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Abstract

A new planning method for optimal control of multi-robot systems is discussed which
accounts for the (continuous) physical locomotion dynamics of the robots and its tight
coupling to the distribution and allocation of (discrete) subtasks to the robots to fulfill a
joint mission. The point of departure is a nonlinear and nonconvex hybrid optimal control
problem (HOCP) formulation which incorporates a detailed hybrid automaton model.
Because of the many difficulties involved in solving this problem like large computational
times and the lack of good or global convergence properties it is transcribed into a mixed-
integer linear program (MILP). This can be solved much more efficiently using existing
algorithms. The proposed approach is outlined for an example problem of cooperative
soccer robots. The MILP solution itself may serve either as a good initial solution estimate
for a method addressing the nonlinear HOCP or may later become the kernel of a model
predictive control method for cooperative multi-robot systems. Despite the promising
results obtained so far a variety of open questions yet remains to be answered including the
”best” way of transcribing HOCP to MILP with respect to both computational efficiency
and good HOCP solution approximation.

Preprint of a paper which appeared in the proceedings of
“RoboMat 2007 - Workshop on Robotics and Mathematics”

(Coimbra, Portugal, 17-19 September 2007)

1 Introduction

In this paper multi-robot systems are considered where the individual nonlinear physical
motion dynamics is of fundamental importance for the mission success which depends on
optimizing physical values like the robots’ positions or energy consumption.

The problem’s possible combinatorial character complicates an analytical inspection and
hardly theoretically proved results are available for the most general problem formulation. The
key idea in this paper is to build up a centralized MILP-based (cf. [?]) controller for multi-
vehicle systems, starting with a systematic HOCP description (Sect. 2) and a consistent
transformation (Sect. 3) towards optimization based control (Sect. 4). Tight coupling of
discrete states (e.g. actions) an respective continuous state variables (positions, velocities
etc.) is a basic feature in there. Especially in an uncertain setting (failures, uncontrollable
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Figure 1: Setting of the soccer benchmark problem
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Figure 2: Contributions to objective

objects), the robustness of MILP offers an efficient (cf. [?]) way to be used in receding horizon
controllers. To illustrate this approach we refer to a benchmark problem from robot soccer (cf.
Fig. 1) with two strikers versus one (passive) defender, all modeled as moving point masses.
The intention is to find the control which optimizes the attackers’ chances for a considered
time horizon [t0, tf ]. Results for this representative example will be given in Sect. 4.

2 Modeling the cooperative multi-robot system

We are considering (in-)direct controllable and not controllable moving objects i in our system.
Each one is characterized by its continuous dynamic state xi (e.g. position, velocity,...) and a
discrete value qi that denotes a certain subtask or role. Together with the continuous control
variable ui, the continuous state evolves subject to ẋi = f qi,i(xi, ui). By defining (usually
unknown) switching times ts and corresponding specifications, how to connect xi when qi

switches at ts, the individual trajectory for an object is determined.
For the regarded soccer example, i ∈ {1, 2, B, D} denotes two strikers, one ball and a

defender. As modes of motion qi for the strikers we distinguish free moving and dribbling.

2.1 Modeling switched dynamics with hybrid automata

We are regarding multi-robot systems consisting of moving objects with specific modes of
motion and rules that define feasible sequences for them. Thus we are using hybrid automata
to describe the cooperative system. They are well established in the context of robot control.

A hybrid automaton [?] H = (V, E,X,U, ini, f, j, i, e) consists of a finite directed multi-
graph (V, E) with knots in V (called states) and edges in E (so-called switches), a set of
continuous state variables X, a set of continuous control variables U, a map ini which assigns
an initial condition to each edge, the invariants provided by the map i which assigns each
knot with a feasible region for the continuous states and controls using equality and inequality
constraints, a map f which assigns a flow equation or state dynamics to each state, a map
j which assigns jump conditions to edges and a map e which assigns events to edges which
occur at switches. For the proposed soccer application (cf. Fig. 3) we added another hierarchy
there that contains conditions that are similar in the covered knots. In this model we only

2



i: dist2,D ≥ γ2,D

i: dist1,D ≥ γ1,D i: dist1,2 ≥ γ1,2

i: distD,B ≥ γD,B
i: xB ∈ goal

i: g1(ẋ1,u1) ≤ 0
i: g2(ẋ2,u2) ≤ 0

Ball in goal 5O
f: ẋ1 = 0

f: ẋD = 0

f: ẋ2 = 0
f: ẋB = 0

e: goal

Game is running 1O

i: g2(ẋ2,u2) ≤ 0

Ball free 3O

j: dist1,B ≤ εdribble

e: kick(1)

e: kick(2)

e: catch(2)

f: ẍ1 = f 1(x1, ẋ1, u1)

i: dist1,B > εdribble

i: dist2,B > εdribble

i: g1(ẋ1,u1) ≤ 0

f: ẍ1 = f 1,B(x1, ẋ1,u1)
Player 1 dribbles ball 2O j: |yB| ≤ ygoal

f: ẋB = fB(xb)
f: ẍ2 = f 2(x2, ẋ2, u2)

j: |xB| ≥ xfield

Player 2 dribbles ball 4O

i: g2(ẋ2,u2) ≤ 0
i: g1,B(ẋ1,u1) ≤ 0
i: dist1,B ≤ εdribble

f: ẍB = f 1,B(x1, ẋ1,u1)
f: ẍ2 = f 2(x2, ẋ2,u2)

i: g2,B(ẋ2,u2) ≤ 0
i: g1(ẋ1,u1) ≤ 0
i: dist2,B ≤ εdribble

f: ẍB = f 2,B(x2, ẋ2,u2)

f: ẍ1 = f 1(x1, ẋ1,u1)
f: ẍ2 = f 2,B(x2, ẋ2,u2)

j: dist2,B ≤ εdribble

e: catch(1)

f: ẋD = fD(x1,x2,xB)
i: xB ∈ field

Figure 3: Hierarchical hybrid automaton model of the switched motion dynamics

distinguish whether the ball is dribbled, rolls free or is inside the goal. The respective motion
dynamics of a dribbling robot is indexed by “B”. The initial conditions ini are defined with
the position xi(t0) of the objects i. Catching and kicking a ball are modeled by events

kick(i) : ẋB(ts + 0) = 3 · ẋi(ts − 0) , catch(i) : xB(ts + 0) = xi(ts − 0) , (1)

ts ± 0 := limε→0,ε>0 ts ± ε. All other state trajectories are required to be continuous at ts.
The auxiliary variable disti1,i2 represents a distance measure between objects i1, i2 and is

used to express collision avoidance (with a constant γi1,i2). Further constraints on state and
control variables according to the specific motion modes are modelled as invariants i.

The dynamic of the defender is not considered to be switched here. We tested our approach
with a simple model for the dynamic of robots and ball and set for all states except 5O

f: ẋB(t) = vB(t), f: ẍ♦(t) =

(
ẍ♦(t)
ÿ♦(t)

)
=

(
v̇x,♦(t)
v̇y,♦(t)

)
= u♦(t) =

(
ux,♦(t)
uy,♦(t)

)
(♦ ∈ {1, 2}) (2)

For a dribbling robot the upper bound on its velocity is reduced by a factor cU
v,dr.

The numerical method proposed in [?] for the general HOCP formulation uses piecewise
polynomials and binary variables to transfer the hybrid automaton and an objective function
into a finite dimensional sparse non-linear mixed-binary optimization problem. It was solved
with a combination of sequential quadratic programming and Branch-and-Bound techniques.
More details and results for this model are given there. Now we are interested in a MILP-
formulation that provides a efficient optimization-based control considering the basic system
characteristics.

2.2 The linearized model

We are introducing a fixed (not necessary) equidistant grid of time points with the sampling
time T s := tk − tk−1. For the evolution of the continuous state and control variables we are
defining x(k) := x(tk+1) and u(k) := u(tk+1). The knots in the describing automaton can
switch only at these time points and are not free any more. All (in-)equalities that were used
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to describe the different states and the motion dynamics in the systems will be reformulated
or transformed into linear expressions now. Thus the differential flow conditions f must be
reformulated as difference equations

ẋ = f q,i(x,u) Ã x(k + 1) = Aq,i · x(k) + Bq,i · u(k) . (3)

Additional state variables and binary variables may be necessary here for case differentiations
and combination of these cases with logical expressions. In the context of hybrid automata,
this case differentiations are treated as new subknots. This splitting up strongly depends on
the nonlinearity of the expression and the desired accuracy of the transformed model.The
regions defined by the invariants i are approximated in a polygonal manner. Linear inequali-
ties are combined logically therefore. If nonlinear expressions occur in the jump conditions j
of events e, they have to be treated respectively. Afterwards, the automaton is clocked and
covers only linear expressions and logical constraints. Application to the example results in

x♦(k + 1) = x♦(k) + Ts vx,♦(k) , vx,♦(k + 1) = vx,♦(k) + Ts ux,♦(k),

xB(k + 1) = xB(k) + Ts vx,B(k) , vx,B(k + 1) =

{
vx,♦(k) (dribbling)
ctrac Ts vx,B(k) (ball free)

(♦ ∈ {1, 2}, ctrac · Ts < 1, yi, vy,i, analogously). A simple, reactive defender that is always
moving towards the current ball position is modeled by

xD(k + 1) = xD(k) + Ts vx,D(k) , vx,D =
vU

x,D

Dmax
(xb(k)− xD(k)), (4)

(Dmax ≥ maxx,y,k{|xb(k)−xD(k)|, |yb(k)−yD(k)|}, yD, vy,D, analogously). The constant vU
x,D

is the upper bound for |vD|. In the investigated example the controls and velocities are con-
straint by quadratic expressions. Generally expressions of the form
±

√
(x1 − x2)2 + (y1 − y2)2 ≤ ±r can be transformed by using nγ ≥ 4 linear expressions

± sin(
i

3
π) (x1 − x2)± cos(

i

3
π) (y1 − y2) ≤ ±r (i = 1, . . . , nγ) . (5)

Thus the invariants i: gqi,i(ẋi) = ||(vx,i, vy,i)T ||2− vU
qi,i

≤ 0 were reformulated (vU
qi,i

constant,
for uqi,i respectively). For the distance disti1,i2 between two objects as an auxiliary state
variable the column-sum norm was used.

3 Transforming the model into a mixed-integer linear program

For each knot and each edge of the (hierarchical) automaton a time-dependent binary variable
b(t) is introduced so that b = 1 iff the state or edge is active. The structure then is transcribed
with simple linear inequalities, e.g. b(2)(k)+ b(4)(k)+ b(3)(k) ≤ 1, b(2)(k)+ b(4)(k +1) ≤ 1,etc.
Logical relations combined with inequalities are translated using the ’Big-M’-technique (cf.
[?]). Thus flows and invariants get connected with the respective binary variable, e.g.

IF b(3) = 1 THEN vx,B(k + 1) = ctrac vx,B(k) ⇔
{

(1− b(3))m ≤ vx,B(k + 1)− ctrac vx,B(k)
vx,B(k + 1)− ctrac vx,B(k) ≤ (1− b(3))M
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M ≥ max{vx,B(k + 1)− ctracvx,B(k)}, m ≤ min{vx,B(k + 1)− ctracvx,B(k)} constant.
To rate the quality of a computed attack, we mainly look at the situation at the final

time tN+1 and primarily regard the following components (cf. Fig. 2). The positions of the
attacking robots and the ball (xi(k), yi(k))T , distances between the robots, defender and ball
disti1,i2(k) and also the events ”ball in goal” and ”one robot dribbling” b(5), b(2), b(4). With
carefully determined coefficients then the objective function J is implemented as a weighted
sum. Due to remaining degrees of freedom, ui(k) is further added to it. The intention is to
minimize J where the tactical behavior of the team is varied with the coefficients in J .

4 Optimization

Results for the linear implementation of the proposed benchmark problem with the parameters

Ts = 0.8, N = 10, xfield = 270, yfield = 180, ygoal = 40, εdr = 5,

γ2,D = 30, γB,D = 30, Dmax = 700, ctrac = 0.88, vU
B,x = 135, cv,dr = 60.7,

vU
♦,y = 45, uU

♦,x = 40, uU
♦,y = 40, vU

♦,y = 90, vU
♦,x = 45,

and the objective function

J =
N∑

k=1


−0.2 distB,D − 320 b(5) + 0.001

∑

i∈{1,2}
( |ux,i|+ |uy,i| )




∣∣∣∣∣∣
t=k

+ (6)

−xB + 0.6 |yB| − 0.15 distB,D − 0.01 dist1,2 − 160 (b(2) + b(4)) + 0.02

∑

i∈{1,2}
(−xi + |yi|)




∣∣∣∣∣∣
t=N+1

.

are given. The MILP was solved with CPLEX 10.0 (from ILOG, Inc.) on a PC (Intel(R)
Pentium(R) M processor 1.86GHz; 1024 MB RAM) in 30 sec (see Fig. 4 for details).

5 Conclusion and outlook

A MILP formulation has been developed which accounts for the tight coupling of discrete
decisions and continuous flow variables in optimal control of cooperative mobile robot systems.
A consistent modeling towards a linearized formulation was shown. The numerical approach
is applicable to a wide range of scenarios. Ongoing work considers techniques to improve the
MILP by decoupling and additional constraints. Also various methods to linearize the given
nonlinear description more systematically are investigated. MILP-models can cope well with
the non-convexities, the combinatorial character and their efficiency hardly depends on initial
guesses. They are therefore well suited for repeated application to account for changes in
uncertain environments.

Acknowledgment. Parts of this research have been supported by the German Research
Foundation (DFG) within the Research Training Group 1362 “Cooperative, adaptive and
responsive monitoring in mixed mode environments”.
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Figure 4: First two rows: Optimal positions, velocities and controls for the attackers ( )
and the ball ( ). Third row: Computed optimal behavior shown at timesteps k = 1, 7, 11.
Attacker 1 goes to ball, dribbles and kicks it towards the penalty area. Attacker 2 catches it
there and dribbles to a promising position. The defender ( ) follows the ball.
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