
to handle mixed integer nonlinear optimization problems even
with linear and nonlinear constraints in its default settings. But
the attempts to find results for a comparison with the surrogate
optimization approach on the 6 dimensional MINLP problem
was not successful. Even after thousands of simulation calls
no design of comparable quality is found by this commercial
EA. Changes in the parameters settings of the EA have not
led to any further improvement.

V. CONCLUSION

The aperture-field quality of the considered superconductive
magnet can be significantly improved on the basis of the
presented surrogate optimization approach: The determination
of the optimal coil geometry only consumed a acceptably
small number of computationally expensive electromagnetic
field simulations, especially if it is considered that the applied
optimization approach solved a 6 dimensional MINLP prob-
lem, in comparison with the EA results of a three dimensional
NLP problem obtained by fixing the integer-valued design
parameters. An expert’s guess is still helpful to start in a
region of good candidates for the magnet design. The proposed
surrogate technique, however, needs in this application only 3
approximate guesses and does not necessitate the optimization
of a large number of optimization problems for each possible
combination of the integer-valued design parameters, as is the
case for standard optimization methods.
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