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Abstract
The paper focusses on optimal control issues arising

in semi-active vehicle suspension motivated by the ap-
plication of continuously controllable ERF-shock ab-
sorbers. Optimality of the damping control is measured
by an objective consisting of a weighted sum of criteria
related to safety and comfort which depend on the state
variables of the vehicle dynamics model. In the case of
linear objectives and linear quarter or half car dynamics
models the well-known linear quadratic regulators can
be computed. However, to account for maximum ro-
bustness with respect to unknown perturbations, e.g.,
by the ground, linear robust-optimal H-infinity con-
trollers are investigated which can be computed iter-
atively. The linear H-infinity controller can be viewed
as the solution of a linear dynamic zero-sum differen-
tial game. Thus, a nonlinear H-infinity controller can
be obtained in principle as the solution of a nonlin-
ear zero-sum dynamic game problem. Such a problem
formulation enables to consider nonlinear vehicle dy-
namics as well as nonlinear objectives and constraints.
A computational method is discussed which computes
approximations of robust-optimal trajectories for non-
linear damping control. The method is based on a re-
formulation of the dynamic game and the application of
a control and state parameterization approach in com-
bination with sparse nonlinear programming methods.
Numerical results for the different approaches and their
validation by software-in-the-loop simulation using a
full motor vehicle dynamics model are presented.

Key words
semi-active suspension, ERF shock absorber, vehicle

dynamics, optimal control, robust-optimal control, di-
rect transcription

1 Introduction
Main improvements in vehicle comfort and safety can

be obtained by electronic control units which continu-
ously or discretely in time interfere with the vehicle dy-
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Figure 1. Control, perturbation, and state variables for the semi-

active vehicle suspension system using ERF shock absorbers.

namics. Damping of vibrations in active or semi-active
suspensions is such a subject for research in control and
highly relevant for vehicle comfort and safety.
Conventional, passive shock absorbers exhibit a given

damping characteristic, i.e., the damping force as a
given function of the piston rod velocity. Thus, they
can only represent a compromise between different ob-
jectives as comfort, safety or speed. A significant im-
provement of the vehicle’s suspension can be obtained
by adding active components as hydraulic or electro-
magnetic actuators. However, generation of the addi-
tional forces requires an additional energy supply. Us-
ing electronically controlled active dampers the damp-
ing characteristic can be adapted to the actual dynamic
state of the vehicle to improve ride comfort or safety.
Here, we consider the protoype of a continuously con-
trollable shock absorber on the basis of electrorheolog-
ical fluids (ERF). The viscosity of the synthetic ERF
can be changed by an applied electrical field within
milliseconds. By controlling an electrical field applied
to one or several valves of a shock absorber equipped
with an ERF the damping characteristic can be adapted
within milliseconds to the current ride state. Unlike
hydraulic systems the ERF shock absorber does not re-
quire significant additional space for installation. As it
does not add energy to the overall system such a sus-
pension is semi-active. However, for investigating suit-
able controls a dynamic model of the ERF shock ab-
sorber must be developed which describes the relation
between applied electric field strength, damper posi-
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tion and velocity and the resulting damping force (Sect.
2.1). One of the most common control concepts for ac-
tive and semi-active vehicle shock absorbers is the so-
calledskyhookdamping control (e.g., [Valasek et al.,
1997]), which controls heuristically the movements of
the vehicle body. Analogously thegroundhookcon-
trol concept takes into account wheel oscillations (e.g.,
[Valasek et al., 1997]). Investigations by [Alleyne and
Hedrick, 1995] consider a nonlinear adaptive control
scheme, due to unknown observer-based parameters.
The concept of linear quadratic optimal regulators for
active damping control is common in scientific litera-
ture, e.g., in [Hać, 1992] in the context of active pre-
view control.
To evaluate different strategies for active or semi-

active control, mathematical models of objectives for
ride comfort and safety are required (Sect. 2.3). But
ride safety (e.g. provided by large contact forces be-
tween tire and road) and ride comfort (e.g., provided
by small vertical accelerations of the vehicle body) are
mainly antagonistic. Furthermore, the design of opti-
mal active suspension controls must consider the rele-
vant properties of the vehicle dynamics (Sect. 2.2) as
well as the usually unknown disturbances from an un-
even road. As the road properties cannot be predicted
accurately and economically enough by onboard sen-
sors robustness of the active damping control with re-
spect to unknown disturbances is important to guaran-
tee a certain performance of the ride.

2 Optimal Control Problems for Optimal Semi-
Active Suspension

The investigation of optimal semi-active suspension
on the basis of ERF shock absorbers requires to con-
sider the dynamic behavior of the vehicle as well as of
the ERF shock absorber (Fig. 1).

2.1 Dynamic Model of a Continuously Control-
lable ERF Shock Absorber
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Figure 2. The variable viscosity of the ERF flow through a valve

between two electrodes (left) enables a broad bandwidth of force-

velocity characteristic of the shock absorber (middle) which can be

described by an augmented Bouc-Wen dynamic model (right).

Conventional, passive damping behavior is usually de-
scribed by a fixed damping characteristic defined by the
force-velocity rate. But in general, dampers exhibit a
nonlinear behavior. Depending on the actual damper
design, the damping rates are different in the bump and

rebound phases while within each phase the system is
best described by a progressive damping characteristic.
For a more realistic simulation model, piecewise linear
or higher order polynomial approximations of realistic
tabular data may be used.
Measurements of ERF dampers indicate strong non-

linear behavior and characteristic with hysteresis. The
dynamics of the characteristic depends upon the damp-
ing velocity and on the applied electrical field. De-
tailed computations of ER fluid flow models within the
valve are not well suited for the purpose of control de-
sign because of the high computational and analytical
efforts involved in deriving proper models and obtain-
ing numerical solutions [Hoppe et al., 2000]. However,
a sufficiently accurate and fast computable model of
the dynamic behavior of an ERF shock absorber can
be obtained, e.g., using parameterized, phenomenolog-
ical models. Here the approximation of the ERF ef-
fects is usually induced by friction elements or nonlin-
ear spring or damper elements [Stanway, Spronston and
El-Wahed, 1995; Butz and von Stryk, 2002]. Theaug-
mented Bouc-Wenmodel by [Spencer et al. 1996b] (see
also [Butz and von Stryk, 2002; Hoppe et al., 2000] and
Fig. 2 (right)) is one of the most flexible models which
take into account the dependency on a variable elec-
trical field. It describes a dynamic system depending
on ẋD, the velocity of the piston rod. The state vari-
able of the dynamic ERF damper model is denoted by
s = (s1, s2, s3)

T

ṡ1 = 1
c0+c1

(c1ẋD − αs2 − k0s1)

ṡ2 = (A − β(1 + sgn(ṡ1s2))s
2
2)ṡ1 .

}

(1)

The output function

F = c1(ẋD − ṡ1) + k1(xD − x0) (2)

denotes the damping force and depends onẋD and
xD, the relative displacement of the damper. The sys-
tem (1) describes a hysteresis operator, and its proper-
ties are parameterized with respect to the applied elec-
trical field. Thus

ṡ3 = η(uD − s3) (3)

results with controluD as the applied field strength and

c0 = c01 + s3c02

c1 = c11 + s3c12

α = α1 + s3α2 .






(4)

For modeling the dynamic behavior of a particular ERF
damper prototype the 11-dimensional parameter vector
p = (c11, c01, α1, A, β, c11, c02, α2, k0, k1, x0, η)T

must be optimized numerically in such a way that the
simulated trajectories fit a set of measured damper tra-
jectories best using a nonlinear least squares objective
[Rettig, 2003].
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Figure 3. Quarter car model (left) and half car model (right).

2.2 Models of the Vehicle Dynamics
Motor vehicles are very complex dynamic systems

and consist of many significant components resulting
in a high number of degrees of freedom. A detailed
and comprehensive vehicle model is needed to repre-
sent the nonlinear kinematics of the wheels and axles
and to describe the drive train, the steering mechanism,
the tire dynamics and ground contact forces [Genta,
1997; Kortüm and Lugner, 1998]. Depending upon
the specific design purpose of interest, a suitable dy-
namical model can be achieved by a reduced dynamic
system. The effect of the neglected components of the
full model may be interpreted as general perturbations
applied to the reduced system.

2.2.1 Models of Quarter Cars and Linear Vehi-
cle Dynamics The oscillating behavior of a vehicle
excited by perturbations of the ground and driving ma-
neuvers are investigated usingvertical dynamics mod-
els, i.e. models reduced to the vertical displacements of
the vehicle and wheel bodies. The unknown maneuvers
such as braking, acceleration and cornering under high
velocities, if considered, may be regarded as general
perturbations.
Vertical models of vehicles may be classified into dif-

ferent levels of detail. There are so-calledfull-car-
models(in the context of vertical models) including
two axles, which reflect both vertical deflections and
inclinations. Bounce, roll and pitch motions can be
investigated simultaneously. Separated and decoupled
investigations are possible usinghalf-car-models(cf.
Fig. 3, right). The inclination is interpreted as rollor
pitch motion. The most common and simple model is
the quarter-car-model(cf. Fig. 3, left), which repre-
sents the vertical motion of a system including a quarter
of the vehicle body and the corresponding wheel. In the
computations of subsequent chapters for the wheel the
constantskR = 150 kN/m (spring),cR = 0.2 kNs/m

(damping),mR = 35 kg (mass) and for the suspension
ks = 20 kN/m (spring) andcs = 1.5 kNs/m (damping
constant in case of a passive suspension) and a quarter
vehicle mass ofms = 324 kg have been used.

2.2.2 Full Motor Vehicle Dynamics Model The
numerical, real-time simulation of a full motor vehi-
cle dynamics model that accounts for all significant ef-
fects is used in our investigations to validate optimal
and suboptimal controls that have been computed us-
ing reduced models of the vehicle dynamics. Our ve-
hicle model consists of a suitable multibody system
with kinematical connections and force elements and
is supplemented by a sophisticated tire model. A gen-
eral purpose modeling approach to multibody systems
based on the descriptor form of the equations of motion
results in a large-scale system of differential-algebraic
equations (DAEs) of index 3. However, we make use
of an optimally tailored model description which yields
a system of ordinary differential equations (ODEs) and
is well suited for simulation in real-time.
The vehicle model of veDYNA [Chucholowski et al.,

1999; Vögel et al., 2003] consists of a system of nine
rigid bodies comprising the vehicle body, the axle sus-
pensions and the wheels. Further submodels are em-
ployed to depict the characteristic of the drive train,
the steering mechanism, and the tires. Suitable mini-
mal coordinates and generalized velocities are used to
describe the spatial state of the vehicle and its compo-
nents [Rill, 1994]. The equations of motion are derived
from Jourdain’s Principle yielding

MBV (yBV ) żBV = QBV (yBV , zBV ,yST ,

zST ,yDT , zDT ) (5-a)

ẏBV = K−1
BV (yBV ) zBV (5-b)

MDT żDT = QDT (yDT , zDT ) (5-c)

ẏDT = VDT zDT (5-d)

MST (yST ,yBV ) żST = QST (yST , zST ) (5-e)

ẏST = VST zST (5-f)

D ẏT = Fstat − C yT . (5-g)

Thus, the vehicle dynamics is fully characterized by the
system of 24 first-order ODEs comprising the vehicle
body and the axles, (5-a) and (5-b). Eight ODEs (5-g)
describe the lateral and longitudinal deviations of the
tires by means of spring and damper elements. The ver-
tical deformations of the tires are covered by (5-a). The
dynamic model of the drive train consists of 19 ODEs,
(5-c) and (5-d), including four equations governing the
angular wheel speeds. Five additional ODEs account
for the dynamics of the steering system (5-e) and (5-f).
Couplings between the separate systems occur via the
generalized forces and torquesQBV . Wind forces and
moments are considered as additional forces applied to
the multibody system of the vehicle [Chucholowski et
al., 1999; Vögel et al., 2003].



The tire forces have a significant impact on the dy-
namical behavior of a vehicle. The semi-empirical tire
model that is used here describes the behavior of a real
tire accurately [Chucholowski et al., 1999; Vögel et al.,
2003]. About 80 parameters which can be measured or
estimated enter the model for each tire in veDYNA. The
model covers different driving situations, including ef-
fects at the driving limits such as sliding and spinning.
The actual tire model is selected online depending on
the respective road and weather conditions.
Due to the stiffness of the ODE system (5-a)–(5-g)

its numerical integration is carried out recursively with
a semi-implicit one-step Euler scheme using a con-
stant step size [Chucholowski et al., 1999; Vögel et al.,
2003]. In particular, the integration method makes ef-
ficient use of the special block structure of the ODEs.
It turns out that a fast and stable solution is possible in
real-time on recent PC hardware.
For a realistic implementation of virtual test-drives by

numerical simulation, additionals models for the driver
and the road are required [Chucholowski et al., 1999;
Vögel et al., 2003; Butz and von Stryk, 2005].

2.2.3 Nonlinear Single Track Vehicle Model
The vehicle dynamics model should also take into ac-
count the particular properties of the ERF shock ab-
sorbers. Substitution of the commonly used linear
damping behavior within the quarter and half car mod-
els of Sect. 2.2.1 by a more realistic dynamic model
of the ERF damping characteristic (Sect. 2.1) yields a
nonlinear system of differential equations. This may
be extended by further substitutions such as nonlinear
models for the tires. Such a more realistic model up-
grade of a linear half car model can be used for calcu-
lation of optimal controls and trajectories, e. g., for lap-
time optimization [Butz and von Stryk, 2005; Vögel
et al., 2003]. Specially calculated damping controls
take into account pitch motions which are significant
for time shifted perturbations on front and rear wheels.

2.3 Objectives for Comfort and Safety
Two primary objectives for a vehicle ride with semi-

active suspension are ride safety and ride comfort. For
both, mathematical models must be provided.

Basic and Parameterized Cost Functionals The
characterization of safety in the vehicle dynamics de-
pends primarily on wheel loads. High loads have
greater longitudinal and lateral transmission forces be-
tween the wheels and the ground. On the contrary,
small wheel loads can cause the loss of controllability
of the vehicle. Larger magnitudes for the roll and pitch
angles will indirectly influence ride safety as the mag-
nitude of the wheels’ contact forces might reach zero
causing lift-off. The comfort of a ride can be of almost
equal importance to passengers than safety. Comfort is
mainly characterized by the accelerations of the vehi-
cle body, often called thesprung masscontrary to the
wheel body, which in this sense is called theunsprung

mass. With respect to the vertical vehicle dynamics
models (cf. Section 2.2.1), vertical accelerations are
treated here. For models with a higher level of detail,
angle accelerations of pitch and roll motions may also
be considered. Altogether a performance index consist-
ing of a weighted sum of various criteria of safety and
comfort may be used, e.g.,

min
u

∫ tf

0

L(x(t),u(t)) dt, where

L(x,u) = µsafety




∑

i=f,r

[
Fdyn.load,i

Fstat.load,i

]2

+

[
xθ

xθ,max

]2





︸ ︷︷ ︸

safety criteria

+ µcomfort

[[
ẍs

ẍs,max

]2

+

[
ẍθ

ẍθ,max

]2
]

︸ ︷︷ ︸

comfort criteria

. (6)

with Fstat.load,i = g(ms + mi), Fdyn.load,i =
−(kRi

xRi
+ cRi

ẋRi
), i = f, r. For an example of

the state and control variablesx and u, we refer to
the half car model of Fig. 3. For a full vertical vehi-
cle dynamics model one can extend the functional by
variables depending on the second angle. The vari-
ablesFdyn.load,i, ẍs, xθ, ẍθ denote the deviation from
the corresponding stationary value.
The weightsµ⋄ ≥ 0 have to be chosen properly, i.e.,

depending on the purpose of investigation. For exam-
ple, their actual value may depend on the actual driving
situation where either comfort or safety may be more
desirable. Fig. 4 shows suspension behavior for dif-
ferent optimal semi-active damping with respect to ei-
ther only safety or comfort. Here, one purpose is to
demonstrate the antagonistic character of the two goals.
Optimized safety (a) leads to fast regulation of the os-
cillations under high accelerations of the vehicle body,
whereas optimized comfort (c) yields almost decoupled
motions of vehicle and wheel body under very low ac-
celerations of the sprung mass and high frequencies of
the unsprung mass. Please note the time interval with
no contact of the tire with the ground in Fig. 4 (c).

Alternative Formulations Evidently it is not possi-
ble to simultaneously ensure a maximum value for the
respective cost functionals corresponding to both safety
and comfort by choosing particular weights of the cost
functional (6). Another approach to handle this prob-
lem is to optimize one of the objectives and to restrict
the other one to a suitable bound

min

∫

Lcomfort s.t.
∫

Lsafety ≤ Lsafety,max, (7)

and vice versa. This approach usually yields satis-
factory results. A third approach is to maximize the
distance from each objective from an respective upper
bound using a positive slack variableσ

max σ s.t.
∫

Li ≤ Li,max − σ, i = 1, 2. (8)
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Figure 4. The results for optimal semi-active damping control of

a quarter car model (Sect. 2.2.1) for different objectives are dis-

played which have been obtained using the method of Sect. 4.1and

tf = 0.4 s. The objectives used in the columns are (a) optimal safety,

comfort ignored, (b) optimal comfort with constrained wheel load as

in Eq. (7), (c) optimal comfort, safety ignored, (d) objective of Eq. (8)

with a slack variable. The rows in each column depict in the first row

the wheel displacementx (bright, green line) and the vehicle body

displacementxs (dark, red line), in the second row the vehicle body

acceleration[m/s2/g], and in the third row the wheel loadFR [kN].

Fig. 4 shows the behavior of the state variables of a
quarter car model for the resulting optimal controlled
semi-active suspension which has been computed using
the method of Sect. 4.1. The last optimization configu-
ration using a slack variable yields high gain damping.
However, the weight selection may depend on the par-

ticular vehicle or ride purpose. Active suspensions for
race or sports cars, ambulance vehicles or passenger
cars have to be designed by different requirements.

3 Optimal and Robust Optimal Linear Quadratic
Controls

The goal of the control problem for controllable ERF-
shock absorbers integrated into a semi-active vehicle
suspension is a combination of optimal safety and opti-
mal comfort of the ride. In comparison to a fixed damp-
ing characteristic or a manual selection between a few,
alternative characteristics, the new technology of ERF-
shock absorbers permits continuous control. This sug-
gests the calculation of suitable (if possible optimal)
controls taking into account the possible nonlinear dy-
namics of the vehicle and of the damper (Section 2.2)
and further constraints.

3.1 State Feedback Control Based on LQR and
H∞ Techniques

In order to investigate the capability of semi-active
damping with ERF shock absorbers, state feedback
controls can be derived for various linear vehicle dy-
namics models (cf. Sect. 2.2) written as

ẋ =

(
0nq,nq

Inq,nq

M−1Ak M−1Ac

)

︸ ︷︷ ︸

A

x +

(
0nq,nu

M−1Bm

)

︸ ︷︷ ︸

B

u (9)

with the statex = (q, q̇) ∈ R
nx and the control

u ∈ R
nu , whereq ∈ R

nq denotes the generalized co-
ordinates, e.g.,q = (xs, x) for the quarter car model
and q = (xs, xθ, xr, xf ) for the half car model of
Sect. 2.2.1. The further elements of Eq. (9) denote the
zero matrix0, the unit matrixI, the mass matrixM,
the stiffness matrixAk, the damping matrixAc, the
control matrixBm. The statex is controlled byu. n⋄

denote their dimensions,⋄ = x, q, or u.
As the linear quadratic cost function

J [u] =

∫ ∞

0

xTQx + 2uTSx + uTRu dt (10)

a weighted criterion for safety and comfort is chosen
which consists ofoscillations of contact forcesrepre-
senting the fundamental safety criterion, andvehicle
body accelerationsrepresenting a relevant comfort cri-
terion

Q = µcomfort

∑

states
vehicle body

1
ẍ2

i,max

ATeie
T
i A

+ µsafety

∑

wheels

[
kRi

Fstat.load,i

]2

(eie
T
i )

+ . . . +
∑

states

µi,state
1

x2

i,max

(eiei
T)

R = µcomfort

∑

states
vehicle body

1
ẍ2

i,max

BTeie
T
i B

+µcosts

∑

wheels

1
ui,max

BTeie
T
i B

S = µcomfort

∑

states
vehicle body

1
ẍ2

i,max

BTeie
T
i A







(11)



with weightsµ⋄ ≥ 0. The sums over the states of the
vehicle body take into account vertical oscillations as
well as angular oscillations if they appear in the model.
The sums over the states of the wheels include all
considered wheel oscillations. To ensure existence of
the linear optimal control additional quadratic penalty
terms due to the state and control variables have to be
taken into account. It is well known that the optimal
feedback control can now be obtained as

u∗ = R−1(S + BTP)x (12)

with P as the solution of the algebraic Riccati equation
(cf., e.g., [Dorato, Abdallah and Cerone, 1994])

ATP + PA + Q− (PB + ST)R−1(BTP + S) = 0

corresponding to the cost functional of Eq. (10). The
optimal solution exists, if the system is stabilizable,
R is positive definite, andQ − STR−1S is positive
semi definite. The last two properties hold, if the ob-
jective (10) contains the quadratic penalty terms of the
state and control variables as in Eq. (11).
Furthermore, we may consider robust-optimal con-

trols, regarding unknown perturbationsw, e.g. by the
ground. Then, the dynamic equations (9) include a per-
turbation term

ẋ = Ax + Bu +

(
0nq,nw

M−1Dm

)

︸ ︷︷ ︸

D

w (13)

with the perturbation matrixDm. Perturbations include
impacts caused by an uneven ground as well as forces
and moments acting on the vehicle body caused by
driving maneuvers. Let us now consider the augmented
objective

Jγ [u,w] =
∫ ∞

0
xTQx + 2uTSx + uTRu

− γ2wTw dt ≤ 0

}

(14)

with the attenuation boundγ > 0. Then the robust-
optimal H∞ control is the saddle-point solution of a
dynamic game whereu is the player minimizing and
w the player maximizing the objective. It exists, if
the solutionPγ ∈ R

nx×nx of the augmented algebraic
Riccati equation

ATPγ + PγA + Q−

[

Pγ

[
B D

]
+

[
ST 0T

]
]

·

[
R−1 0

0 − 1
γ2

] [[
BT

DT

]

Pγ +

[
S

0

]]

= 0







(15)
exists (cf., e.g. [Basar and Bernhard, 1991; Basar and
Olser, 1995]). The robust-optimal controlu∗

rob then
follows from Eq. (12).
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Figure 5. Comparison of some of the state variables of a (linear)

single track model for a ride over a step of 2.5 cm height at a speed

of 100 km/h for LQR- and H∞-controlled suspensions.

For γ > 0 and optimalu0 = u0(w) we have
J

[
u0;w

]
/‖w‖2 ≤ γ2, ∀w, i.e. the disturbance of

the system is bounded. The optimal disturbance atten-
uation is related to a lower boundγ∗, which can only
be calculated iteratively. Since the existence of an op-
timal controller for the infimum valueγ∗ is not guar-
anteed, suboptimal solutions forγ = γ∗ + εj may be
computed iteratively for a series of decreasing “small”
εj > 0 [Helton and James, 1999; Hoppe et al., 2000].

3.2 Semi-Active Control of ERF Shock Absorber
Please note that the linear-quadratic optimal control

merely provides an optimal damping force, but not an
optimal damping rate or optimal electrical field to be
applied at the valve within the semi-actively working
shock absorber (Sect. 2.1). Such an active damping
system would provide (bounded) forces like an actua-
tor. Whereas semi-active shock absorbers only control
dampingforces, always regarding the direction of mo-
tion of the damping element. They can not add but only
extract energy from the system.
A practicalsemi-activedamping rate is now predicted

on the basis of the optimal (or robust-optimal) damp-
ing forceFD,opt obtained in Sect. 3.1, e.g., by the LQR
or H∞ approach. For a quarter car model we have
FD,opt = u∗. Using a heuristic compensation regu-
lator, we apply withFD,cur, uD,cur as the current force
a current control at each ERF damper

uD,appl =







umin, for FD,optFD,cur < 0

min
(
umax, max{umin, uD,cur+

(|FD,opt| − |FD,cur|) ∗ K}
)
, otherwise

(16)



which is similar to a “clipped optimal” control algo-
rithm as suggested by [Spencer et al., 1996].FD,cur is
assumed to be known and the constantK depends on
the scaling ofuD and the selected sampling rate.

3.3 Numerical Results
In Fig. 5 the results are depicted for some of the state

variables of a (linear) single track model for a ride over
a step of 2.5 cm height at a speed of 100 km/h for semi-
active suspension with LQR or H∞ control resulting
for a large weight of comfort and compared with a pas-
sive suspension. Depending on the value ofγ the H∞

control performance ranges from close to the LQR con-
trol to a high level of robust optimality being capable
of compensating large disturbancesw.

3.4 Validation by Software-in-the-Loop Simula-
tion

An ISO double lane change maneuver for a full mo-
tor vehicle dynamics model of a midclass car (Sect.
2.2.2) is considered. The target trajectory of the vehi-
cle’s center of mass corresponds to an optimized driv-
ing control maneuver with respect to minimum time
[Vögel et al., 2003] on an even road. In order to test
the vehicle’s capabilities in an extreme situation, the
same ride is now considered subject to perturbations
resulting from a wavy road surface with amplitudes be-
tween 20 and 40 cm. The resulting driving conditions
are apparently unsafe, because the vehicle skids off the
road (see Fig. 6, bright line). Repetition of the ma-
neuver with semi-actively H∞-controlled ERF shock
absorbers with equally weighted comfort and safety,
shows the benefit of robustness. Using the same guid-
ance control for the vehicle, it successfully follows the
same set point trajectory but now on a very rough road.

4 Optimal Semi-Active Control Based on Nonlin-
ear Dynamics

4.1 Nonlinear Deterministic Optimal Trajectories
Direct transcription methods have been developed

very successfully during the last decade and promise
high flexibility and robustness when solving general
optimal control problems with a Mayer type objective

min J [u] = Φ(x(tf ), tf)

s.t.
ẋ(t) = f(x(t),u(t), t), 0 ≤ t ≤ tf

0 = r(x(0),x(tf ), tf)
0 ≤ g(x(t),u(t), t)







(17)

numerically to low or moderate accuracies, e.g., [Betts,
2001]. In the direct collocation method [von Stryk,
2001] a discretization ofx by piecewise cubic Hermite
polynomialsx̃(t) =

∑

k αkx̂k(t) and ofu by piece-
wise linear functions̃u(t) =

∑

k βkûk(t) is applied
[von Stryk, 2003] on a discretization gridta = t1 <
t2 < . . . < tnt

= tf , see Fig. 7. The equations of mo-
tions (17) are pointwise fulfilled at the grid points and
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Figure 6. The double lane change maneuver (path through the

cones depicted in the upper row) on a very uneven road, simulated

with the full vehicle dynamics model of a passenger car in real-time.

The car with a conventional passive suspension skids off theroad.

Whereas the car with an (sub-) optimally controlled semi-active sus-

pension follows the target trajectory for the vehicle’s center of mass.

The figures in the lower row show wheel loads on the right and left

front wheels of the full vehicle dynamics model for a passiveand a

clipped semi-actively controlled ride during the criticalphase of the

maneuver.
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Figure 7. Direct collocation parameterization of continuous state

and control variables.

at their respective midpoints resulting in a set of non-
linear NLP equality constraintsa(y) = 0 (collocation).
Any control or state variable inequality constraints are
to be satisfied at the grid points resulting in set of non-
linear NLP inequality constraintsb(y) ≥ 0. Here,y
denotes theny parameters of the parameterization. The
resulting nonlinearly constrained optimization problem
(NLP) basically reads as

min
y

Φ(y) subject toa(y) = 0, b(y) ≥ 0,

y = (α1, α2, ..., β1, β2, ..., tf )T .

}

(18)

Please note that an objective involving an integral term
as in Eq. (10) can easily be transformed into a problem
with a Mayer-type objective as in Eq. (17) introducing
one additional state equation. The gradients and Jaco-
bians of the NLP exhibit a sparse structure which can
be exploited by the large-scale SQP method SNOPT
[Gill, Murray and Saunders, 2002] resulting in com-
putational speed-ups by two orders of magnitude [von
Stryk, 2003] compared to standard NLP solvers. Usu-
ally a sequence of related NLPs with refined time grids



is solved successively to obtain a good approximation.
In addition, the method provides reliable estimates of
the adjoint or costate variablesλ of the optimal control
problem.

4.2 Extension to Nonlinear Robust Optimal Semi-
Active Control Strategies

Control of shock absorbers must account for unknown
disturbances. For vehicle rides in particular these are
changes of the road height or inertial forces and mo-
ments caused by unexpected driving maneuvers like
braking, accelerating etc. In recent yearsH∞ control
theory gained increased scientific interest (cf. [Helton
and Ball, 1989; Helton and Ball, 1995; Basar and Bern-
hard, 1991; Kwakernak, 1985; Schaft, 1991; Schaft,
1996; Soravia, 1996; Helton and James, 1999]). Here
robust-optimalcontrols optimize the gain of the system
under worst excitations. Consider the extended non-
linear state space system and optimal control problem
with suitable functionsf , l

ẋ = f(x,u,w) , x(t0) = x0 ,

J(u,w) =
∫ tf

t0
l(x,u,w)dt → min !

}

(19)

whereu ∈ U ⊂ R
nu , w ∈ L2(R

nw ). In order to
treat robustness of nonlinear systems, suitable terms of
stability have to be defined. The system (19) with fixed
controlū = ū(x) and operatorTū : w 7→ x is said to
befinite-gain L-stableif there areγ, β ≥ 0 with

‖Tū(w)‖L2
≤ γ‖w‖L2

+ β, ∀w ∈ L2(R
nw) .

(20)
The valueγ∗ = inf{γ|Eq. (20) is satisfied} is the
gain, and in case of linear-quadratic problemsγ∗ is the
H∞-norm of the system. If Eq. (20) is satisfied for sys-
tem (19) for anyγ̄ by control ū, then the control̄u
is called robust-optimal with respect to the attenuation
level γ̄. Note that in this sense it is not necessary to find
robust-optimal controls with respect to the infimum at-
tenuation levelγ∗. It should be mentioned, that from
an engineering point of view, robust controls related to
attenuation levels close toγ∗ very often arehigh gain
controllers(cf. [Basar and Bernhard, 1991]). Hence a
valueγ close toγ∗ will be a favorable compromise as
γ∗ may be difficult or even impossible to determine nu-
merically.
The required robust-optimal control has to satisfy

both, finite-gain stability and stability of the undis-
turbed system. Thereforedissipative systemsare in-
vestigated (cf. [Helton and Ball, 1989; Schaft, 1996]).
The dynamic system (19) is dissipative with respect to
a givensupply rates(w,v) ∈ R and system output
functionv(x,u,w) ∈ R

nv , if there exists anenergy
functionS(x) ≥ 0, such that for allx(t0) = x0 and
t1 ≥ t0 and for allw ∈ L2(R

nw)

S(x(t1)) ≤ S(x(t0)) +

∫ t1

t0

s(w,v)dt (21)

holds withx(t1) = x(t1;x0, t0,w); i.e. thedissipa-
tion inequality(21) has to be satisfied along all trajec-
tories with free initial valuex0 (cf. [Willems, 1972]).
With particular supply rates(w,v) = γ2‖w‖2 −
‖v‖2 a dissipative system yields finite-gain stability, cf.
[Schaft, 1996]. Stability of the undisturbed system was
shown in [Schaft, 1996] assuming that a continuously
differentiable energy function exists; for the discontin-
uous case cf. [Soravia, 1996].
Considering the differential dissipation inequality

with l = ‖v‖2, the solution of the saddle-point problem

min
u∈U

max
w∈L2

∂S/∂x f(x,u,w)+l(x,u,w)−γ2‖w‖2 ≤ 0

(22)
provides existence of an energy function and hence dis-
sipativity, cf. [Helton and Ball, 1989]. The saddle-
point (u∗,w∗) of Eq. (22) minimizes the functional of
(19) under the dissipation constraint with respect to dis-
turbance attenuation boundγ.
Equation (22) is ofHamilton-Jacobi-Isaacstype (cf.

[Isaacs, 1967; Basar and Bernhard, 1991]). The sad-
dlepoint(u∗,w∗) relates to the extended functional

Jγ(u,w) =

∫ tf

t0

l(x,u,w) − γ2‖w‖2dt (23)

and dynamic equations (19). Note that necessarily
Jγ(u∗,w∗) ≤ 0 follows from (21) and has to be tested
for any numerical solution of the saddlepoint problem.
If the inequality is not fulfilled, attenuation bound con-
dition (20) is violated.
Necessary conditions for a saddlepoint follow from

Isaacs minmax principle(cf. [Isaacs, 1967; Basar
and Olser, 1995]), supposing that the minimization
and maximization in (22) can be exchanged. With
H(x, λ,u,w) = λ

Tf(x,u,w)+l(x,u,w)−γ2‖w‖2

as the Hamiltonian function, optimal feedback controls
must satisfy pointwise

u∗ = argmin
u∈U

H(x, λ,u,w) ,

w∗ = argmax
w∈L2

H(x, λ,u,w) .






(24)

Characteristic solutions of the partial differential equa-
tion (22) are represented by time-dependent optimal
trajectoriesx∗(t) and adjoint variablesλ∗(t), satisfy-
ing the boundary value problem

ẋ = f(x,u∗,w∗) ,

λ̇ = −(∂H(x, λ,u∗,w∗)/∂x)T

}

(25)

and corresponding boundary conditions forx andλ.
For numerical solution we use the direct collocation

method described in Sect. 4.1. In the case of opti-
mal control problems we do not need to consider the
dynamic equations of the adjoint variables explicitly.
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Figure 8. Numerical solutions for a robust-optimal controlproblem

obtained by the approach outlined in Sect. 4.2. Upper left: Growth

of the worst perturbation obtained for different, decreasing values of

the attenuation boundγ which displays a constant frequency. Upper

right: Comparison of the damping control - solution of discretized

problem with piecewise linear control approximation (solid), subse-

quently calculated by the minimum principle using the computed tra-

jectories of state and adjoint variables (dashed). Please note the com-

plex switching structure. Second row, left: Trajectories of oscillating

variablesxs (light, green line) andxR (dark, red line) compared to

the calculated worst perturbationw (left, black) with respect to the

corresponding attenuation levelγ. Second row, right: correspond-

ing velocity variablesẋs, ẋR . Third row: Comparison of adjoint

variables as estimated by the method of Sect. 4.1.

For the robust-optimal control problem (23)-(25) we
have to take into account the unknown disturbance
w(t). As originally suggested by [Horie and Con-
way, 2000] we discretize both, the state and adjoint
differential equations (25) and minimize (23) directly
for the discretized damping controlu(t) and compute
the disturbancew(t) from (24). Fig. 8 shows the re-
sults of such a procedure. The mentioned discretization
scheme was applied to a quarter car model subject to
the boundary condition from (19) and the constraints
0.2 ≤ ucs

≤ 0.5 on the damping control which sub-
sumizes spring and damper elements.
Usually the discretization of the transformed opti-

mal control problem with extended dynamic equations
(25) provides comparatively accurate solutions for the
undisturbed system and for large values ofγ. Numeri-
cal difficulties arise with decreasingγ → γ∗, possibly
caused by the structure of the extended adjoint equa-
tions with respect to the transformed optimal control
problem, whose solutions are supposed to be damped
for large values ofγ only. In order to make a com-

promise one has to calculate with lower accuracy. An
automation of so-calledγ-strategies in order to find so-
lutions for γ close to attenuation boundγ∗ are possi-
ble, e.g. by a bisection or continuation method. The
desired accuracy may be determined by a consistency
check between the calculated discretized adjoint vari-
ables and the according estimates by the discretization
method (cf. Fig. 8, third row). Please note, that the
chosen discretization and direct optimization scheme
enables the computation of controls with a priori un-
known complex switching structures. On the other
hand new difficulties arise in the context of singular
surfaces, which play an important role in differential
game theory [Isaacs, 1967]. Particularly surfaces with
discontinuities of the value function, so-called barriers,
are not detected by the proposed numerical method.
Hence one has to check a posteriori if calculated tra-
jectories intersect such barriers [Breitner, Pesch and
Grimm, 1993].

5 Conclusions
The problem of optimal semi-active suspension of ve-

hicles using the new technology of electrorheological
fluid dampers has been investigated. For the formu-
lation of the corresponding optimal control problems,
several models of the vehicle dynamics, of the ERF
shock absorber dynamics and of objectives for safety
and comfort have been presented and investigated. Re-
duced, linear vehicle dynamic models permit the appli-
cation of LQR and H∞ control techniques which pro-
vide an optimal and real-time capable feedback con-
trol for the reduced model. The resulting controls are
only suboptimal with respect to the full scale vehicle
dynamics model but provide remarkable improvements
over passive suspensions as has been demonstrated in
numerical experiments. Furthermore, direct transcrip-
tion methods can deal with general, nonlinear dynamic
models and constraints, but only provide optimal open-
loop state and control trajectories which may serve for
a numerical feedback synthesis. Finally, it has been
outlined how the nonlinear H∞ control problem can
be formulated as a nonlinear zero-sum dynamic game
problem. Candidates for robust optimal trajectories for
semi-active suspension can then be computed numeri-
cally by a mixed direct-indirect transcription approach
as has been demonstrated in an example. Furthermore,
different approaches to consider objectives for comfort
and safety with their antagonistic properties in a single
objective have been investigated.
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Chucholowski, C., Vögel, M., von Stryk, O. and
Wolter, T.M. (1999). Real time simulation and on-
line control for virtual test drives of cars. In: H.-J.
Bungartz et al. (eds.):High Performance Scientific
and Engineering Computing. Vol. 8 of Lecture Notes
in CSE. Springer-Verlag, Berlin. pp. 157–166.

Dorato, P., Abdallah, C. and Cerone, V. (1994).Linear
Quadratic Control: An Introduction. Prentice Hall,
Englewood Cliffs, N.J.

Genta, G. (1997).Motor Vehicle Dynamics, Modelling
and Simulation. Series on Advances in Mathematics
for Applied Sciences43, World Scientific, London.

Gill, P., Murray, W. and Saunders, M. (2002). SNOPT:
An SQP algorithm for large-scale constrained opti-
mization.SIAM J. Optimization, 12, pp. 979–1006.
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