

Simulation, Systems Optimization and Robotics

Martin Friedmann, Karen Petersen, Oskar von Stryk

Fachbereich Informatik, Hochschulstrasse 10, 64289 Darmstadt www.sim.informatik.tu-darmstadt.de [friedmann|petersen|stryk]@sim.tu-darmstadt.de

Tailored Real-Time Simulation for Teams of Humanoid Robots

Main Concepts

Camera Simulation

•Real-Time rendering based

•Heterogeneous teams of robots may be simulated.

•Easy integration with RoboFrame

•Based on MuRoSimF (Multi-Robot-Simulation-Framework)

•Applications:

- -Tests of behavior control and vision under optimal conditions.
- -Tests of team cooperation
- -Reduced strain on Hardware

Integration of Simulation

 Simulation consist of -Model data of simulated scene -Algorithm modules

on OpenGL

•Optional simulation of distortion caused by lens

Collision Detection and Handling

•Detection and Handling of Collision are independent modules of the simulation

Collision Detection

- Calculates position, depth and normal direction of collision
- •Primitive shapes: sphere, box, cylinder and plane

•Scalable: may be activated for each pair of bodies individually.

•Flexible exchange of simulation algorithms:

-Algorithms may be chosen and combined for each simulated robot individually.

 \geq Simulation can be tailored to individual requirements.

 \geq Simulation is scalable in complexity and accuracy.

Efficient Motion Simulation

•Two O(n) algorithms are provided

Kinematic Walking Simulation

•Simulation method:

-Based on direct kinematics

-Assuption: standing foot is fixed (no sliding of falling) -Recalculation of standing foot for each time-step

Collision Handling

•Calculation of forces and resulting torques

•Rebound based on spring-modell $F_{rebound} = c_1 \cdot d$ depending on depth *d* of collicion

 $F_{friction} = C_3 \cdot V_{rel}$ •Friction based on a viscous friction model depending on relative velocity v_{rol} of bodies

•Surface parameters c, and c, are adjustable for each pair of surface-types.

Each body has an associated surface type.

Results

•Simulation for several scenarios from RoboCup Humanoid League.

•Efficient Simulation for teams of 21 DOF robots on standard computer (Intel Centrino Duo (1.66GHz), 1GB RAM, Intel 945GM chipset):

- •Limitations:
 - -Biped robots -Walking motions

Simplified Dynamics Simulation

- •Simulation method:
 - -Calculate relative motion of robot's limbs by direct kinematics
 - -Sum up all external forces at CoM
 - -Calculate dynamic motion for CoM
- •Allows motion beyond walking

•Not limited to biped robots

-Robot motion only:

- 10 robots using kinematic simulation
- •8 robots using dynamic simulation
- -Motion and one 20 fps camera per robot:
 - •6 robots using kinematic simulation
 - 5 robots using simplified dynamic simulation

