
GermanTeam 2007

The German National RoboCup Team

Thomas Röfer1, Jörg Brose2, Daniel Göhring3,
Matthias Jüngel3, Tim Laue4, and Max Risler2

1 Deutsches Forschungszentrum für Künstliche Intelligenz, Safe and Secure Cognitive
Systems, Robert-Hooke-Str. 5, 28359 Bremen, Germany

2 Fachgebiet Simulation und Systemoptimierung, Fachbereich Informatik, Technische
Universität Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany

3 Institut für Informatik, LFG Künstliche Intelligenz, Humboldt-Universität zu
Berlin, Rudower Chaussee 25, 12489 Berlin, Germany.

4 Fachbereich 3 - Mathematik / Informatik, Universität Bremen, Postfach 330 440,
28334 Bremen, Germany

http://www.germanteam.org

germanteam@tzi.de

1 Introduction

The GermanTeam participates as a national team in the RoboCup Four-Legged
League since 2001. It currently consists of students and researchers from the
Humboldt-Universität zu Berlin, the Universität Bremen, and the Technische
Universität Darmstadt. After winning the technical challenge in 2003 and the
world championships in 2004 and 2005, the team only reached place four in
2006. Therefore, a major overhaul of the whole software system was necessary
in order to stand a reasonable chance in RoboCup 2007. As in previous years,
the team description paper only contains information on improvements not pub-
lished elsewhere. So in addition to the research described here, four publications
were accepted for the RoboCup Symposium 2007 on image-processing [1], on
cooperative world modeling [2], on self-localization [3], and on improving vision-
based distance measurements [4].

This team description paper mainly focuses on changes in the infrastructure
of the team’s software system: first, the new module framework is presented. Af-
terwards, improvements in the behavior description language XABSL are briefly
described. A new framework for performing experiments that require ground
truth is introduced. Finally, the compromise found for modeling ball position
and speed is outlined.

2 Module Framework

2.1 Original Module Framework

The major goal of the original architecture was the ability to support the collab-
oration between the university-teams in the German national team. Some tasks



may be solved only once for the whole team, so any team can use them. Others
will be implemented differently by each team, e. g. the behavior control. The
building blocks of the architecture were called modules. For each module, several
solutions can exist. All solutions of a certain module share the same interface.
Interfaces are comprised of input and output representations. Representations
represent the actual data exchanged between the modules. A rather static set of
modules was defined to be able to play robot soccer in the Four-Legged League.
To be able to easily compare the performance of different solutions for same
module, it is possible to switch between them at runtime. In depictions of the
module layout such as shown in [5], the modules are grouped in the four layers
Perception, World Modeling, Behavior Control, and Motion Control. In its first
incarnation, these layers were strict in the sense that modules in each layer only
used representations provided by the previous layer. However, these rules were
relaxed over time.

In general, the original architecture had a couple of drawbacks:

– The module configuration was quite static. Although adding new solutions
for existing modules was rather simple, adding new modules was not. Any
new control idea had to somehow fit into the existing structure.

– Since all solutions for a module share the same interface, this interface had
to contain the superset of all the representations used by the individual solu-
tions. Therefore, the interfaces lost their function to describe what represen-
tations were actually required, because many of them were only necessary
for some more exotic solutions, but not for the ones actually used in the
games.

– The sets of output representations of the modules were more stable, i. e. they
were rarely changed. Instead, the representations themselves grew more and
more complex over time, because different solutions used different ways to
represent the information. For instance, the position of the ball may be rep-
resented by a 2-D position, an additional co-variance matrix, or a sample-set.
All these different kinds of information were stored in a single representa-
tion, and since not every solution filled in all the fields, certain solutions for
one module only worked together with certain solutions for another module.
There was no support to maintain these kinds of inter-dependencies, and
this resulted in several mistakes, even at competitions.

To avoid these problems in the future, a new module framework was devel-
oped that consists of the blackboard, the module definition, and a visualization
component.

2.2 Blackboard

The blackboard [6] is the central storage for information, i. e. for the represen-
tations. Each process has its own blackboard. Representations are transmitted
through inter-process communication if a module in one process requires a rep-
resentation that is provided by a module in another process. The blackboard



class BallPercept;

class FrameInfo;

// ...

class Blackboard

{

protected:

const BallPercept& theBallPercept;

const FrameInfo& theFrameInfo;

// ...

};

Fig. 1. The blackboard.

itself only contains references to representations, not the representations them-
selves (cf. Fig. 1). Thereby, it is possible that only those representations are
constructed, that are actually used by the current selection of modules in a cer-
tain process. This goes as far that a process that does not contain any module
that uses a certain representation will not contain any code about that rep-
resentation at all. Thus, both the file size of executables and their memory
requirements stay minimal. For instance, the process Motion does not process
camera images. Therefore, it neither requires to instantiate an image object (ap-
proximately 100 KB in size), nor to link the corresponding binary file into its
executable, which reduces turn-around times.

2.3 Module Definition

The definition of a module consists of three parts: the module interface, its
actual implementation, and a statement that allows to instantiate the module
(cf. Fig. 2). The module interface defines the name of the module (e.g. MOD-
ULE(SimpleBallLocator)), the representations that are required to perform its
task, and the representations provided by the module. The interface basically
creates a base class for the actual module following the naming scheme Module-
NameBase. The actual implementation of the module is a class that is derived
from that base class. It has read-only access to all the required representations
in the blackboard (and only to those), and it must define an update method
for each representation that is provided. As will be described in Section 2.4,
modules can expect that all their required representations have been updated
before any of their provider methods is called. Finally, the MAKE MODULE
statement allows the module to be instantiated. It has a second parameter that
defines a category that is used for a more structured visualization of the module
configuration (cf. Sect. 2.6). The categories resemble the idea of the layers in the
original architecture.

The module definition actually provides a lot of hidden functionality. Each
PROVIDES statement makes sure that the representation provided can be con-
structed and deconstructed (remember, the blackboard only contains references),
and will be available before it is first used. In addition, representations provided



MODULE(SimpleBallLocator)

REQUIRES(BallPercept)

REQUIRES(FrameInfo)

PROVIDES(BallModel)

END_MODULE

class SimpleBallLocator : public SimpleBallLocatorBase

{

void update(BallModel& ballModel)

{

if(theBallPercept.wasSeen)

{

ballModel.position = theBallPercept.position;

ballModel.wasLastSeen = theFrameInfo.frameTime;

}

}

}

MAKE_MODULE(SimpleBallLocator, World Modeling)

Fig. 2. Simple example of a module (only #include statements omitted)

can be sent to other processes, and representations required can be received from
other processes. The information that a module has certain requirements and
provides certain representations is not only used to generate a base class for that
module, but is also available for sorting the providers (cf. next section), and can
be requested by a host PC. There it can be used to change the configuration,
for visualization (cf. Sect. 2.6), and to determine which representations have to
be transferred from one process to the other. Please note that the latter infor-
mation cannot be derived by the processes themselves, because they only know
about their own modules, not about the modules defined in other processes.
Last but not least, the execution time of each module can be determined and
the representations provided can be sent to a host PC or even altered by it.

2.4 Configuring Providers

Since modules can provide more than a single representation, the configuration
has to be performed on the level of providers. For each representation it can
be selected which module will provide it or that it will not be provided at all.
In addition it has to be specified which representations have to be shared be-
tween the processes, i. e. which representations will be sent from one process to
the other. The latter can be derived automatically from the providers selected in
each process, but only on a host PC that has the information about all processes.
Normally the configuration is read from a file during the boot-time of the ro-
bot, but it can also be changed interactively when the robot has a debugging
connecting to a host PC.



Input:
P = [p1 . . . pn] : List of selected providers of representations
S : Set of representations provided by other processes, P ∩ S = ∅

Output:
P is ordered so that all representations are provided before they are required

Algorithm:
R := S : Set of representations already provided
for i := 1 . . . n

j := 0 : Number of unsuccessful attempts

while
�
∃r∈requirements(pi)

r 6∈ R
�
∧ j ≤ n− i

P := [p1, . . . , pi−1, pi+1, . . . , pn, pi]
j := j + 1

if j ≤ n− i then R := R ∪ {pi} else fail

Fig. 3. Pseudo code of the algorithm to sort the providers

The configuration does not specify the sequence in which the providers are
executed. This sequence is automatically determined at runtime based on the
rule that all representations required by a provider must already have been pro-
vided by other providers before, i. e. those providers have to be executed earlier.
Figure 3 shows the solution of this constraint satisfaction problem. Basically,
the list of providers is traversed one by one. For each position in the list, it is
check for all remaining providers whether they would be satisfied with all the
representations provided so far. If one is found, it is kept at that position and
the algorithm continues with the next position. If no such provider can be found,
the set of providers is inconsistent and no solution can be found.

2.5 Pseudo-Module default

During the development of the robot control software it is sometimes desirable
to simple deactivate a certain provider or module. As mentioned above, it can
always be decided not to provide a certain representation, i. e. all providers
generating the representation are switched off. However, not providing a certain
representation typically makes the set of providers inconsistent, because other
providers rely on that representation, so they would have to be deactivated as
well. This has a cascading effect. In many situations it would be better to be
able to deactivate a provider without any effect on the dependencies between
the modules. That is what the module default was designed for. It is an artificial
construct—so not a real module—that can provide all representations that can
be provided by any module in the same process. It will never change any of the
representations—so they basically remain in their initial state—but it will make
sure that they exist, and thereby, all dependencies can be resolved. However, in
terms of functionality a configuration using default is never complete and should
not be used during actual games.



Fig. 4. A module configuration as displayed in the GUI

2.6 Visualization

Since all the information about the module configuration can be transferred
to a host PC, it is possible to automatically generate a visual representation.
The graphs such as the one that is shown in Figure 4 are generated by the
program dot from the Graphviz package [7] in the background. Modules are dis-
played as rectangles and representations as ellipses. Because of its special status,
the module default is displayed with red text (cf. Figure 5a). Representations
that are received from another process have a dashed border. If they are miss-
ing completely, they are entirely displayed in red (cf. Figure 5b). The modules
can be grouped by the categories that were specified as second parameter of
MAKE MODULE.

Figure 5 shows the effect of interactively changing the module configura-
tion for the two processes Cognition and Motion. The representation MotionRe-
quest is normally generated in the process Cognition and then transferred to the
process Motion, where it is the input for several modules that generate robot
motion (walking, kicking, etc.). If its generation is deactivated in Cognition, it
cannot be sent to Motion anymore. Hence, it is missing there. This shows that
the visualization is updated instantly for any change in the configuration.



a)

b)

Fig. 5. Changing the module configuration. a) MotionRequest is provided by pseudo
module default in process Cognition (left) and transferred to process Motion (right).
b) MotionRequest is not provided anymore in Cognition, and therefore it is missing in
Motion.

3 Behavior Control

As in previous years, the behavior architecture is based on the successful Ex-
tensible Behavior Specification Language(XABSL) [8][9]. XABSL is a formalism
for the pragmatic design of agent behavior through hierarchies of finite state
machines. In 2006 a new version of XABSL has been released which is available
online [10]. One of the most important new features in XABSL is that a state of
one of the state machines can activate multiple other state machines of the hier-
archy simultaneously, which are then executed in parallel. This means that the
set of active state machines becomes a subtree of the hierarchy of finite state ma-
chines. The GermanTeam makes use of this new feature in order to create a very
versatile behavior control module. For example the behavior control module now
also controls head motions, which was done in a separate complex HeadControl
module in previous years. State machines defining head motion behaviors are
executed in parallel to state machines defining the overall behavior of the robot.
The HeadControl module in the Motion process only performs low level head
motion control, i.e. output of head joint angles from simple motion commands.
Figure 6 shows an example of the state machines being active in parallel while
playing soccer.



Fig. 6. Example of activated state machines, current states, state execution times, and
parameters

4 Ground Truth Environment

For efficiently calibrating and testing many parts of the robots’ software, precise
and reliable reference data is beneficial if not even necessary. For this purpose,
a new ground truth environment is currently integrated into the GermanTeam’s
software architecture. To avoid to proverbially reinvent the wheel, the vision
software of the B-Smart [11] Small Size League team is used. In that system, the
efficient and precise tracking of objects from a global point of view has already
been solved sufficiently (cf. Fig. 7).

The software runs on an external PC inside SimRobot[12], one of the tools
used by the GermanTeam for years. It works with an arbitrary number of con-
nected IEEE 1394 cameras. The perceived information is broadcasted via the

a) b)

Fig. 7. The ground truth environment: a) A robot equipped with a pattern for identi-
fication and rotation detection. b) Camera view on a Small Size field with three AIBO
robots and a ball. The drawings indicate the detected objects.



standard robot communication channel and may thus be provided to the robot
by a simple module inside the framework.

5 Ball Model

Two different modules are in use to calculate the ball model. A Kalman filter
provides the current ball speed and a Rao-Blackwellised particle filter (RBP
filter) provides the ball position. The RBP filter is a method first applied in
the RoboCup domain by Kwok and Fox [13]. Such a filter maintains a set of
particles that represent the posterior over the ball state. Each of them uses
a Kalman filter to model the position and speed conditioned on the discrete
motion mode of that particle. Two different ball modeling implementations are
used because testing during actual games showed that the RBP filter adjusts
very well to reliable detections of the ball. Also when the ball disappears behind
an obstacle, the ball position is approximated accurately for most occurrences.
However, the ball speed calculated by the RBP filter is too erratic to be used
to predict the trajectory of the ball. This especially impedes the behavior of the
goalkeeper. In contrast, the Kalman Filter provides a continuous approximation
of the ball speed, but it is not as flexible as the RBP filter in estimating the ball
position, and it needs a successful detection of the ball in an image to update the
ball model. Therefore a combination of these Filters proved to be most effective.

6 Conclusion

This team description paper mainly presents the infrastructural changes of the
GermanTeam 2007 in comparison to the system of the previous years. Other
improvements are documented in other recent publications. A major goal of the
new base system is to make the development easier and more flexible. Vast parts
of the modules were re-implemented to make the system leaner and faster. A first
indication that this approach may have been the right decision was the success
at the RoboCup German Open 2007 against the 2006 world champion.

References

1. T. Röfer, “Region-based segmentation with ambiguous color classes and 2-d mo-
tion compensation,” in RoboCup 2007: Robot Soccer World Cup XI (U. Visser,
F. Ribeiro, T. Ohashi, and F. Dellaert, eds.), Lecture Notes in Artificial Intelli-
gence, Springer. to appear.

2. D. Göhring, “Cooperative object localization using line-based percept communi-
cation,” in RoboCup 2007: Robot Soccer World Cup XI (U. Visser, F. Ribeiro,
T. Ohashi, and F. Dellaert, eds.), Lecture Notes in Artificial Intelligence, Springer.
to appear.

3. M. Jüngel and M. Risler, “Self-localization using odometry and horizontal bear-
ings to landmarks,” in RoboCup 2007: Robot Soccer World Cup XI (U. Visser,
F. Ribeiro, T. Ohashi, and F. Dellaert, eds.), Lecture Notes in Artificial Intelli-
gence, Springer. to appear.



4. M. Jüngel, H. Mellmann, and M. Spranger, “Improving vision-based distance mea-
surements using reference objects,” in RoboCup 2007: Robot Soccer World Cup XI
(U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, eds.), Lecture Notes in Artificial
Intelligence, Springer. to appear.

5. T. Röfer, R. Brunn, S. Czarnetzki, M. Dassler, M. Hebbel, M. Jüngel, T. Kerkhof,
W. Nistico, T. Oberlies, C. Rohde, M. Spranger, and C. Zarges, “GermanTeam
2005,” in RoboCup 2005: Robot Soccer World Cup IX Preproceedings (A. Breden-
feld, A. Jacoff, I. Noda, and Y. Takahashi, eds.), RoboCup Federation, 2005.

6. V. Jagannathan, R. Dodhiawala, and L. Baum, Blackboard Architectures and Ap-
plications. Academic Press, Inc., 1989.

7. E. R. Gansner and S. C. North, “An open graph visualization system and its
applications to software engineering,” Software Practice and Experience, vol. 30,
2000.

8. M. Lötzsch, M. Risler, and M. Jüngel, “Xabsl - a pragmatic approach to behavior
engineering,” in Proceedings of IEEE/RSJ International Conference of Intelligent
Robots and Systems (IROS), (Beijing, China), pp. 5124–5129, October 9-15 2006.

9. M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel, “Designing agent behavior
with the extensible agent behavior specification language XABSL,” in RoboCup
2003: Robot Soccer World Cup VII (D. Polani, B. Browning, A. Bonarini, and
K. Yoshida, eds.), vol. 3020, Springer, 2004.

10. M. Lötzsch, M. Jüngel, M. Risler, and T. Krause, “XABSL web site,” 2006.
http://www.ki.informatik.hu-berlin.de/XABSL.

11. A. Burchardt, K. Cierpka, S. Fritsch, N. Göde, K. Huhn, T. Kirilov, B. Lassen,
T. Laue, M. Miezal, E. Lyatif, M. Schwarting, A. Seekircher, and R. Stein, “B-
Smart - Team Description for RoboCup 2007,” in RoboCup 2007: Robot Soccer
World Cup XI Preproceedings (U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert,
eds.), RoboCup Federation, 2007.

12. T. Laue, K. Spiess, and T. Röfer, “SimRobot - a general physical robot simulator
and its application in RoboCup,” in RoboCup 2005: Robot Soccer World Cup IX
(A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi, eds.), no. 4020 in Lecture
Notes in Artificial Intelligence, pp. 173–183, Springer, 2006.

13. C. Kwok and D. Fox, “Map-based multiple model tracking of a moving object,”
in RoboCup 2004: Robot World Cup VIII (D. Nardi, M. Riedmiller, C. Sammut,
and J. Santos-Victor, eds.), no. 3276 in Lecture Notes in Artificial Intelligence,
pp. 18–33, Springer, 2005.


