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Abstract 

The optimization of continuous parameters in electrotechnical design using electromagnetic field simulation is 
already standard. In this paper, we present a new sequential modelling approach for mixed-integer simulation-
based optimization. We apply the method for the optimization of integer- and real-valued geometrical parameters 
of the coils of a superconductive magnet. 
 

1 Introduction 

The homogeneity of the magnetic field in the aperture 
of a superconductive magnet is determined by the 
geometry of the coil (Fig. 1). Especially the position 
of the coil blocks and the number of turns in each coil 
block are influencing the quality of the aperture field. 
The layout of the coils has to obey mechanical con-
straints such as, e.g., a minimal distance between two 
adjacent coil blocks. Invoking a separate real-valued 
optimization for every possible distribution of the 
integer number of turns over the coil blocks is not 
feasible. Hence, a constrained, mixed-integer nonlin-
ear optimization has to be carried out. 
In this paper a appropriate sequential modelling ap-
proach is proposed, which extends the Design  and 
Analysis of Computer Experiments approach (DACE) 
of Sacks [1] handling both, the real-valued and inte-
ger variables. Also the approximation points for the 
model are not determined a priori, but in a sequential 
update process. Due to the fact, that optimization in 
this context is applied to a function given analytically, 
gradient based optimization becomes applicable. 
 
2 Design-optimization by 

sequential modeling 

We apply the classical way of coupling simulation 
and optimization for the problem considered here. 
The optimization supplies the design parameters for 
the simulation and takes the output as objective or 
quality function value, which is also the only pro-
vided information of the underlying physical model. 
 
2.1 Problem formulation 
For a chosen design determined by variables  
and , the quality value evaluated by magnetic 
field simulation has to be minimized: . 

The feasible design space for 
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 to meet the geometric requirements of 
the magnet design. 
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Fig. 1: Convergence of the optimization process with respect to 

the number of model evaluations, magnetic flux lines and 
adapted finite-element mesh of the magnet model. 

 
2.2 Modelling and relaxation 
Given the assumption that a surrogate function  
covers the main effects of , we use an extended ver-
sion of DACE for approximation, including also inte-
ger variables in an analogous way like real variables. 
For a given set of designs i , , and 
simulation outputs ,  has to meet 
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The surrogate function is given by 

f̂  = ),( psZv +β , 
where βv  covers the global trend, and  is a 
realization of a stationary Gaussian function for ordi-
nary kriging. As proposed by Sacks [1], v  is equal to 
one and all other parameters of , and also 
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are estimated by a maximum likelihood estimation. 
For the known designs  the mean square error 
(MSE) of , which is also evaluated during the mod-
eling process, is equal to zero. For any other design 
the MSE provides a measure for predicting the quality 
of  which is greater than zero and which is later 
used during the sequential update process. 
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This extension to include also integer variables pro-
vides a surrogate function for  that is defined not 
only on Ω  as but also on the continuous relaxation 
of  regarding to 
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Ω̂ s . This relaxation is not physi-
cally reasonable, but permits the use of the optimiza-
tion method described below. 
 
2.3 Optimization on metamodels 
Because an evaluation of  is computationally ex-
pensive, we introduced  as a cheap and analytic 
surrogate function. Thanks to this and to the fact that 

 is also defined on Ω , the mixed-integer nonlinear 
programming problem can be solved by a “branch-
and-bound” technique [2] which treats 
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s  to be real-
valued on subproblems. These resulting nonlinear 
programming (NLP) subproblems of the “branch-and-
bound” tree, generated by varying additional con-
straints to provide integrality of the solution for s , 
are solved by classical sequential quadratic program-
ming techniques [3]. For instance any NLP method 
could also be applied on these subproblems, but in 
our approach gradient information of , explicitly 
given constraints and their gradients in case of 
nonlinearity, are easy to incorporate. 
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2.4 Sequential update process 
For the initial iteration,  designs , with 

, are selected and simulated, and serve as 
basis in  of the initial surrogate function in . The 
minimizer of in  is chosen as the next candidate 

 which is evaluated by the electromagnetic 
field simulation and added to inΒ  as new basis of 

1 . If a minimizer  during an iteration  is 
inside an 
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the process is forced to find a design 
, which maximizes the MSE of j  in 

order to get more information about unexplored areas 
of . This procedure ensures that all earlier obtained 
information is included for the selection of new prom-
ising designs for simulation. 
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The update process is stopped after a given number of 
simulation calls depending on the provided computa-
tional resources for the optimization process. 
Due to the lack of sensitivity information directly 
from the simulation, the parameters estimated for 

 give an indication of sensitivity regarding to 
the different design variables. If there is a priori 
knowledge about sensitivity, the size of the 
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can be adjusted by different values for each dimen-

sion to catch the effects better during the update proc-
ess. 
 
3 Numerical results 

The described approach is implemented using Matlab 
and a DACE toolbox [4], combined with an electro-
magnetic field simulation software [5]. For a fixed 
number of four coil blocks we optimize the design by 
continuous variation of the position vector  and the 
vector of numbers of turns 

p
s . One initial guess and 

two random chosen feasible system designs form the 
initial basis inΒ . The quality improvement of the 
magnetic field according to the applied number of 
simulation calls is illustrated in Fig. 1. The numerical 
simulation of the system design is as a start applied 
for the optimization process without mesh adaptation, 
and a second time with one mesh adaptation step. It 
turns out that the best found designs of all applied 
optimization methods without mesh adaptation are 
unstable with regard to small changes in , which 
indicates the necessity of mesh adaptation. 
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4 Conclusion 

Using a sequentially updated surrogate function rep-
resenting the aperture field quality of a superconduc-
tive magnet, a mixed-integer simulation-based opti-
mization can be carried out for the coil geometry.  
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