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Abstract— This paper introduces theExtensible Agent Behavior such approaches, it still needs to be shown how to scale up
Specification Languag€XABSL) as a pragmatic tool for engineer-  these systems.
ing the behavior of autonomous agents in complex and dynamic Many researchers in the field of autonomous agents try to
environments. It is based on hierarchies of finite state machines . .. .
(FSM) for action selection and supports the design of long- Minimize the role_of the desgner. Some of them_propose gen-
term and deliberative decision processes as well as of short-term €ral action selection mechanisms that “automatically” choose
and reactive behaviors. A platform-independent execution engine between different options. For example, alternative behaviors
makes the language applicable on any robotic platform and to- could provide an activation level based on their utility in
gether with a variety of visualization, editing and debugging tools, the current state of the environment. An automated selec-

XABSL is a convenient and powerful system for the development .. - . . .
of complex behaviors. The complete source code can be freelytlon mechanism could choose the behavior with the highest

downloaded from the XABSL website (http://www.informatik.hu- ~ activation. Other researchers build systems that are able to
berlin.de/ki/’XABSL/). The language has been successfully applied learn complex hierarchical interactions with the environment
on many robotic platforms, mainly in the do_main of RoboCup by specifying the learning problem (as for example in [3]).
robot soccer. It gave theGermanTeanthe crucial advantage over These approaches are definitely in the right direction to-

other teams to become the 2004 and 2005 world champion in N -
the Four-Legged League and helped the teanCoPS Stuttgartto wards true machine intelligence, but there are several problems

become third in the Middle Size League in 2004. when applying the current state of the art in more complex ap-
plications such as for example robotic soccer. First of all, scal-
l. INTRODUCTION ability and extensibility are key issues: adding new behaviors

Engineering behaviors of (multiple) autonomous agents ia existing ones is often difficult as behaviors influence each
complex and highly dynamic environments is still a chalther and the utility estimations of all other behaviors have to
lenging problem in robotics and Artificial Intelligence. Fobe adapted in order to integrate a new behavior. Additionally,
many years, approaches from classical symbolic and knoilvis often not enough that the agents exhibit meaningful and
ledge based Al [23] have been dominant in these areaswvefsatile behaviors — developers sometimes just want to specify
research. Generating appropriate actions or “planning” wasplicitly what the agents shall do in certain situations. This
reduced to problem solving (as for example in [14]), bgan be done by a time-consuming tuning of utility measures
that requiring symbolic representations of the world and ity by adapting the learning problem. The problem with that
static and dynamic constraints as well as of the impact f that explicit instructions what to do in particular situations
actions on the environment. Despite general problems walne hidden implicitly in the specification of the environment,
grounding meaningful and stable representations in the agemt’'sthe action selection algorithm, or in the reward function
environment (see [24] for a review), it is a difficult task to copef a learning algorithm. Due to such difficulties developers
with the complexity of the system by means of logic whenften do not use any of these approaches when they program
agents have to deal with noisy sensor readings, unpredictadl#onomous agents to perform specific tasks — instead they
dynamics of the world, and uncertainty of actions. As Gat [1Hand-code the behaviors in native programming languages.
remarked: “Elevator doors and oncoming trucks wait for no In this paper we propose thExtensible Agent Behavior
theorem prover.” Specification LanguageXABSL) as a pragmatic and formal

Expressing scepticism towards traditional Al research mpproach to the design of agent behavior. Hierarchies of
“block world” domains, researchers came up with bledavior finite state machines make the system modular and ensure
based paradigm [7], [2]. In these biologically inspired ap-the reusability of behaviors in different contexts as well as
proaches direct sensor-actuator couplings control the ovethk extensibility of implementations. Section Il introduces
behavior of an agent. To obtain more complex behaviotthe architecture behind XABSL, section Il describes the
several of such behavior units or modules are combin&hguage and the runtime system, and section IV shows how
continuously [1], competitively [19], in layers [5], or stateXABSL has been applied in different domains. Due to space
based. Although impressive behaviors have been realized withitations, this paper can only serve as an introduction —
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option grab-ball-with-head

technical details, a language reference, and an XABSL demo
containing the complete source code can be found on the
XABSL website [15].

1. HIERARCHIES OFFINITE STATE MACHINES

XABSL is a language to describe a set of finite state /
machines that are organized in a hierarchy. The current state
of the whole set of state machines is defined by the current |
states of a subset of single state machines which can be defined
as a directed path. The starting node of this path is given by
the current state of the distinguished root state machine in

|
I
|
I

|
the hierarchy. Each state machine is calledoation and the L :
current states of the subset of options along this patbptien appraach \ | /
activation path The set of options is calledption graph ) l' /

This section describes how options are connected among \ I ,/
each other and arranged in a hierarchy, how the option wn | /
activation path is updated, and how actions are derived from Jor /I ,/
the current option activation path. A ball grabbing behavior ! 7
developed by th&ermanTean(cf. sect. V) for robotic soccer // e
7

with Aibo robots serves as an example.

go
A. How the State Machines Interact with the Environment

An XABSL behavior implementation is always a part of . N . . .
. %] 1. An option’s internal state machine. Circles denote states, the circle

more complex agent program. The surrounding software h@ the two horizontal lines denotes the initial state, the double circle denotes

to process the sensor readings, build up (if necessary) a warldrget state. An edge between two states indicates that there is at least one

model, manage the communication with other agents, Comp’&Fsition from one state to the other: The dashed edges ;how yvhich other
.. . option or basic behavior becomes activated when the state is active.

the actuators, and so on. At some point in sudease-think-

act cycle(usually when new data is available from the main

sensor), the program passes the control to the XABSL systgfe can be connected to the same subsequent option or basic

to update the option activation path. To access the informatiganavior.

about the world that is needed for decision making, symbolic 15 association of the states of an option with subsequent

representations are used. Therefore, the world model of i&ions allows to create complex behaviors that are composed

ggent system is divided '|nto simple, typed, and non-structurggy, simpler ones. Thus options can use a set of other

information items, callednput symbols _ subordinated options to realize a certain behavior. For example
There are two ways _to contrql the actions of the roboj; figure 2, the option‘handle-ball-at-opponent-borderis

output symbolsand basic behaviors Output symbolsare composed of the opticfapproach-and-turn-and-kickand the

boolean, enumerated, or decimal values. Each single Stateoﬁfion“turn-around-ball-and-kick”.

the option activation path can modify a subset or all of the g5ch option can be used from more than one other option.

output symbols. States closer to the end of the path can g5 allows for reusing the same behaviors in different con-

modify symbols that have already been modified by precedigg, ;s E.g. in figure 2 the optiotapproach-ball” is used by

states.Basic behaviorsaare parameterized actions that can rab-ball-with-head” and “approach-and-turn”. This helps

activated by the last state of the option activation path (a stgfghavior developers to modularize their agent's behaviors. In

that has no subsequent option). Usually the main actions (lig, example, only one behavior for ball approaching was

locomotion) of the agent are controlled by the basic behaViOb%veloped and fine-tuned and then used by various other

Output symbols can be used to control perception procesgfforent options.

or additional actuators. The option hierarchy can be seen as a rooted directed

acyclic graph, called theption graph There is only one

source (vertex with no incoming edges) in the option graph
An XABSL behavior consists of a set of behavior modulesthe vertex that represents theot option The sinks of the

called options Each option is a finite state machine (cf. figgraph are the vertices that represent the options that have no

1). In each option, exactly one state is marked asititell subsequent options.

state An arbitrary number of states can be declaredaaget ] ) )

statesin order to indicate that a behavior is finished. Each- HOW Options are Activated and Actions are Generated

state of such a state machine is associated with at most on&he current state of the option graph is defined by the option

subsequent option or basic behavior. Note that more than @wtivation path. The starting vertex of this path represents the

B. How Options are Organized in a Hierarchy



grab-ball-with-head.xabs -
handle J*® Graps the ball with the head =/
ball option grab_ball_with_head {
common decision {
/*% ball distance greater than 200 mm */
if (ball.time_since last_sesn_consscutively < 200 &€
ball.consecutively seen time > 100 &6
ball.sesn.distance > 200 ¢
ball.seen.distance < 800)
[
goto approach_ball:
¥
)
initial state approach ball (
handle decision {
ball /7% state running less than 300 ms /
at else if (state time < 300j {
opponent stay:
border ;
/%% grah possible */
else if (ball.time_since_last_seen consecutively < 300 &g
ball.consecutively seen time > 100 &6
Ball.seen.distance < (ball.play ball precisely ? 50 : 180) &g
ball.seen.angle < (ball.play ball precisely ? 15 : 20} &&
ball.seen.angle > (ball.play ball precisely ? -15 : -20))

3| %

handle
ball
at
opponent
goal

release
and
kick

approach
and
turn

and

kick

turn
and
release

{
goto grab;
¥
else {
stay:
H
}
action {
head control_wode = search for_ball;
epproach ball{look at_ball distance = 500,
slow_down_distance = (ball.play ball precisely ? 380 @ 350),
slow_speed = (ball.play ball precisely ? 100 : 170));

turn
around approach

ball and
turn

\

grab
ball

with

head

14
approach
ball

execute
kick

¥
}

state grab {

do
kick

Fig. 3. Example XABSL source code for the optitgrab-ball-with-head”.

It starts with the definition of a common decision tree (a decision tree that
applies to all states of the option) and then continues with the implementation
of the state‘approach-ball”. Here the source code is shown in the editor of
Microsoft Visual Studio, for which an XABSL syntax highlighting and code
completion plugin exists.

special
action

Fig. 2. An example option graph. Boxes denote options, ellipses denote ) . .
basic behaviors. The edges show which other option or basic behavior &bsequent option associated with the current state was not

be activated from within an option. The thick edges mark one of the magytive in the last step the current state of this subsequent
possible option activation paths. The internal state machine of ofgjiad- . . ] ..
ball-with-head” (dashed rectangle) is shown in figure 1. option is set to its initial state. Then_ the_ decision tree of the
current state of the subsequent option is executed leading to
a new current state, which is added to the option activation
. . ath. This process is repeated until the subsequent behavior
current state of the root option. The last state may actlvattgfaa new current state has no subsequent option. Each time
basic behawor. _ N a decision tree activates another or the same state, the newly
To define the possible transitions between the states eagfivated state sets the parameters of the subsequent option or

state has alecision treg which selects a transition to eitherassociated basic behavior and the state’s output symbols.
another or the same state. For the decisions, parameters passed

by higher options, and input symbols such as the world statéll. THE EXTENSIBLE AGENT BEHAVIOR SPECIFICATION

other sensory information, and messages from other agents LANGUAGE (XABSL)

can be used. As timing is often important, the durations thatThis section gives a brief overview over the language

the state and the option have already been active are providgdBs| , the runtime systenXabslEngine and some of the

In addition, it can be queried whether the subsequent optiggpis that were developed in conjunction with the language.
has reached one of its target states. As each state has its 9¥Bse issues are discussed in more detail in [16] and a

decision tree, the state tl’ansitions are not Only dependentd@ﬁ]‘np|ete |anguage reference and APl documentation can be
the representation of the environment's state but also on tggind at [15].

decisions that were made in the past. When the active state

is taken into account, hysteresis functions between states AreBehavior Specification in XABSL

possible. Thus, behaviors can be preferred once they have beefgent behaviors based on the architecture described in the

selected in order to avoid oscillations. previous section can be described with XABSL. Figure 3
The update of the current option activation path of the optihows an example. There is an XABSL-compiler compiler

graph starts from the root option. The decision tree of thwritten in Ruby that can generate four different types of

current state of the root option is executed to determine tdecuments from an XABSL document: an intermediate code

new current state (which can of course be the same as befof&)the runtime system, debug symbols to be used in debugging

This state is the first state in the option activation path. If theols, symbol files for code completion and syntax highlighting



for a variety of editors, and an XML representation XABSL ¥absl2 monitor and tester e
specifications. The XML representation can easily be parsed - headoontiol | phys. robot
by supporting tools e.g. an XSLT processor can be used to [aption selected - no parameters available)

generate an extensive HTML documentation containing SVG

(Scalable Vector Graphics) charts for the option graph, each ballhanding

option, and each §tate. Note that the figures 1 and 2 were Agent: =T2004 - soccer
generated automatically from XABSL sources. Option Activation Path:
. . playing-striker 32089 = handle-hall 1427 =
There are language elements for options, their states, and | \angioban 1957 = bal-ncenter-ofTed 1427 =
their decision trees. Boolean |Ogi¢|,(&&, !’ ==, | =, <, handle-ball-in-center- 1427 5 turn-and-release-and 6.1 =
. . h turn-and-releaze-and 6.1 = turn-and-release Els
<=, >, and>:)u S|mp|e arithmetic operatorsr( — 0k, /, and turn-and-release-and-kick angle 170.00
%), enumerations, and conditional expressiong ¢ : ¢) can ; furn-dandl-fe'ea%-a%d;kick-fab'E-ig 0.00 —
. . .. Lrn-ana-release Jd s = A=
be used for the specification of decision trees, parameters of turn-and-release angle ? 170,00
subsequent behaviors, and values of output symbols. Custom | grab-ballwith-head 8.1s  approach-bal 613
. . . - s approsch-hall 1134 5 search-for-hall 0.0=
arithmetic functions (e.g'distance-to(x,y)") that are not part approach-ball look-at-bal-distance 200,00
of the language can be easily defined and used in instance approach-ball slovy-down-distance 350.00
documents apprnacn-ga” .S|D\;\;-Sgt388d 1D?DEID.EIIZI
. approach-ball.y-offs |
Symbols are defined in XABSL instance documents to spproach-ball-set-we 183 fast 182
. . . . . approach-hall-zet-walk-speed slow-dow, 330,00
formalize the interaction with the software environment. In- approach-bal-set-wealk-speed slow-spe 170.00
teraction means access to input functions and variables (e.g. approach-bal-set-walk-speed y-offset 000
. Active Basic Behavior: go-to-ball
from the world model) and to output functions (e.g. to set gn-to-ball distance 0.00
requests for other parts of the information processing). For go-to-hall mai-speed 350,00
. . . . go-to-ball maxz-zpeed y 350.00
each variable or function that one wants to use in certain gio-to-beall mas-turn-speed 0.00
conditions, a symbol has to be defined. This makes the XABSL gﬁﬁ’ﬁ:ﬂ't\f,ff:t{fgf'e'm'ba" ggg
framework independent from specific software environments go-to-ball y-offset .00
and platforms. The developer may decide whether to express | Generated Action: walk: normal,347.9-3.5 -0.0
complex conditions in XABSL by combining different input
i i i - output symbols:
symb_ols with boo_le_zan and decimal operato_rs or by imple D e ccarchfor-bal
menting the condition as an analyzer function in C++ and input symbols:
referencing the function via a single input symbol. EZ::EEEQ::;?;CE AT
An XABSL agent behavior implementation is distributed obstacles robot-is-stuck false

over many source files, which helps the behavior developers

to keep an overview over larger agents and to work in parallelg. 4. An example for a XABSL monitoring tool using the debugging inter-
faces of theXabslEnginginside the GermanTeamRobotControlapplication.
B. Runtime System

The class libraryXabslEngineis the XABSL runtime sys-
tem. It is written in plain ANSI C++ and it is platform such a tool. Additionally, theXabsl Profiler can be used to
and application independent. To run the engine in a Speciﬁ@alyze behaviors over time. For that, log files containing the
software environment, only mechanisms for file access afBtion activation path are recorded and visualized in such a
error handling have to be adapted to the target platform. TH&Y as to show the length of time states and options were
engine parses and executes the intermediate code that @glive. This helps to detect state oscillations or unused states.
generated from XABSL documents. It links the symbols from
the XABSL specification that are used in the options and stat%s
to the variables and functions of the agent platform. Therefore,The main difference between XABSL and other behavior
for each used symbol an entity in the software environmeptogramming and planning languages as for example the
is registered to the engine. Basic behaviors are written Behavior Languagg6], COLBERT [13], the Configuration
C++ and also registered to the engine at startup. The clé&¥sscription Language (CDLJ18], or PDDL [20] is the way
library provides extensive debugging interfaces for monitorirfgpw it is integrated into the target platform. XABSL is much
and manipulating nearly all internal states of the engine. Wore lightweight than these as it does not impose any con-
complete API documentation is available at the XABSL westraints on the agent architecture or the software design of the
site [15]. robotic system. Instead, programmers can easily replace their

Based on the engine’s debugging interfaces it is easy agisting planning and control programs by the XabslEngine
develop a tool which can display the option activation pathyn-time system and start implementing their behaviors in
the parameters and execution times of options, states, and bX#8SL.
behaviors, as well as the values of input and output symbols.The fact that XABSL does not model a complete agent
Vice versa, single options or basic behaviors can be selecsgtem including sensing and acting but only provides an
and parameterized manually for execution. Figure 4 showstion selection mechanism means that the XABSL system

Discussion



Fig. 6. TeamCoPSin the RoboCup Middle Size League

noisy. Additionally, walking and ball handling with four legs
results in high uncertainty of actions.

The GermanTeam developed a rich set of basic behaviors
for obstacle avoidance, navigation, and ball handling. Based

can not be exclusively labeled as reactive or deliberative. 1t98 that, more and more complex behaviors were composed
possible to design completely reactive agents that do not ha/" Simpler ones. In general, the lower behaviors in the

persistent world model and it is also possible to use compl@Rtion hierarchy such as ball handling or navigation tend to
symbolic world models as an input to a highly deliberativ@€ more short-term and reactive as they have to react instantly
XABSL agent. on changes in the environment. The more high-level behaviors

XABSL is not in opposition to the approaches mentionedt/Ch as waiting for a pass, positioning, or role changes try to
in the introduction. It is possible (and has often been don@yid frequent state changes and make more deliberative and
to use behavior-based techniques in basic behaviors, to lel@fg-term decisions. A successful behavior in the Four-Legged
parameters of options or basic behaviors, to learn condition@2gue usually consists of about 50 - 80 options. An example
for state transitions, to coordinate multiple agents, or to u§&n e found at [15].

abstract planning algorithms and provide the results to XABSL Another domain of application is th&oboCup Middle
options by input symbols. Size Leaguécf. fig. 6). In that league, custom-made wheel-

It is the choice of hierarchical FSM that makes XABSLPased robots are usually equipped with omni-vision cameras
more scalable and easier to extend. Adding an option gpd laser range finders and therefore have_rather precise
an XABSL behavior specification never has side-effects g¥°rid models. For example the tea@ooperative Soccer
existing behaviors. Once a new behavior (both a composftéying Robots Stuttgart (CoP$J] easily encapsulated their
option and an atomic basic behavior) has been tested and fi@ésting behaviors for navigation and dribbling in XABSL
tuned, it can be easily integrated in different other option8asic behaviors and used the language itself mainly for very
without being dependent on the different contexts of the&égh level behaviors such as role assignments or game flow.
behaviors. This is because in each of these options the decigiéiflitionally, they developed a Petri Net based modelling tool
when to activate the new subordinated behavior only depertBgt generates XABSL source code for specifying cooperation

Fig. 5. A soccer game in thRoboCup Four-Legged League

on their state and purpose. between robots.
different agent architectures. reciprocal recognition, the computer game community faces
similar problems with similar approaches when designing the
IV. APPLICATIONS behavior of virtual creatures [10], [21]. Since 2004, several

So far, XABSL is mostly applied in thRoboCugd12] robot game programmers started using XABSL for their develop-
soccer domain, a common testbed and benchmark problemruents.
research in many fields of artificial intelligence and robotics. To support behavior engineers when employing XABSL
First versions of the system [17] were developed in 2001 lon their own agent platform, an example XABSL behavior
the GermanTeanfi22], a group of several German researcheimplementation was made for the ASCII Soccer simulator [4].
competing in theRoboCup Four-Legged Leaguef. fig. 5). In this very simple soccer simulation the field, two teams of
In this league, teams of four Sony’s four legged Aibo robofeur players each, and the ball are displayed on a text terminal
[9] play soccer against each other. The main characteristic(of. fig. 7). The players are able to access a nearly complete
this league is the complexity of physical actions that hawgorld model and the action set of the agents is very limited:
to be employed both for interaction and perception. As thhey can either move to one of the eight neighboring places
opening angle of the 208L60 pixels camera is only 45or kick. The simplicity of this environment made it possible
degrees wide and thus the robot only perceives small portidnsdevelop a competitive XABSL example agent team with
of the field, the obtained world model is very unreliable andynamic role assignments, supporter positioning, passing, and



ability of the team to develop an adopt very complex and
i i efficient behaviors — even during the ongoing competition —
played a key role in winning these titles.
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