
RoboFrame - A Modular Software Framework for Lightweight
Autonomous Robots

Sebastian Petters, Dirk Thomas and Oskar von Stryk

Abstract— The complexity of autonomous robot systems has
increased dramatically in recent years. Besides an increased
variety of robots, sensors, actuators, onboard computers and
intelligent algorithms, the architecture of the software has
gained crucial relevance with respect to the efficiency for
adopting a robotic system to new hardware, new software
or new tasks. For evaluation of different robot architectures
and middleware not only a set of set of evaluation criterias
is required. At least equally important for an evaluation is
to define a representative set of the boundary conditions, i.e.,
different types of robots, tasks and scenarios as well as robot
programmers. How the different criteria of an evaluation will
be weighted also depends on these boundary conditions.

To address the special needs of heterogeneous teams
of autonomous lightweight robots, the software framework
RoboFrame has been developed. Its main characteristics are
platform independency, modularity and high efficiency. It is
also bundled with a library of common components for robot
control software, which provides much more support to the
robot programmer than a robot middleware system alone.

I. INTRODUCTION

The number and types of sensors, actuators and degrees
of freedom in todays robot systems is strongly increasing.
More complex scenarios, including autonomous operation in
a (partially) unknown environment or cooperation between
multiple, heterogeneous robots require intelligent algorithms
for sensor data processing, localization, motion control, and
behavior control. As the link between the robot’s hardware
(sensors, actuators and onboard computers) and the various
high level software, the software architecture gains crucial
relevance. A ’good’ robot software architecture must offer
much more than a pure middleware, namely active support
for robot system development. This includes modularity as
well as portability and reusability but also support for the
robot programmers through simplified interfaces, monitoring
and debugging facilities and additional tools like real-time
simulation for software testing without robot hardware.

To decide which software architecture may be best suited
to meet specific requirements a set of evaluation criterias
must be defined. However, there weighting depends on the
specific boundary conditions, i.e., the specific robot hard-
ware, the application scenario and task to be solved, and the
abilities and requirements of the specific robot programmers.
In this paper, we suggest a set of criterias which can be
applied as needed to support the decision process to find a
matching architecture. The set covers the desired platforms,

S. Petters, D. Thomas and O. von Stryk are with the Simu-
lation, Systems Optimization and Robotics Group, Technische Uni-
versität Darmstadt, Darmstadt, Germany {petters, dthomas,
stryk}@sim.tu-darmstadt.de

robot types and control paradigms but also the support of
the architecture during the development process. Further on,
also a possible, induced overhead and the flexibility of the
programming interface is relevant.

Due to a lack of suitable software architectures for
autonomous lightweight systems the platform independent
framework RoboFrame [1] has been developed which is also
presented in this paper. It has been designed to meet the spe-
cial needs of systems with challenging dynamical locomotion
like small size humanoid robots or unmanned aerial vehicles
which impose strong restrictions on the available payload and
thus the available CPU power. Due to its modular design,
the development of control software for different types of
robots with a large variety of reactive and deliberative control
paradigms is simplified and can be accomplished in short
time. Debugging, monitoring and control of applications is
supported by an extendable and also platform independent
graphical user interface.

II. SOFTWARE ARCHITECTURES FOR ROBOT SYSTEMS

The architecture of a software describes the components
and their interaction within an application. It consists of
design decisions which primarily cover aspects of non-
functional characteristics like extensibility, reliability and
usability. The functional components are not part of the
architecture itself but are heavily affected by the architecture.

Modern robot control software uses multiple functional
components for, e.g., sensor data processing, behavior con-
trol and motion control, each of them may be very complex
systems themselves. The main task of the architecture for
robot control software is to provide flexible and reliable
communication mechanisms for data exchange between the
functional parts. This should be realized without restricting
the functional components in any way. For todays robot
applications, mostly middleware systems are used to accom-
plish this task.

A software architecture for robot systems should not
only provide communication mechanisms like a middleware
does, but should additionally offer solutions for common
problems in this specific domain. Implementations of useful
components should be bundled in a library to speed up
the development process by actively supporting the robot
programmers.

III. EVALUATION OF SOFTWARE ARCHITECTURES

To evaluate different software architectures for robot sys-
tems, a set of criterias is required which must be rated on the
background of specific boundary conditions. These boundary



Fig. 1. Boundary conditions for the evaluation of robot software architec-
tures and middleware.

counditions described the specific robots and robot hardware,
their specific application scenarios and tasks to be solves, as
well as the skills and requirements of the robot programmers
(cf. Fig. 1). The weighting of each evaluation criteria depends
on the specific boundary conditions.

A. Boundary conditions

1) Robots: Some architectures are restricted to one type of
robots, e.g., wheeled, legged or airborne, and their specific
characeristics, special types of actuators, sensors, onboard
computers and other hardware. For some kind of robots and
applications an architecture may be suited very well but may
pose large difficulties for another kind.

The robot specific hardware also includes the onboard
computing facilities and the supported operating systems.
Sometimes the choice of an operating system is limited, due
to the fact that some drivers for sensors or actuators are only
available for some, but not all operating systems. Also, the
operating system in use may have to be changed because
of the requirement to use new robots or new robot compo-
nents. If the architecture encourages platform independent
programming, an application may easily be ported to a new
operating system.

2) Robot programmers: The robot programmers consid-
ered here are in charge of developing the high level algo-
rithms and software needed to solve a specific task using
specific robots. They are distinguished from the develop-
ers of the robots basic hardware, software and software
architecture on the one hand and the (possibly untrained)
end-user doing some application programming intuitively
through interaction with the robots. The software architecture
and middleware should enable the robot programmers to
concentrate on their main task. For this purpose, architecture
and middleware should relieve them from taking care about
implementation details of the communication with hardware
components, like sensors or actuators, or between modules
of the high level algorithms. Furthermore, platform inde-
pendent programming should be encouraged and supported
to enable efficient portability and adaptability. Also support
for monitoring, debugging and profiling of all or parts of
robot programs is required as well as the ability to efficiently
interface with additionals tools like real-time simulation for
software testing without robot hardware. These requirements

for the robot programmers also depend on the specific robots
and tasks to be solved.

3) Scenarios and tasks: Very different requirements for
robot software architecture and middleware may result from
the many different robot application scenarios and tasks. A
few examples are mentioned below.

Industrial robots. Usually, industrial robots are stationary
and may therefore be provided with arbitrary computational
power and energy supplies. Because of this, efficiency con-
siderations are less important. Also the robot hardware in
use is very similar and thus does not require much flexibility
from the architecture.

Service robots. Service robots must be to perform house-
hold or guidance tasks and to assist human beings in
their daily life at home or at work. They mostly operate
autonomously and receive orders in a high-level language.
Very different actuators and sensors may be possible, thus
requiring a high flexibility to prepare the robot for different
applications. Also due to a moderate or large payload on
wheeled platforms, quite some amount of energy supplies
and computational power is available.

Ambient intelligence. In this scenario the robots are part of
an environment (in human residences or offices) in which a
multitude of distributed and communicating, small intelligent
devices is embedded, e.g., [3]. In cooperation with the am-
bient intelligence, robots shall support people in their daily
work or accomplish tasks autonomously or in cooperation
with other systems. For this purpose, highly context-aware,
adaptive and personalized systems with seamless communi-
cation interfaces are required.

Autonomous search and rescue missions. This scenario
usually involves teams of heterogeneous robots with very
different capabilities which cooperate with each other and
with human responce forces and mission managers. Possible
applications include autonomous wheel driven and airborne
robots with only very limited payload. Efficiency, scalability
and low communication overhead are of crucial relevance
here. Also an easy integration of different intelligent algo-
rithms and the flexibility for different control paradigms is
important.

Deep space exploration. To explore deep space or other
planets, reliability and increasing autonomy are relevant.
Restricted power supplies requires efficient software and
algorithms.

Robot soccer. In robot soccer, usually homogeneous teams
of robots have to accomplish complex tasks in real time in a
dynamically changing environment. To allow to focus on the
development of algorithms, the robot programmer should be
able to concentrate on high level algorithms for perception,
planning and control and be relieved from focusing on
lower level tasks. Efficiency and tools for debugging and
monitoring are also of major relevance.

B. Evaluation criteria

If a set of boundary conditions of robot, scenario and
programmer has been defined then specific evaluation criteria



of different architectures and middleware can be applied, for
example:

Control paradigms. Some architectures explicitly support
only one of the reactive or deliberative control paradigms
and thus do not offer a choice. With this approach it is not
possible to investigate different control paradigms for a set
of boundary conditions or even change it during the lifecycle
of an application.

Support for the developers. A software architecture can
actively support the developers due to ease of learning
and reuseability of components. The programming interface
should encapsulate implementation details at different levels
and thus expose only the abstraction level needed for im-
plementing a specific task. The architecture can also provide
solutions for common problems in robot control software for
a specific set of boundary conditions, but should also be flex-
ible enough to allow other solutions. Depending on the used
programming languages, the architecture may also provide
tools (i.e. editors, integrated development environments) to
create applications.

Testing, debugging and monitoring. For debugging and
monitoring during development or operation of high level
robot algorithms the architecture should provide an interface
to access the relevant information. This contains the actual
data of the algorithms but also the metadata about the current
state of the robot program itself. For debugging purposes
it is also convenient if the data arising in an example
application can be recorded, modified and replayed. This
allows testing and comparison of algorithms with the same
reproducible input data. Suitable interfaces with additional
tools like a real-time simulator for testing and debugging of
robot programs or tools for profiling robot programs are also
required.

Overhead. For systems with restricted payload and re-
sulting strong limitations in power supplies and onboard
computational power the overhead induced through the use
of a middleware should be low. This requires highly efficient
communication mechanisms and modern software engineer-
ing techniques to provide this also to the parts of the robot
software contributed from the robot programmers.

Scalability. The architecture should be able to scale with
growing complexity of the boundary conditions and high
level algorithms required. This can be caused by more
complex algorithms or by additional sensors and actuators.
E.g., it should be possible to enlarge the number of robots in
a team without adding more overhead for communication.

Software quality. As a base for multiple, different appli-
cations, the architecture itself should have a high software
quality in means of ISO 9126-1 [2]. This standard defines
criteria for evaluating the quality of software with various
characteristics, i.e., functionality, usability, reliability and
maintainability, and divides them into specific properties (see
Table I). Even if measuring these properties is not an easy
task, the standard also suggests metrics for calculation.

Availability. For further development it may be important
if the source code of the software architecture is available
or not. Closed source software involves the risk of lacking

TABLE I
SOFTWARE CHARACTERISTICS AND PROPERTIES (ISO 9126-1)

Characteristics Properties
Functionality Suitability

Accuracy
Interoperability
Compliance
Security

Reliability Maturity
Recoverability
Fault Tolerance

Usability Learnability
Understandability
Operability

Efficiency Time Behaviour
Resource Behaviour

Maintainability Stability
Analyzability
Changeability
Testability

Portability Installability
Replaceability
Adaptability

flexibility, e.g., if required features can not be added.

IV. EXISTING ARCHITECTURES

During the last decades, various robot software architec-
tures have been developed, covering the special requirements
of different scenarios. Three groups of architectures may be
distinguished.

A. Middleware based architectures

These architectures provide a communication layer for
multi purpose robot control software. The targeted robot sys-
tems are mainly equipped with high performance processing
units using standard personal computers.

Miro [4] is a middleware for robot systems based on
CORBA and is designed for multi processor systems. This
is motivated by the observation that larger robot systems are
realized as a network of computers, actuators and sensors
which are equipped with own computational units.

Microsoft Robotics Studio (MSRS) [5] is a service based
middleware not only restricted to but focused on robot
applications. It is based on the Microsoft Compact Frame-
work, uses HTTP as communication protocol and allows
implementation of applications in all .NET programming
languages.

B. Robot device interfaces

The main goal of these architectures is to provide access to
sensors and actuators over the network. The communication
mechanisms do not support the flexibility of the middleware
systems mentioned above.

ORiN [6] provides an integrated interface to access the
devices on the network. It abstracts from the device data
in a way beyond the differences of manufacturers to ease
targeting multi vendor environment.

Player [7] is a client / server architecture which allows
access to a variety sensors over the network. Applications
can be written in any programming language, requires only



network access to the sensors and thus allows the implemen-
tation of distributed or collaborative applications.

CLARAty [8] represents a framework which allows access
to common sensors and actuators. Its main goal is to promote
the reusability of software components. It is bundled with a
vision processing library.

Orca [9] is a component-based system, which uses ICE as
a middleware. It defines a set of commonly-used interfaces
and provides libraries with a high-level convenient API.

C. Integrated robot control software architectures

The integrated robot control software architectures are
mostly targeted to a specific type of application.

URBI [10] is a behavior interface based on a client/server
architecture to control any robot or complex system. It is
based on a scripted language, which can be used to connect
all components – written in any other language – in a parallel
and event-driven way. It furthermore provides abstractions
to manipulate the data and control the flow of execution
between these heterogeneous, distributed objects.

The Orocos project [11] provides a runtime environment
to implement real-time and non real-time control systems.
Furthermore it contains libraries to handle the modeling and
computation of kinematic chains and inference in Dynamic
Bayesian Networks (e.g. Kalman filters).

Saphira [12] is an architecture for robot perception, sen-
sor data interpretation, map building and reactive planning
focused on the needs of wheeled robots. Its main components
are a fuzzy control system and a behavior sequencer.

TeamBots [13] is a Java package used in research and
teaching to implement reactive systems which are able to
learn. Due to the usage of Java it runs on many different
platforms and includes a graphical user interface for simula-
tion purposes.

V. ROBOFRAME

None of the existing architectures fully covers the special
needs of autonomous lightweight robots. These robots are
characterized by challenges in their dynamical locomotion
and stability like unmanned aerial or small and medium size
humanoid robots. Their payload is quite restricted which
severely restricts the computational power and power sup-
plies available onboard. To meet these special needs, the
object-oriented software RoboFrame has been developed at
the authors group. RoboFrame is written in ANSI C++ and
was designed as a software framework using modern soft-
ware engineering technologies. The approach of a framework
has been chosen to enable and facilitate reuse of the archi-
tecture in many different sets of boundary conditions. Each
new application extends RoboFrame at predefined extension
points, more precisely by means of extending (abstract)
base classes. In contrast to a library, the call direction is
reversed, the application specific implementation is called by
the framework. RoboFrame consists of two parts: RoboApp
is the base for any high level software running on the robot,
while RoboGui is the base for a graphical user interface.

A. RoboApp

RoboApp has a platform abstraction layer which encap-
sulates all platform specific calls made to the operation
system. The system dependent abstraction layer handles
threading, synchronization, network and file system access,
serial port communication and various other functionality.
Currently the following platforms are actively supported:
Linux, FreeBSD, Windows 2000, Windows XP and Windows
CE 5. RoboApp has been designed to run with very low
overhead to allow deployment on systems with very low
computational capacity.

An application extends RoboApp by a number of user
defined modules for the different tasks. Each module must
not have any dependency with the other modules, instead
the modules specify the demanded and provided type of
data in a descriptive manner. This description is not done
by an external configuration file, but in the definition of the
module itself. Each type of data, which is communicated
between modules, is specified as a class, which is capable
of serializing itself to and deserializing itself from a byte
stream.

Beside the described message based communication
RoboApp also provides a black board communication ap-
proach, which is more suitable if large data structures are
modified incrementally (for example mapping tasks).

A concrete robot control software creates any number
of separate threads and distributes the modules over them.
The execution of the modules can be based on multiple
incidents: a) after a fixed timer, b) after a delay since the
last execution, c) after a module receiving new input data
and requesting immediate execution. Multiple modules can
be added to a single thread, where they always are being
executed sequentially, or distributed across multiple threads
to meet the requirements from the desired scenario. Using
these definitions of the application the exact timing for the
execution of the threads and therewith the modules can be
controlled by the framework.

Besides the thread layout the application defines unique
identifiers to link a data source of one module with a data
sink from another module. That means a unique identifier is
used to tag a semantically message of a specific data type,
for example, the raw YUV-image of a camera of the robot.

Using these descriptive informations the router, the com-
ponent for dispatching all exchanged data, can dynamically
route the messages between threads with their modules. The
routing is not limited to local threads, but other connectors
can be added to the router. This dynamic message exchange
enables a very high flexibility, which adapts during runtime
automatically based on the currently available data senders
and receivers. The connectors demand and provide message
just as modules in threads do. A common connector could be
a socket connection to another application or the graphical
user interface. In Fig. 2 the router is dispatching the provided
data from the modules in thread A both to the module in
thread B and over the socket connector to the modules in an
other application or to a graphical user interface.



Fig. 2. Routing messages between threads or to other applications.

A module sending a specific type of data is not concerned
with the details, where the receiving module is located. The
receiver could be in the same thread, in another thread in the
same application or even in a different application running
on another computer. Yet the framework allows the execution
of module as if they were running in a single threaded
application, because it cares for the necessary locking and
synchronization.

However a module can query if a provided type of data
is actually demanded by any other module. This information
can be used to skip further processing when the result is not
really required, which allows the algorithms to be adaptable
to the specific needs at runtime. This approach allows a very
low coupling of the different high level software modules
defined and implemented by the robot programmer.

The modules access the demanded data using a buffer
structure, with operates as a proxy of the real data objects as
depicted in Fig. 3. Thereby the passing of messages between
modules running in the same thread is very fast, since the
costs for copying messages can be avoided. This approach
reduces the overhead on a bare minimum despite the logical
separation of the modules.

Due to the flexibility of the data exchange mechanism pro-
vided by the framework, the control architecture is not lim-
ited to a special behavior control paradigm. Arbitrary struc-
tures like reactive or a hierarchical-deliberative paradigms
can be realized, depending on the individual connections
of the user defined modules for sensor data acquisition and
processing, behavior control and motion generation.

This approach also encourages the development of mod-
ules for the same functionality (e.g., object recognition or self
localization) but with alternative algorithms since replacing
one module with another and comparing their results is very
easy and can even be done during runtime.

Fig. 3. Modules access exchanged data over a proxy to share data
references inside of threads.

B. RoboGui

RoboGui is based on the GUI toolkit Qt1 from Trolltech.
Thus the graphical user interface (GUI) can be build on all
major platforms. The GUI can connect to multiple software
applications simultaneously and is used for debugging, mon-
itoring and controling.

Since RoboGui uses the same messaging subsystem as
RoboApp any message sent within the software application
can be requested. The framework provides some generic
dialogs to record and replay any kind of messages, to modify
the timing and priority parameters of the threads and to
enable and disable any module at runtime and to display
logging messages from the remote application.

The dialogs in RoboGui are what the modules are in
RoboApp. The graphical user interface can be extended with
user defined dialogs as demonstrated in Fig. 4. Like the
modules a dialog can demand and provide specific type of
data using the unique identifier.

For example, the meta information provided by the mes-
saging subsystem can be used to visualize some internal data
from a module in a custom dialog, which are generated and
provided in the module only when the software application
is connected to the graphical user interface and the specific
dialog is currently open.

VI. COMPONENTS AND TOOLS

Supplementary to the basic infrastructure RoboFrame pro-
vides tools and components to make the life of the robot
program developer easier.

RoboApp includes data structures for a variant type and
a hierarchy of named variant parameters. By means of them
modules can easily define a set of parameters, which should
be used to configure the algorithm. These parameters can
be loaded from a configuration file and also altered during
runtime using a generic dialog in the GUI, which speeds up
the evaluation of various parameters of the module.

Moreover a logging mechanism is provided which is sim-
ilar to Log4J2. Despite the usage of plenty debug messages
throughout the source code, the performance is unharmed

1Qt Homepage: http://trolltech.com/products/qt/
2Log4J Homepage: http://www.log4j.org



Fig. 4. Example of application of RoboGui showing several application
specific dialogs for monitoring the current world model and state of the
robot behavior control.

due to configurable selective output capabilities. These log-
ging messages can also be reported to a remotely connected
graphical user interface.

Another example, which supports profiling a robot soft-
ware application, is the chronometer hierarchy, which mea-
sures the timing of code blocks. It is not intended to replace
full powered profiling tools, but gives the developer a rough
overview for which software modules which part of the CPU
time is spent. For threads and modules these chronometers
are added automatically, but modules can use additional
chronometers to measure different aspects of their algo-
rithms. The measuring of any chronometer can be enabled in
a dialog of the GUI, which displays the time, average time,
frequency etc.

RoboGui provides a dialog which is capable of recording
any kind of exchanged messages and saves them in a log file.
These messages can be played-back or reproduced step by
step for example to debug a module with exactly the same
input data again and again.

Additional tools and high level packages: Beside these
small components integrated into the framework, there are
also a couple of additional tools and libraries for developing
robot programs consisting of modules and corresponding di-
alogs, which are quite common and used in many application.

One of the common packages is dedicated for developing
autonomous robot behavior decisions based on provided
informations using hierarchical state machines. The module
integrates the engine of the Extensible Agent Behavior
Specification Language XABSL [14] for executing the im-
plemented behavior. Beside that a dialog enables remote
debugging of the hierarchical state machines and to inspect
the input and output data. With the GUI, specific state
machines can be triggered manually and even a new behavior

Fig. 5. Selected robot systems running applications based on RoboFrame in
the authors research group. Upper row: humanoid robot Lara (left) actuated
by artificial shape memory alloy muscles, several humanoid, legged and
wheeled robots (middle), autonomous humanoid robot Bruno (right). Lower
row (from left): robotic boot, robotic offroad vehicle, new four-legged robot.

can be uploaded and executed during runtime.
Beside this their is a number of packages providing

algorithms and monitoring dialogs in the domains of image
processing, self localization using stochastic methods and
world modeling. A bunch of modules exist which use hard-
ware specific drivers to read sensor data from devices like
YUV-cameras, RGB-cameras, laser range scanners etc. Such
building blocks are realized by separate libraries so that they
can easily be plugged into any application using RoboFrame.

VII. APPLICATIONS OF ROBOFRAME

The described software architecture RoboFrame has been
and is currently being used in multiple scenarios with differ-
ent heterogeneous robots (see Fig. 5).

A. RoboCup - Humanoid Robot League

A special scenario for humanoid robots in a dynamically
changing environment is given in RoboCup3, the annually
held world wide competition for cooperating teams of au-
tonomous soccer robots in different leagues. Because of its
publicly defined setting and wide acceptance it may serve
as an example for a set of specific boundary conditions as
discussed in Sect. III-A. Our team, the Darmstadt Dribblers4,
is participating in the humanoid robot league with our 55cm
tall humanoid robots (Bruno [15], Fig. 5). The fully au-
tonomous robot is actuated by 21 rotary electric motors and
equiped with onboard cameras and inertial sensors. In order
to enable a high performance in bipedal locomotion with
respect to walking speed and postural stability the payload
for onboard computer and batteries is highly restricted.
Since the life cycle of recent hardware components (servo
motors, cameras, inertial sensors, onboard computer) is short
the main components of the robot’s hardware are heavily
modified or replaced with newer models approximately every

3RoboCup Homepage: http://www.robocup.org
4Darmstadt Dribblers Homepage: http://www.dribblers.de



Fig. 6. Application layout used at RoboCup 2007 (rectangles describe
modules, ellipses represent exchanged messages).

two years. The main parts of the high level robot algorithms
are developed by graduate students in practical courses and
theses.

Due to these constraints the following criteria are crucial
in this scenario:
• the demand for a low overhead is directly implicated by

the very restricted payload capabilities,
• the short life cycle of hardware components makes an

architecture necessary with can easily integrate new
types of robots and components and support different
operating systems to enable the reuse of already devel-
oped modules of high level algorithms,

• the duration of the employment of the programmers re-
quires that they can quickly understand the architecture
and use the provided interfaces.

Based on the flexible communication methods it was not
difficult to establish high-level abilities like a team commu-
nication between the teammates, which enables the fusion
of the individual world model informations and can be used
for dynamic role assignment between team mates during a
soccer game.

In Fig. 6 the internal structure of the modules and their
exchanged messages are shown to give an example of a real
world application layout based on RoboFrame.

B. The new four-legged robot

A new, open and modular platform for research in au-
tonomous, four-legged robots5 is being developed at the
authors group in cooperation with Hajime Research Institut6.

5http://www.thenewrobot.com
6Hajime Research Institut http://www.hajimerobot.co.jp

(a) Communication
about robot position

(b) Autonomous
boarding

(c) Completed board-
ing

Fig. 7. Excerpt of cooperation of autonomous humanoid robot and wheeled
robot for joint mission completion [16].

This four legged robot is designed to offer a large variety
of research and development opportunities to the advanced
robot programmer which can hardly be found in any other
robot platform currently available. Developing the software
for a demo application for the first robot prototype consisting
of different walking styles which are controled using LAN
or WLAN and a remote PC with a joystick was just a matter
of days due to the use of the described software architecture
and reusable components. A PC104 under Windows CE has
been used as onboard computer.

C. Cooperation of heterogeneous robots

Another project deals with the cooperation of strongly
heterogeneous, autonomous robots. In a case study, an au-
tonomous humanoid robot with a Pocket PC under Windows
CE as onboard computer is cooperating with a wheeled
Pioneer 2DX robot with an AMD K6 II 400 MHz processor
under Linux as onboard computer (cf. Fig. 7, [16]). The
subtasks which are required for mission completion are
dynamically assigned based on the capabilities, which are
necessary and available to fulfill the job. To our knowledge
this case study is the first successful cooperation between an
autonomous humanoid and a wheeled robot.

D. Real-time HW/SW-in-the-loop simulation

The framework itself does not feature any kind of sim-
ulation. However, it can be interfaced with a large variety
of robot simulators, e.g., a humanoid robot simulator based
on a multi robot simulation framework MuRoSimF [17].
To interface an application based on RoboFrame with the
simulation the already introduced communication methods
are used.

Instead of having physical hardware components provid-
ing sensor information other modules are used instead to
provide corresponding data but from simulated hardware
components. The same technique is used for data which is
used to control actuators etc. For the modules which are
handling the processing the exchange of the data source
is fully transparent since the type of communicated data
remains unaffected.

Another ongoing project is to evaluate different ap-
proaches to humanoid robot behavior control using humanoid
robots simulated in real-time. Therefore RoboFrame and
MuRoSimF were chosen because of the quick learnability
and flexible exchange of modules, which allows rapid pro-
totyping and comparison of different algorithms.



VIII. SUMMARY

For evaluation of software architectures and middleware
for autonomous robots it is proposed in this paper to use a
set of criteria but on the background of boundary conditions
consisting of specific robots, scenarios, tasks and robot pro-
grammers. Therefore, there will not be a single set of criteria
and boundary conditions that fits all relevant cases. However,
representative sets of these yet have to be developed and
agreed upon.

Furthermore, the platform independent software frame-
work RoboFrame has been presented, which addresses the
special needs of heterogeneous teams of lightweight au-
tonomous robots. The successful application of RoboFrame
in a variety of different scenarios for different robots demon-
strated its efficiency and flexibility. On top of RoboFrame, a
library of common components for robot control software has
been implemented, which simplifies the development of new
applications and actively supports the robot programmers. A
plain middleware system alone does not offer these valuable
feature to the robot programmer.

REFERENCES

[1] M. Friedmann, J. Kiener, S. Petters, D. Thomas, O. von Stryk:
Modular software architecture for teams of cooperating, heterogeneous
robots, In Proc. IEEE Intl. Conf. on Robotics and Biomimetics
(ROBIO), Kunming, China, Dec. 17-20, 2006, pp. 613-618

[2] ISO Standards. Software engineering - Product quality - ISO/IEC
9126-1. International Organization for Standardization, 2001

[3] B. Gates: A Robot in Every Home, Scientific American, January
2007, http://www.sciam.com/article.cfm?chanID=sa006&colID=1&
articleID=9312A198-E7F2-99DF-31DA639D6C4BA567

[4] H. Utz, S. Sablatnög, S. Enderle, and G. K. Kraetzschmar: Miro
middleware for mobile robot applications, IEEE Trans. on Robotics
and Automation, vol. 18, no. 4, pp. 493497, August 2002

[5] Microsoft, Microsoft robotics studio, http://msdn2.microsoft.com/en-
us/robotics/default.aspx

[6] M. Mizukawa, H. Matsuka, T. Koyama, T. Inukai, A. Nodad, H.
Tezuka, Y. Noguch, and N. Otera: Orin: Open robot interface for
the network, In SICE, pages 925928, IEEE Press, 2002

[7] B. Gerkey, R.T. Vaughan, and A. Howard: The playerstage project:
Tools for multi-robot and distributed sensor systems, In International
Conference on Advanced Robotics (ICAR), pages 317323. IEEE Press,
2003

[8] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, and W.
S. Kim: CLARAty: An architecture for reusable robotic software, In
SPIE Aerosense Conference, Orlando, Florida, April 2003

[9] A. Makarenko, A. Brooks, and T. Kaupp: Orca: Components for
robotics, In International Conference on Intelligent Robots and Sys-
tems (IROS), pages 163168. IEEE Press, 2006

[10] J.-C. Baillie: Urbi: towards a universal robotic low-level program-
ming language, In International Conference on Intelligent Robots and
Systems (IROS), pages 820825, IEEE Press, 2005

[11] H. Bruyninckx: Open robot control software: the Orocos project, In:
IEEE International Conference on Robotics and Automation (ICRA),
pages 25232528. IEEE Press, 2001

[12] K. Konolige and K. Myers: The Saphira Architecture for Autonomous
Mobile Robots, SRI International, 1996

[13] T. Balch: TeamBots - www.teambots.org, 200
[14] M. Lötzsch, M. Risler and M. Jüngel: XABSL - A pragmatic approach

to behavior engineering, In: Proc. IEEE/RSJ International Conference
of Intelligent Robots and Systems (IROS), pp. 5124-5129, October
9-15, 2006

[15] M. Friedmann, J. Kiener, S. Petters, H. Sakamoto, D. Thomas,
O. von Stryk: Versatile, high-quality motions and behavior control
of humanoid soccer robots, In: IEEE/RAS International Conference
on Humanoid Robots (Humanoids), Workshop on Humanoid Soccer
Robots, pp. 9-16, Dec. 2006, Genua, Italy

[16] J. Kiener and O. von Stryk: Cooperation of Heterogeneous, Au-
tonomous Robots: A Case Study of Humanoid and Wheeled Robots,
In: IEEE Intl. Conf. on Intelligent Robots and Systems (IROS), 29
October - 2 November, San Diego, 2007, to appear

[17] M. Friedmann, K. Petersen, O. von Stryk: Tailored Real-Time Sim-
ulation for Teams of Humanoid Robots, In: International RoboCup
Symposium, July 9-10, Atlanta (USA), 2007 (Robot World Cup Soccer
Games and Conferences)


