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Abstract— A new planning method for optimal cooperative
control of heterogeneous multi-vehicle systems is investigated
which enables to account for each vehicle’s nonlinear physical
motion dynamics in a structured environment as well as for
connectivity constraints of wireless communication. A general for-
mulation as nonlinear hybrid optimal control problem (HOCP) is
presented. A transformation technique is proposed to reduce the
large computational efforts for solving HOCPs towards a future
online application of this approach. Hereby the general problem
is transcribed to a linearized mixed-integer linear programming
problem (MILP) which can be solved much more efficiently.
The proposed approach is successfully applied to the numerical
solution of a representative, cooperative monitoring problem
involving heterogeneous vehicles and conditions.

I. INTRODUCTION

The interest in cooperating autonomous multi-vehicle sys-
tems, their applications and their theory has grown strongly
within the last years. In this paper a general modeling and
trajectory optimization framework for heterogeneous multi-
vehicle systems is outlined. It enables to consider the indi-
vidual vehicle’s motion dynamics with individual, physical
motion constraints as well as connectivity constraints for
wireless communication which are decisive for the quality of
the whole mission. For instance, this is the case in monitoring
and surveillance scenarios with multiple vehicles. Here, the
influence of communication (i.e. connectivity) constraints on
the optimal cooperative control of individual motion dynamics
for multi-vehicle systems is investigated. In this context, the
physical environments are considered to be structured which
allow the vehicles to locomote in a regular manner according
to their individual type of ground, water or aerial locomotion.

A. Optimal Control of Hybrid Dynamical Multi-Vehicle Sys-
tems

Many geometrical motivated approaches haven proposed for
coordination of unmanned aerial vehicles (UAVs) [1]. In [2] a
classical traveling salesman problem setting is applied to make
decisions in a multi-level control architecture.

Investigations with mixed-integer linear programs (MILP)
for autonomous [3] and cooperative robot systems [4] showed

an effective way towards the computation of optimization re-
sults in reasonable time. Borelli et al. [5] compared linearized
and nonlinear techniques. In [6] different nonlinear time-
optimal control problems are solved sequentially to assign
cooperation and tasks to the vehicles.

A framework for modeling the cooperative dynamical sys-
tem with hybrid automata and translating the hybrid model
into a nonlinear mixed-integer program was proposed in [7].
Using results from numerical optimal control methods, these
problems have been solved numerically by combinations of
SQP-methods, genetic algorithms [8] and different instances
of Branch-and-Bound techniques.

B. Communication Networks

A large amount of research related to mobile communi-
cation networks and mobile ad-hoc networks (MANET) is
concerned with routing problems and specific transmission
problems. Landstorfer gives an overview to the most important
physical problems in wireless communication [9].

More related to our point of view is the wide range of
topology control. There the community distinguishes between
probabilistic and algorithmic approaches. [10] gives an answer
to the question of necessary number of neighbors for randomly
created vehicle positions and per-node connectivity-radii to
guarantee connectivity with a certain probability. Related pro-
tocols have been proposed in [11]. As an algorithmic approach
(e.g. [12]) in [13] a function has been constructed which
measures the robustness of local connectedness to variations
in position. Under a mild feasibility hypothesis, this function
provides a sufficient condition for global connectedness.

C. Combined Approaches

Basu and Redi investigated dynamic networks with simple
distance connectivity constraints in [14] and proposed an
algorithm that improves the network topology by pushing
few nodes into better positions. This node motions to get a
bi-connected network were done without regarding specific
physical motion abilities.



In [15] investigations with unit-disc-graphs and a simplified
second order dynamic formulation were done to determine
resulting constraints for the continuous control variables. A
detailed graph theoretic and an algebraic formulation for
modeling k-hop-connectivity constraints are shown in [16].
Also, a centralized framework to control the structure of
dynamic graphs has been proposed.

On the one hand nonlinear, discrete-continuous NP-hard
optimal control problems with heterogeneous conditions have
been considered which require for a numerical solution es-
timations or bounds that are hardly available from theory.
Only relatively small problems can be solved under strong
assumptions numerically within reasonable computing times.
On the other hand there are many heuristic based approaches
to control only very specific scenarios of cooperating multi-
vehicle systems. With the work proposed in this paper we aim
at bridging this gap between theoretical and practical views.
Our approach is founded on the long-term objective to build
up an optimization-based model predictive controller (MPC)
that considers essential characteristics of cooperative systems
and will be applicable to a wide range of scenarios.

Therefore we are introducing a general formulation for
optimal control of cooperative communicating multi-vehicle
systems in structured environments (Sect. II) and are investi-
gating it from the view of hybrid optimal control (Sect. III).
Sect. IV focuses on methods to transform the problem into
(in-)equalities that can be treated by numerical (non-)linear
optimization methods. A representative benchmark problem is
proposed and investigated in Sect. V.

II. MATHEMATICAL MODELING OF COOPERATIVE
MULTI-VEHICLE SYSTEMS WITH CONNECTIVITY

FEATURES

We consider a set of nv cooperating vehicles in a structured
environment containing heterogeneous areas with obstacles
and different physical environments (e.g. water, air, solid
ground, etc.) in R3. According to the dynamic abilities and
according to the environmental constraints we want to deter-
mine the optimal vehicle controls for collision-free trajectories
in monitoring applications. Therefore we require that a set of
areas or waypoints must be traversed or visited by at least
one vehicle during the mission. Uninterrupted communication
between the moving vehicles is required during operation.

A. Modeling of the Environment

To cope with realistic outdoor scenarios we are regarding
a two dimensional area R ⊂ R2 (cf. Fig. 1 for an example)
which is separated into a set of convex subregions, i.e.

R =
nR⋃

l=1

Rl . (1)

A discrete parameter ql ∈ Q is assigned to each subregion
Rl and represents its discrete state relevant to the vehicle’s
locomotion. For instance we are distinguishing the states
{solid floor, water, building} and use ql ∈ Q =
{1, 2, 3} in the system description. The feasible sequences
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Fig. 1. Partitions of a considered area with a building (R7) and a river
(R4 ∪R9 ∪R14) which are denoted by dashed lines.
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Fig. 2. Graph of connected feasible regions for a ground vehicle in Fig. 1.

of regions where a single vehicle can locomote through is
described by a (not necessarily) connected graph

Gvi = (Vvi , Evi) (2)

with Vvi ⊂ {Rl | l = 1, ... nR} and Evi ⊂ Vvi × Vvi .
E.g. the graph in Fig. 2 results for a ground vehicle and the
environment of Fig. 1.

Each subregion Rl is described by its boundaries,
[(

xvi

yvi

)
∈ Rl

]
⇔ [

gRl
(xvi , yvi) ≤ 0

]
, (3)

where (xvi , yvi)
T is the (vehicle’s) position in the two-

dimensional case with a suitable vector function gRl
. Here

“≤” denotes the component wise comparison of two vectors.

B. Locomotion Properties of a Single Vehicle

Various types of vehicles are considered (cf. Fig. 1). It is
assumed that the motion dynamics of each vehicle vi in a
certain physical environment (described by the discrete state
ql which is used as an index) can be modeled by a system of
(usually nonlinear) first order ordinary differential equations

ẋvi(t) = fvi
ql

(xvi(t),uvi(t)) . (4)

The trajectory xvi(t) ∈ Rnx,vi represents the continuous
state variables (including position, velocity and orientation)
and uvi(t) ∈ Rnu,vi the continuous control variables (e.g.
accelerating and braking forces). Depending on the level of
physical detail, these equations of motion range from approx-
imative linear to complex, nonlinear dynamic equations. The
dimensions of xvi and uvi also vary according to the vehicle’s
type of locomotion (walking, driving, swimming, flying etc.).
The state xvi(0) = xvi

0 of the vehicle at the initial time t0 = 0



is assumed to be known (or may be optimized as well). The
state and control variables are constrainted at each time t by

∃1l ∈ {1, ... , nR} :[
gRl

(xvi(t)) ≤ 0
∧

gvi
ql

(xvi(t), uvi(t)) ≤ 0
]

, (5)

where gvi
ql

denotes physical constraints of the specific vehicle,
e.g., on its maximum velocity or acceleration. The set of
feasible indices ql ∈ Q is determined by the different vehicle-
specific modes of locomotion according to the discrete states
characterizing the subregions. Constraints according to the
boundaries of the subregions Rl in which the vehicle is
currently moving are expressed by gRl

(cf. Eq. (3)). The
respective logical conditions in Eq. (5) can be transformed
into a set of linear inequalities eventually.

For crossing the regions’ borders a fixed number of switch-
ing times (which may be given or free)

t0 = ts,0 < ts,1 < ... < ts,k < ... < ts,ns
= tf (6)

ts,k − ts,k−1 < tmin (k = 1, . . . , ns) (7)

is introduced. The discrete states Rl (and ql resp.) can change
their values only at one of these timepoints. Feasible sequences
(gvi

ql,1
, ..., gvi

ql,ns
) of active constraints for a fixed number ns of

possible switching times are defined implicitly in Sect. II-A.
The constant tmin in Eq. (7) is motivated by the minimal time
span that is needed to perform the desired tasks, e.g. collecting
data in a subregion in the case of monitoring missions. It is
also required that the variables xvi and uvi are continuous

xvi(ts,k − 0) = xvi(ts,k + 0),
uvi(ts,k − 0) = uvi(ts,k + 0),

(8)

at switching time ts,k with t± 0 := limε→0,ε>0 t± ε.
To introduce communication in this motion model we have

to think of transmitting and of receiving information. Receiv-
ing mainly depends on the strength of available signals. For
(wireless) broadcasting of information a detailed wave propa-
gation model would be needed. For the purpose of cooperative
optimal vehicle trajectories, we will consider communication
by approximating connectivity functions (Sect. II-D).

The problem of computing the optimal control for a single
vehicle subject to the constraints (4) - (5) has been well
investigated with various methods. Now the question of opti-
mal controls for a cooperative multi-vehicle system under the
requirement of connectivity is posed.

C. Requirements of Multiple Cooperating Vehicles

To cope with multiple vehicles the model is augmented by
collision avoidance constraints

∀vi 6= vj , ∀t : gvi

coll(xvj (t), yvj (t)) ≤ 0 , (9)

where (xvj , yvj )
T denotes the position of vj . Also a task (or

a set of sub-tasks) is needed for the multi-vehicle cooperation.
In the context of monitoring scenarios we require that a certain

part R∗l ⊂ Rl of each region Rl must be investigated by at
least one vehicle at least one time during the mission

∀Rl ∃ t ∈ [t0, tf ] ∃ i ∈ {1, ...nv} :

(
xvi

(t)
yvi

(t)

)
∈ R∗l . (10)

D. Connectivity and Network Topology
The ability of sharing information is assured by the perma-

nent existence of a stable connectivity network. This includes
constraints on the network topology, on the network’s alter-
ation in time and on the rigidity of the radio link itself.

For each vehicle we consider a function Cvi
that describes

the radiowave propagation of object vi depending on its
position and the point (x, y, z)T where we are interested in
the signal strength. Thus, for a pair (vi, vj) of vehicles and
for a required signal strength cvj of vehicle vj we define a
binary variable ãvi,vj

∈ {0, 1} according to

[
ãvi,vj

(t) = 1
] ⇔


Cvi

(




xvi
(t)

yvi(t)
zvi

(t)


 ,




xvj
(t)

yvj (t)
zvj

(t)


) ≥ cvj


 (11)

where (xvi
, yvi

, zvi
)T denotes the position of vehicle vi at

time t. The motivation of the usually continuous function
Cvi ranges from simple distance assumptions in a free-space
propagation model until detailed ray tracing models includ-
ing reflections, slow-fading and fast-fading effects. Stochastic
models are also very popular in this context.

The quadratic matrix function Ã(t) = (ãvi,vj (t)) ∈
{0, 1}nv×nv now describes all possible transmissions in the
system from object vi to object vj iff ãvi,vj = 1.

In most applications with a high level of cooperation a two-
way communication is desired and thus symmetric matrices
A = AT are considered. Therefore we set

[
avi,vj = 1

] ⇔




Cvi(




xvi(t)
yvi(t)
zvi(t)


 ,




xvj (t)
yvj (t)
zvj (t)


) ≥ cvj

∧
Cvj (




xvj (t)
yvj (t)
zvj (t)


 ,




xvi(t)
yvi(t)
zvi(t)


) ≥ cvi




(12)
The symmetric matrix A(t) = (avi,vj ){1,...nv}2 now defines
the adjacency matrix for the communication network topology

aj1j2(t) :=
{

1 if vehicles j1 and j2 are connected,
0 otherwise.

(13)

With ∀t ∈ [t0, tf ) : A(t) ∈ C we consider that A is
part of a finite set of feasible network topologies C. The
set of elements in C can be defined with logical expressions
or algebraic constraints itself. E.g for fault tolerance, δ-
connectivity is desirable. For quality of service investigations
k-hop connectivity is considered (cf. [16]).

To obtain a suitable topology control we require that
changes in the network structure can only occur at discrete
switching times, which were defined in Eq. (6). In this context

Ak := A(t), ts,k−1 ≤ t ≤ ts,k, i = 1, . . . , ns , (14)



is defined. The constraint of Eq. (7) guarantees some stability
in the topology. If there is a significant difference between the
time for fulfilling the task and the time which is required for
a constant network topology, then Eq. (7) has to be replaced
by a more detailed structure in the switching times. Possibly
additional logical expressions are needed therefore.

III. A HYBRID OPTIMAL CONTROL APPROACH

The evolution in time of the discrete states (i.e., network
topology, mode of locomotion according to the environment)
and the resulting continuous vehicle trajectories of the prob-
lems considered are tightly coupled. Thus the problem of com-
puting the best solution is characterized by its combinatorial
part and its relation to the (nonlinear) dynamic optimization
part.

We now propose a general description for the general
problem as nonlinear hybrid optimal control problem. For this
purpose, we consider a feasible sequence of ns discrete system
states ρk,

ρ(t) :=




Rl

q(t)

A(t)


 ∈ Vv1 × ...× Vvnv

×Qnv × C

ρk := ρ(t), ts,k−1 ≤ t ≤ ts,k, i = 1, . . . , ns.

(15)

If the initial state x(0) ∈ Rnx (nx =
∑nv

i=1 nx,vi) and also
the control history u(t) ∈ Rnu (nu =

∑nv

i=1 nu,vi) are given
then state trajectory x(t) can under mild assumptions uniquely
be determined from integration of

ẋ(t) = fρk
(x(t), u(t), t), ts,k−1 < t < ts,k, (16)

k = 1, . . . , ns, 0 ≤ t ≤ tf . We assume all x(t) and u(t) to be
continuous at the switching times ts, although it is possible to
consider also jump or switching conditions.

A HOCP is considered where we wish to determine the
optimal sequence of actions of the cooperating vehicles, i.e.
the discrete state values ρk, k = 1, . . . , ns. Here, ns as well
as the continuous control history u(t), 0 ≤ t ≤ tf , and the
switching times ts,1, . . . , ts,ns = tf are to be determined in a
way that the cost function

min
u,ρ1,...,ρns

J, (17)

J = ϕns(x(tf ), tf ) +
∑ns−1

k=1 ϕk (x(ts,k − 0), x(ts,k + 0))

+
∑ns

k=1

∫ ts,k

ts,k−1
Lk (x(t),u(t), t) d t

with real-valued functions ϕk, Lk is minimized subject to the
equations of motion (16), the initial condition x(0) = x0,
constraints on the final state

0 = req,ρns
(x(tf )) , 0 ≤ riq,ρns

(x(tf )) , (18)

and constraints on the (continuous) state and control variables
in (ts,k−1, ts,k], k = 1, . . . , ns,

0 ≤ gρk
(x(t), u(t), t), (19)

uρk,min ≤ u(t) ≤ uρk,max ,

xρk,min ≤ x(t) ≤ xρk,max
(20)

with constant lower and upper bounds. In general not all
discrete states ρk can follow or proceed each other. Thus,
additional logical constraints must be considered:

true
{
l
(
ρ1, . . . , ρns

)}
. (21)

A. Objective Function

We now discuss the general formulation of the objective
function (17) to be minimized and give some common cases.

The first part ϕns
(x(tf ), tf ) is responsible for all effects

at the final time. This part contains desired final states or
regions, if the final time is fixed. If the final time is free, tf
itself may appear in ϕns

. With ϕk (x(ts,k − 0), x(ts,k + 0))
the costs for state transitions are measured. Here, switches
in the communication network topology or changes in the
environmental conditions for locomotion are considered. The
function Lk (x(t), u(t), t) represents other physical values
depending on the vehicles’ motions, e.g. energy consumption.
Some most common examples are explained in the following
which may also be used in combination as a weighted sum.

1) Minimizing the Energy: Especially to cope with aerial
vehicles it often is important to plan a mission with minimal
energy consumption to reduce the vehicles’ battery packs or
extend their time of operation. A typical formulation is

J =
ns∑

k=1

∫ ts,k

ts,k−1

(u(t))T (u(t))d t . (22)

2) Minimizing the Final Time: If we are interested in the
shortest, possible time to complete the mission, a possible form
of the objective function (17) reads as

J = tf + ε

ns∑

k=1

∫ ts,k

ts,k−1

(u(t))T (u(t)) d t (23)

with ε = 0. However, with a small ε > 0 the second addend
ensures the uniqueness and some regularity of the solution
because otherwise only a fast trajectory for the slowest vehicle
would be computed but the resulting trajectories of the other
vehicles would in general not be uniquely determined then.

3) Stabilizing Connectivity and Network Topology: Desired
network properties like bi-connection stability results can
be formulated. For instance the values of the connectivity
functions cvi (cf. Eq. (12)) can be considered for optimization

J =
∑ns−1

k=1 ϕk (x(ts,k − 0),x(ts,k + 0))

−∑nv

i=1 c̃i ·
∑ns

k=1

∫ ts,k

ts,k−1
cvi(x(t)) d t (24)

with suitable constants c̃i.

IV. NUMERICAL TREATMENT

A. Hybrid Nonlinear Optimal Control

If a maximum number of switching times (i.e. transitions
in network topologies or soil conditions) is assumed, then an
unknown sequence of discrete state variables ρk (Eq. 15) can
be transformed into a sequence of integer variables ρ∗k ∈
I ⊂ Nns which can be represented by a vector of binary
variables b ∈ {0, 1}nb . The feasibility of succeeding or



0 = ts,0 ts,1 ts,2 ts,i−1 ts,ns = tfts,i

qq
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Fig. 3. Illustration of a continuous state trajectory x(t) with nonlinear state
dynamics defined in ns phases. Phase transitions occur at switching times
ts,k .

preceding actions, phases or nodes is described by constraints
as in Eq. (21). Thus, the previously introduced hybrid optimal
control problem is transformed into a mixed-integer, namely
mixed-binary, dynamic optimization problems (MBOCP) and
numerical methods for this class of problems can be applied.

The numerical solution approach consists of a decomposi-
tion of MBOCP in coupled discrete and dynamic optimization
problems (cf. [17], [18] for details). In an inner loop the con-
tinuous dynamic part of the optimization problem is consid-
ered according to its constraints (Eqs. (16), (19)) for the fixed
number of ns phases (Fig. 3). For each phase [ts,k−1, ts,k]
a time discretization grid is introduced. Along this time grid
the continuous state variables x(t) and the control variables
u(t) are approximated by piecewise polynomial functions
[18]. Thus, the dynamic optimization problem is transformed
into a large, sparse nonlinear constrained optimization problem
which is solved numerically by a sparse sequential quadratic
programming method [19]. At the outer iteration level an
investigation of the discrete solution space is performed. For
this purpose, Branch-and-Bound (B&B) methods are applied.
Their performance depends on the way estimates of good
lower and upper bounds on the cost function (17) are obtained
and maintained (cf. [18]).

These non-convex mixed-integer optimal control problems
require efficient numerical methods to cope with their com-
binatorial characteristics. Bounds and solution estimates for
the full, nonlinear problem are key stages towards efficient
computation of optimal controls in cooperative systems. Fast
computable, global bounds could be used to exclude many
unprofitable sequences of states, but are hardly available. The
combinatorial part makes it difficult to find good, proven
global bounds and the high dimensions of the resulting nonlin-
early constrained optimization problems (NLPs) in the inner
loop complicate a fast numerical computation of them.

Therefore, we investigate a transformation of the HOCP
to MILPs to enable reasonably fast computation of solution
estimates as motivated by results from [3], [4]. The MILPs
must account for the significant structure of the original
problem and can be solved efficiently with available software.
The MILP solutions may later serve either as initial estimates
for the numerical HOCP solution or for intermediate steps in
a model predictive approach.

B. Linear Mixed-Binary Optimal Control Problem Approxi-
mation

We are now describing the general formulation for the
mixed-integer linear model. Our intention is to transform the
whole cooperative optimal control problem into the form

min cT

(
x̃

ũ

)
s.t. Ã1

(
x̃

ũ

)
= b̃1, Ã2

(
x̃

ũ

)
≤ b̃2 (25)

with real-valued matrices Ã1, Ã2 and vectors b̃1, b̃2, c. Here,
x̃ ∈ Rn1 × {0, 1}n3 denotes the state variables and ũ ∈
Rn2 ×{0, 1}n4 control variables (nA := n1 + n2 + n3 + n4).

There have been shown many advantages of these linear
models. Particularly their robustness and efficiency without
requiring good initial solution estimates made them applicable
to many online control algorithms in cooperative scenarios.

The most restrictive modification in our transformation of
the original nonlinear optimal control problem results from the
introduction of a fixed (not necessarily equidistant) time grid
T (resp. sampling time T s)

T := (t1, ..., tk, ...tN+1)T (26)
T s := (t2 − t1, ..., tk+1 − tk, ...tN+1 − tN )T

=: (t(s)1 , ..., t
(s)
k , ...t

(s)
N )T .

Thus the switching times of Eq. (15) have to coincide with
elements from T and are not freely adjustable any more. With
x(k) and u(k) we denote the vectors whose elements are
associated with the time step tk+1.

Assuming that a feasible control variable u(k) is given, the
evolution of the system

x(k + 1) = Ak

(
x(k)
u(k)

)
(27)

is then fully determined by initial and/or final conditions
x(1) = x0, x(N + 1) = xf .

The transformation of Eq. (16) into the linear approximation
of Eq. (27) has to be done with caution to account for the char-
acteristics of a specific fρk . It may be necessary to distinguish
different cases and to introduce additional variables. Jump and
switching conditions are modeled as

x(k + 1) = x(k) +
∑

i,j

bρi,ρj
(k)γij , (28)

with a vector of constants γij . The binary variable bρi,ρj

equals 1 iff the system switches from state ρi to ρj . Inequal-
ities are transformed analogously.

The constraints on control and state variables (19) result in
a set of binary variables bρi and linear expressions

Hρk

(
x

u

)
+ bρk · γρk,1 ≤ γρk,2 . (29)

The constant values in γρk,1 and γρk,2 can partly be deter-
mined by using the “Big-M”-technique (cf. [20]). Some cases
of these constraints are proposed in Sect. V.



vehicle number j wUB
j uUB

j allowed zones Rl

ground vehicle 1 15 1.5 1, 2, 3, 5, 6, 8,
10, 11, 12, 13, 15

ground vehicle 2 15 1.5 1, 2, 3, 5, 6, 8,
10, 11, 12, 13, 15

ship 3 10 0.8 4, 9, 14
aerial vehicle 4 30 3 1, 2, ..., 15

TABLE I
THE VEHICLES’ PARAMETER

As already noted, the number of different cases highly
increases in modelling with only linear expressions. Thus in
addition to Eq. (21) logical constraints are needed. They result
in a system of linear expressions L b ≤ γL where b represents
all introduced binary variables.

To investigate the potential of the proposed combined
method, we propose and investigate a representative example
of a mixed-integer linear model. First promising results are
reported in Sect. V-B.

V. REPRESENTATIVE EXAMPLE

Optimal control of the multi-vehicle system in the following
scenario is investigated: Given are nv = 4 vehicles in the
environment of Fig. 1 and a final time tf . What are the
energy-minimal trajectories for the vehicles subject to the
requirements that a certain part R∗l of each region Rl must
be visited at least once, that the vehicles do not collide and
that connectivity is guaranteed anytime?

The complexity of distributing the selection and sequence
of nR zones of interest R∗1 . . .R∗15 in a plane area (Fig. 1)
to be visited by at least one of the cooperating individual
vehicles together with determining optimal vehicle motion
trajectories arises with the combinatorial character in the
switched constraints. Therefore we start with a simple point
mass model for vehicle vj in R2. The approach presented in
this paper also allows a spatial as well as more general settings.

The vehicles (or mass points respectively) are starting at the
origin at initial time t0 = 0 and are ending at the origin at the
final time tf . Thus the model reads as

ẋj(t) = wx,j(t), xj(0) = 0 = xj(tf ),
ẏj(t) = wy,j(t), yj(0) = 0 = yj(tf ),

ẇx,j(t) = ux,j(t), wx,j(0) = 0 = wx,j(tf ),
ẇy,j(t) = uy,j(t), wy,j(0) = 0 = wy,j(tf ),
w2

x,j + w2
y,j ≤ (wUB

j )2 , u2
x,j + u2

y,j ≤ (uUB
j )2 .

(30)

Hereby xj = (xj , yj , wx,j , wy,j)
T where xj , yj denote the

position, wx,j , wy,j the corresponding velocities and uj =
(ux,j , uy,j)

T the acceleration or brake forces of the vehicle
which are constrained. According to the different dynamic
motion abilities, we are considering the bounds given in
Table I. Requiring the vehicles’ position in the zones of interest
for each R∗l the boundary condition reads as

nv∨

j=1

ns∨

k=1

[(
xj(tk)
yj(tk)

)
∈ R∗l

]
. (31)

The zones of interest R∗l are defined according to the borders
of Rl and a distance dR∗ ∈ R such that

(
x

y

)
∈ R∗l ⇒

(
x± dR∗

y ± dR∗

)
∈ Rl . (32)

Using the binary values bk
j,l ∈ {0, 1} (k = 1, . . . , ns,

j = 1, . . . , nv , l = 1, . . . , nR) the statement
bk
j,l = 1 → (x, y)T ∈ R∗l can be expressed by

H l

(
xj(tk)
yj(tk)

)
− Γl + bk

j,lM l ≤ M l . (33)

The rows of matrix H l contain all coefficients of the linear
borders of the according zones, i.e. each representative row of
Eq. (33) for zone Rl looks like

αl x + βl y − γl + bi
j,l ·Ml ≤ Ml . (34)

Γl and M l are vectors of constant values such that

M l ≤ max(H l

(
xj(tk)
yj(tk)

)
− Γl) . (35)

To guarantee that each zone is visited by a vehicle at least
once during the mission we require


∀l :

ns∑

k=1

nv∑

j=1

bk
j,l = 1


 ∧




nR∑

l=1

ns∑

k=1

nv∑

j=1

bk
j,l = 1


 . (36)

For collision-free trajectories between a pair (j1, j2) of vehi-
cles we additionally require

∀i1 6= i2, ∀t0 ≤ t ≤ tf :

∣∣∣∣∣

∣∣∣∣∣

(
xj1(t)− xj2(t)
yj1(t)− yj2(t)

)∣∣∣∣∣

∣∣∣∣∣
2

≥ rmin. (37)

In our example we consider this collision constraint for the
ground vehicles (j1, j2) = (1, 2) and outside a start/finish-
zone around (0, 0). The whole area of Fig. 1 is described by

|xj(t)| ≤ 400, yj(t) ≥ 0,

yj(t) ≤ 600, yj(t)− xj(t) ≥ 440.
(38)

Table I shows the feasible regions where each vehicle is
allowed to move. All other regions have to be treated as
obstacles. Therefore we require for the ground vehicles j ∈
{1, 2}

∧

j∈{1, 2}

∧

l∈{4, 7, 9, 14}

[(
xj(t)
yj(t)

)
/∈ Rl

]
. (39)

Obviously in the instance of the quadratic obstacle (i.e. the
building) R7 we can also require

¬ [(xj ≥ xObst,1) ∨ (xj ≤ xObst,2)∨
(yj ≥ yObst,1) ∨ (yj ≤ yObst,2)] (40)

for j ∈ {1, 2}. xObst and yObst are the borders of the obstacle
as defined in Fig. 1. The constraints for the ship (j = 3) and
the aerial vehicle (j = 4) are formulated respectively.



For the purpose of demonstration we consider a simple two
dimensional connectivity function for each vehicle j

cj((xj , yj)T ,(x, y)T ) =
−1
130

√
(xj − x)2 + (yj − y)2 + 2

(41)[
cj1 > 1∧
cj2 > 1

]
⇔ [ak

j1,j2 = 1] . (42)

We require vehicles to be connected for each time step k by

nv∑

j1=1

nv∑

j2>j1

ak
j1,j2 ≤ 1 . (43)

A. Linearized Implementation

We are now showing a completely linearized implemen-
tation of the introduced example by applying the formalism
of Sect. IV-B. For the purpose of demonstration equidistant
fixed time steps ts are used. Thus the motion dynamics (30)
is transformed to

xj(k + 1) = xj(k) + ts wx,j(k) (44)
wx,j(k + 1) = wx,j(k) + ts ux,j(k) , (45)

(yj , wy,j , analogously), where wx,j denotes the velocity of
vehicle j in the direction of x. Initial and final conditions are
given by (yj and wy,j respectively)

−3 ≤ xj(1) ≤ 3 ; xj(N + 1) = 0 (46)
wx,j(1) = 0 = wx,j(N + 1) . (47)

In the investigated example the controls and velocities are
constraint by quadratic expressions. In general expressions of
the form ±

√
(x1 − x2)2 + (y1 − y2)2 ≤ ±r can be trans-

formed by using a set of nγ ≥ 4 linear expressions

± sin(
i

3
π) (x1 − x2)± cos(

i

3
π) (y1 − y2) ≤ ±r , (48)

i = 1, . . . , nγ . Thus the bounds on the controls (30) become

8∧

i=1

[
sin( i

3π) ux,j + cos( i
3π) uy,j − uUB

j ≤ 0
]

(49)

in our implementation. We are also using these polygons to
formulate the objective function where we are intending do
minimize the energy for our mission. Another variable qu,j is
introduced such that

8∧

i=1

[
sin( i

3π) ux,j + cos( i
3π) uy,j ≤ qu,j

]
(50)

and we are minimizing J =
∑nv

j=1 qu,j .
To guarantee that each zone is visited at least once during

the mission we are implementing the inequalities (33) and
equalities (36).

For the considered ground vehicles (j ∈ {1, 2}) the
zone R7 is regarded as an obstacle [xObst,1, xObst,2] ×
[yObst,1, yObst,2]. Therefore we transform (40) into

−xj(k)− b1
OMO,x ≤ −xObst,2

xj(k)− b2
OMO,x ≤ xObst,1

−yj(k)− b3
OMO,y ≤ −yObst,2 (51)

−yj(k)− b4
OMO,y ≤ yObst,1

2 ≤ b1
O + b2

O + b3
O + b4

O ≤ 4

with binary variables bO and a constants MO,x ≥
max{−xj(k)+xObst,2, xj(k)−xObst,1} (MO,y resp.). In our
example we are using xObst,1 = −240, xObst,2 = −80 and
yObst,1 = 80, yObst,2 = 240. To improve our model we are
additionally requiring

xj(k) + xj(k + 1)− bv(2 · (xObst,2) + MT ) > −MT (52)
yj(k) + yj(k + 1) + bv ·MT < 2(yObst,1) + MT (53)

with MT ≥ 2 ·maxk{xk, yk}(const.) to avoid tunneling under
the vertices (−80, 80) of obstacle R7. All other vertices are
treated respectively. According to Table I all other infeasible
zones have to be implemented for each vehicle analogously.

For collision avoidance between the vehicles we are using
simple box constraints following the ideas in Eq. (48) with
nγ = 4 and r = 18.

To model the connectivity we transformed Eqs. (41) and
(42) into

sin(
i

3
π)(xj1(k)− xj2(k)) + cos(

i

3
π)(yj1(k)− yj2(k))

+ bc
k,j1,j2Mc ≤ 130 + Mc (54)

where Mc ≥ max{|xj1 − xj2 |, |yj1 − yj2 |}, i = 1, . . . , 4, and
j1 = 1, . . . , nv , j1 < j2. Thus together with Eq. (43) the
connectivity between the vehicles is modeled.

B. First Numerical Results

In a first straight-forward linearized implementation of the
proposed benchmark problem we dropped the collision avoid-
ance constraints resulting in a MILP with 1616 variables and
12112 (in-)equality constraints. This MILP was solved using
CPLEX [21] and the free Matlab [22] interface CPLEXINT
[23] in about 79min. The computation was started without
any initial guesses and without a (certainly very helpful)
decoupling which we expect to reduce the computational time
of the straight-forward implementation by a factor of about
ten. The Figs. 4 and 5 show the approximated trajectories for
optimal controls and positions resulting from the MILP-model
in direction in x and y. In Figs. 6 and 7 the resulting paths in
the x-y-space are shown with the underlying communication
network.

VI. CONCLUSIONS AND OUTLOOK

A general methodology for modeling and optimizing co-
operative multi-vehicle systems that are mainly characterized
by their motion dynamics has been proposed. The influence
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Fig. 5. Positions x (left) and y (right) of the vehicles.

of connectivity required for communication on optimal multi-
vehicle trajectories has been considered in the models. The
presented approach is in principle not restricted to a certain
class of robots or tasks and can be applied to different kinds
of multi-vehicle systems. Results have been presented for an
optimal cooperative control problem of four heterogeneous
vehicles subject to motion dynamics, heterogeneous motion
constraints and connectivity constraints for wireless commu-
nication.

The MILP based approach presented in this paper may be
applied for different purposes, e.g., to evaluate the degree of
optimality of heuristic, distributed real-time coordination and
control schemes or to compute good bounds or initial solution
estimates for numerical methods tackling the general HOCP
formulation. Also, mixed-integer linear models itself may
be developed further towards online application in a model-
predictive control method for multiple vehicles in uncertain
environments. Such a method could be based on repeated
online solution of MILPs which are properly adapted to cover
changes in the world model as it is the the case in many
cooperative robot problems like robot games or monitoring
and surveillance scenarios.
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Fig. 6. After the first timesteps t6 = 41.5 (left) and t8 = 55.4 (right):
One of the ground vehicles ( ) moves around the building where the aerial
vehicle ( ) flies over it. ( ) shows the communication network.
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Fig. 7. After the timesteps t12 = 83.1 (left) and t14 = 96.9 (right):
The second ground vehicle did not yet leave the starting position but stays
connected to the others. The aerial vehicle flies across the river and holds
connection to the ship ( ).
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