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Abstract. On the way to the big goal - the game against the human
world champion on a real soccer field - the configuration of the soccer
fields in RoboCup has changed during the last years. There are two main
modification trends: The fields get larger and the number of artificial
landmarks around the fields decreases. The result is that a lot of the
methods for self-localization developed during the last years do not work
in the new scenarios without modifications. This holds especially for
robots with a limited range of view as the probability for a robot to
detect a landmark inside its viewing angle is significantly lower than on
the old fields. On the other hand the robots have more space to play
and do not collide as often as on the small fields. Thus the robots have
a better idea of the courses they cover (odometry has higher reliability).
This paper shows a method for self-localization that is based on bearings
to horizontal landmarks and the knowledge about the robots movement
between the observation of the features.
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1 Introduction

Localization is one of the most important challenges for a mobile robot. There
are a lot of researchers developing new methods each year. In the last years the
Monte-Carlo Localization has been the standard approach to the localization
problem. A lot of improvements have been suggested to overcome limitations in
the processing power and to address the limited angle of view of robot that are
not equipped with omni-vision.

There are a lot of suggested improvements to the sensor model. Sensor-
resetting reseeds new position templates obtained from observations [1] and there
are improvements that build short-time history of observations to create more
accurate position templates [2]. Other approaches try to incorporate negative
information [3]. A lot of improvements has also been suggested for the motion
model for example using the detection of collisions.
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Fig. 1. Odometry and horizontal bearings. Top: Five images with six horizontal bear-
ings (1: right goal post, 2: left goal post, 3 and 4: center landmarks, 5 and 6 goal posts)
Bottom: Gray arrows show the robots odometry at different times, bold arrows show
the odometry associated with the horizontal bearings.

This work was motivated by the experiences we collected with the localization
method we use in RoboCup for our Aibo robots. We use a standard Monte-
Carlo localization as described in [4–6]. As with the latest rule changes in the
RoboCup Sony Four-Legged League besides the goals there are only two artificial
landmarks on the field, the distance-based sensor resetting method does not give
the desired results any longer. Size-based distance measurements have a to large
error when the objects are too far away.

In this paper we provide a bearing-only method for localization that in-
corporates odometry and can be used as a template generator for MonteCarlo-
Localization. This paper shows an approach to bearing-only self-localization that
incorporates odometry in a new way. Section 2 describes the method in detail.
Section 3 describes the experiments we performed with our Aibo robots.

2 Bearing-only Localization Using Odometry

In this section we show a method that allows a robot to localize based on two in-
puts. The first input are observations. The vector α = (αl1 , αl2 , ..., αln) contains
the measured bearings to the landmarks l1, l2, ..., ln. These angles were measures
at different times t1, t2, ..., tn. The second input is the knowledge about the mo-
tion of the robot. The vector u = (u1, u2, ..., un) contains the robot’s odometry
at times t1, t2, ..., tn.

A robot can obtain these vectors α and u by storing its observations and the
according odometry in a buffer. Figure 1 shows a visualization of such a buffer.
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In this section we define a function F (x, y,α,u) which describes the likeli-
hood for the robot of being at position (x,y) on the field. This function can be
used to calculate a robot position (the maximum of the function) or to generate
templates for Monte-Carlo localization.

2.1 Localization with three simultaneously seen horizontal bearings

In this subsection we show two methods to determine the position of the robot
when the robot is not moving. The first one uses well-known simple geometry,
the second one is a constraint-based approach.

Using simple geometry When a robot perceives three landmarks without
moving between the observations, the calculation of the position is straightfor-
ward. With the known position of the landmarks a circle can be constructed for
each pair of bearings. The radius of the circle is determined by the difference
of the angles and the distance between the landmarks. The intersection point of
the circles is the only possible position for the robot.

Pose estimation using angular constraints When the position is deter-
mined by intersecting circles, there is nothing known about the influence of
errors in the measurement of the bearings. This influence can be determined
using a constraint-based approach. A single observation of a landmark l at a
certain relative angle constrains the angle ϑl the robot can have at a certain
position (x, y) on the field. This angle is given by

ϑl(x, y, αl, xl, yl) = arctan
(
yl − y

xl − x

)
− αl

where (xl, yl) is the position of the landmark on the field and αl is the relative
angle to the landmark. When two bearings to two landmarks are given, the
function

Dl1,l2(x, y) = (ϑl1(x, y) − ϑl2(x, y))2

describes the likelihood for being at position (x, y). The shape of the function
represents how good a certain pair of landmarks is suited to constrain the po-
sition on the field. For example a plateau in this function means that a small
error in an observation leads to a large error in the resulting position.

The function Dl1,l2(x, y) introduced above describes for each position (x, y)
how good the angles ϑl1 and ϑl2 obtained from two different horizontal bearings
match. To use more than two observations αl1 , αl2 , ..., αln , we can calculate the
average angle of all resulting ϑl1 , ϑl2 , ..., ϑln for each position (x, y) using this
formula

ϑaverage(x, y) = arctan


n∑
i=1

sin(ϑli(x, y))

n∑
i=1

cos(ϑli(x, y))


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Fig. 2. Similarity of angles. a) The thin lines show the angles ϑl(x, y) for three different
observations. The bold line shows the average angle. The robot’s position is constrained
to the positions where the angles are similar. b) Function G(x, y) displayed as height
map. White: small difference between the angles, black: large difference between the
angles. The red circles are obtained from the method using simple geometry described
above.

Figure 2 a) shows function ϑl(x, y) for three different landmarks and the resulting
average angle. Using ϑaverage(x, y) we can define the function

G(x, y) =
n∑
i=1

(ϑaverage(x, y) − ϑli(x, y))2

which describes how similar the angles ϑl are. This function has its maximum at
the position (x,y) that best fits with all observations αl1 , αl2 , ..., αln . Furthermore
the function provides an estimation of the position error for known errors in the
observation. Figure 2 b) shows this function for three observations.

2.2 Incorporating odometry

To incorporate odometry we define a function υl(x, y, αl, ∆odometryl
, xl, yl) which

determines the angle of the robot at position (x, y) when the landmark l was seen
at angle αl and the robot moved ∆odometry(∆x, ∆y, ∆φ) since the observation.
Figure 3a) illustrates these parameters and the resulting angle υl. To determine
υl we define a triangle with its corners at the position (xl, yl) of the landmark l
(angle β), at the position (x, y) (angle γ) and at the position (x0, y0) where the
observation was taken (angle δ). Figure 3b) shows this triangle. Note that in this
triangle (xl, yl) and (x, y) are fixed. The position of (x0, y0) can be calculated
using the angle ω from (x, y) to (xl, yl) and the distance ∆d the robot walked:

x0 = x+ cos(ω + γ) ·∆d; y0 = y + sin(ω + γ) ·∆d

where γ follows using sine rule:

γ = π − δ − β

= π − αl − arctan
(
∆y

∆x

)
− arcsin

(
∆d · sin(δ)

dl

)
.
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Fig. 3. Bearing + odometry define the robots angle for a given position (x0, y0)

With the known position (x0, y0) follows

υl(x, y, αl, ∆odometryl
, xl, yl) = ϑ(x0, y0) +∆φ.

When the robot is at position (x, y), has seen the landmark l at angle αl some
time ago, and has moved by ∆odmetryl

since that observation, the function υl
gives the angle the robot must have. Similar to the function G from section 2.1
we define a function

F (x, y,α,u) =
n∑
i=1

(υaverage(x, y) − υli(x, y))2

which describes the likelihood of the robot for being at position (x, y). This
function can incorporate an arbitrary number of observations from the past and
does not need any internal representation of the position that is updated by
alternating sensor and motion updates. The selected sensor information α and
the according motion information u are processed at once.

2.3 Calculating the robot pose

The maximum of function F given in the last section is the position of the robot.
The rotation of the robot can immediately be calculated using υaverage or the an-
gle υl0 that is defined by the last observation. When a fast and rough estimation
of the robot pose is wanted, the maximum can be determined by an iteration
through the domain of the function. When a more accurate estimation is wanted
it can be obtained by means of standard methods as Gradient Descent with only
a few iterations. Note that such methods usually find only local maxima of the
function.

2.4 Generating templates for Monte-Carlo localization

Often there is more information than the horizontal bearings to unique land-
marks to determine the pose of the robot. Especially when there is ambiguous
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Fig. 4. The Function F (x, y): white - high likelihood, black - low likelihood, Arrows:
position templates that can be used for sensor resetting in Monte-Carlo localization -
note that usually only a small number of these templates will be used. Small circles: the
landmarks that were used for position calculation. Large circle: the robot pose (known
from the simulation). Path: the way the robot walked.

information like distances to walls or field lines a localization method that is
able to track multiple hypotheses might be preferred. In such a case the func-
tion F described in section 2.2 can be used to create template poses for sensor
resetting. Which is in particular useful when only a small number of particles
can be used due to computational limitations. To obtain a fixed number of
samples you can normalize F such that all values are between 0 and 1 using
function F ′ := 1/(1 + F 2) and create a template pose at each position (x, y)
with random() < F ′(x, y)n. Where n is a parameter to adjust how much the
sample poses can deviate from the maximum. Figure 4 shows templates obtained
from function F .

3 Experimental Results

We developed the bearing-only localization approach as a replacement of the
distance based sample template generation that we use for our Monte-Carlo self
localization [7–9]. The old method was not usable any longer as with the 2007
rule change in the Sony Four Legged league two more beacons were removed and
thus there are less beacons and the beacons have a higher average distance to
the robots.

Thus we added the method described in section 2.2 as a sample template
generator in a way described in section 2.4. The particle filter uses 200 particles.

To measure the quality of our improvements we steered a real robot via re-
mote control over the soccer field in our lab performing an s-like shape on the
field. The head of the robot performed the typical Aibo scan motion which looks
around searching for the ball and the landmarks. During this process log data
was recorded containing camera images, head joint values, odometry data, and
ground truth robot positions obtained by a ceiling mounted camera. Such log-
files can be played back off-line to feed our algorithms with data. The angles to
the landmarks needed for our location approach were extracted from images and
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Fig. 5. blue line: ground truth robot position, red line: result of self localization a,b)
no sample templates used. c,d) sample templates used.

joint sensor data. We used the recorded log data to compare different parame-
terizations of the approach.

Figure 5 shows a visualization of the path the robot walked and the pathes
obtained by our method. We also tested the influence the number of samples
used for reseeding has. Table 1 gives the results.

The result of the experiments is that without template generation there were
random jumps and a large deviation from the ground truth robot pose. With
sample template generation (using one sample per frame) the resulting trajec-
tories were smoother and closer to the ground truth.

num. of reseeded samples 0 1 2 5 10

position error in cm 54.8±21.6 21.7±13.1 19.1±13.0 19.5±12.6 22.4±17.0

position error percentage 9,13% 3,63% 3,18% 3,25% 3,74%

Table 1. Results of Localization tests. In our experiment the position obtained by the
approach introduced in this paper was compared with the one obtained by the ceiling
camera. The table shows the average distance between the two positions for the whole
run repeated six times. To show how reseeding influences the localization quality we
conducted the experiment with different re-sampling rates (top row). The table shows
that even a single reseeded particle in each frame improves self-localization drastically.
Adding more samples has almost no effect.
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4 Conclusion

In this paper we presented an approach for bearing-only self-localization incor-
porating odometry. The method does not need an internal representation of the
position estimate which is updated by alternating sensor and motion updates.
The history of observation and motion information (stored in a small buffer) is
processed directly. A big advantage is that no wrong model from the past can
disturb the current pose estimation.

However, we showed that our method also provides good positions for sensor
resetting in the well known Monte-Carlo localization. Tests in simulation and on
a real Aibo robot with ground truth by a ceiling camera showed the robustness
of our approach. Further experiments have to show whether the localization
method can cope with larger errors in odometry caused by strong influence of
opponents in RoboCup games.
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