Main Concepts

- Transparent Software-In-the-Loop-Tests for robot control software
- Real-Time Simulation of:
 - Motion
 - Cameras
 - Collision
- Heterogeneous teams of robots may be simulated.
- Easy integration with RoboFrame
- Based on MuRoSimF (Multi-Robot-Simulation-Framework)
- Applications:
 - Tests of behavior control and vision under optimal conditions.
 - Tests of team cooperation
 - Reduced strain on Hardware

Integration of Simulation

- Simulation consist of:
 - Model data of simulated scene
 - Algorithm modules
- Flexible exchange of simulation algorithms:
 - Algorithms may be chosen and combined for each simulated robot individually.
 - Simulation can be tailored to individual requirements.
 - Simulation is scalable in complexity and accuracy.

Efficient Motion Simulation

- Two O(n) algorithms are provided

Kinematic Walking Simulation

- Simulation method:
 - Based on direct kinematics
 - Assumption: standing foot is fixed (no sliding of falling)
 - Recalculation of standing foot for each time-step
- Limitations:
 - Biped robots
 - Walking motions

Simplified Dynamics Simulation

- Simulation method:
 - Calculate relative motion of robot’s limbs by direct kinematics
 - Sum up all external forces at CoM
 - Calculate dynamic motion for CoM
- Allows motion beyond walking
- Not limited to biped robots

Camera Simulation

- Real-Time rendering based on OpenGL
- Optional simulation of distortion caused by lens

Collision Detection and Handling

- Detection and Handling of Collision are independent modules of the simulation

Collision Detection

- Calculates position, depth and normal direction of collision
- Primitive shapes: sphere, box, cylinder and plane
- Scalable: may be activated for each pair of bodies individually.

Collision Handling

- Calculation of forces and resulting torques

 \[F_{\text{rebound}} = c_1 \cdot d \]

 \[F_{\text{friction}} = c_2 \cdot V_{\text{rel}} \]

- Rebound based on spring-model depending on depth \(d\) of collision
- Friction based on a viscous friction model depending on relative velocity \(v_{\text{rel}}\) of bodies
- Surface parameters \(c_1\) and \(c_2\) are adjustable for each pair of surface-types.
- Each body has an associated surface type.

Results

- Simulation for several scenarios from RoboCup Humanoid League.
- Efficient Simulation for teams of 21 DOF robots on standard computer (Intel Centrino Duo (1.66GHz), 1GB RAM, Intel 945GM chipset):
 - Robot motion only:
 - 10 robots using kinematic simulation
 - 8 robots using dynamic simulation
 - Motion and one 20 fps camera per robot:
 - 6 robots using kinematic simulation
 - 5 robots using simplified dynamic simulation