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Abstract— Locomotion of both walking robots and biomechan- Il. WALKING ROBOTS AND BIOMECHANICAL SYSTEMS
ical systems show redundancies in the joint angle trajectory
required to move the leg to a certain position and biomechanical A. Characteristics of walking robots
systems additionally in muscle recruition. This paper shows
the use of efficient dynamics modeling, dynamics algorithms ~ Walking robots are characterized by a high number of actu-

and optimal control techniques to solve for optimal solutions ated or non-actuated joints, frequent changes in the kinematic
to (goal oriented or measured reference) motions that as well strycture due to switching contact situations (single or double

solve the redundancy problems. Forward dynamics calculations |
are performed to solve both problems synchronously. A new limb support), and tree structure when contacts are cutted

approach proposed by the authors to the forward dynamics and treated separately. Actuation commonly is comparatively

simulation and optimization problem outperforms commonly simple with walking robots: Each joint has at most one motor

used methods by two orders of magnitude in numerical efficiency. and each motor is directly connected to one joint. Motors
itself are characterized by maximum (short-time or permanent)
torque resp. current, angle constraints, gear ratio and axis
inertias. Control variables therefore may be joint torques or

|. INTRODUCTION motor currents,

B. Biomechanical systems

~ Complex dynamic systems like walking robots need sophis-gjomechanical systems differ from walking robots in several
ticated approaches for generating stable motions. AlthougBints. One main difference lies in actuation: In biomechanics,
feedback control will be needed in most cases, basic (Wafb‘lnts are actuated by muscles, which primarily exert linear
ing) trajectories (upon which the control layer may act) aigyces. Muscles may span over several joints and commonly
essential. The approach we discuss in this paper is bagggh joint is connected to several muscles. Nevertheless tree
on dynamics modeling and optimal control. Biomechanicgfrcture may be conserved when muscles are assumed to have
systems’ actuation is more complicated than those of walking mass or having its mass rigidly attached to the bones.
robots. Never the less, the techniques of walking robot trajq@howing the force insertion points (which depend on the
tory optimization may be used to investigate biomechani%,lint angle, cf. muscle paths Section 1I-C.4), torques may be
systems as well. The drawback of forward dynamics solutieiycylated and inserted directly into the problem. Controls for
to the problem is its high numerical effort compared t§jomechanical system are the muscle activations (cf. Section
inverse dynamics approaches. On the other hand it can hangle 3). once the linear force for each muscle is determined,
much more general models. We show a new approach dgch joint's torque is calculated taking into account the muscle
forward dynamics computation that is faster by two ordefsyih (Sections I1-C.5, 11-C.4). In contrast to the robots’ rigid
of magnitude compared to methods used right now. links, biomechanical structures show high flexibility. Also the

The outline of the paper is as follows: Section Il introducesobbling masses should be taken into account (but are not
the system components this paper deals with, Section ¢idnsidered yet in this paper). Contact situation of human feet
reviews an efficient dynamics algorithm for both walkingvith the ground are much more complex than rigid robot’s
robots and biomechanical systems. Optimization techniquiegt’s contact with the ground. For the example of kicking
used are presented in Section IV. Numerical and experimeritalestigated in Section V-B however, this is not necessary
results are presented in Section V. Section VI concludes thecause there is no contact of the swing leg that has to be
paper. modeled at all.
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C. Muscle modeling N : o7
Each muscle shows some characteristic behavior due to its;, .

structure. We review the resulting relations ([22]) and short%:

explanations for them; the structure itself shall not be reviewed; - fodi

here. The relations give factors to be multiplied with the .. ‘ :ii;" W

maximum isometric force. L | B A
1) Force-velocity relation:The active force a muscle may ‘

exerj[ depgnds On its velocity. It is Pfqual to the muscﬁg. 2. Tension-length relation with Fig. 3.  Activation dynamics with

maximum isometric force at zero velocity and equal to zetQ = 0.017 andey = 0.015. by =7,by =7,b3 =1.

at the maximum contraction velocity. The active force is

higher than the maximum isometric force if the muscle has

excentric velocity. The overall relation not only depends on the 3) Activation dynamics:Muscles may not exert force in-

maximum velocity but also on parametets c, that indicate stantaneously. Muscle excitatienleads to increased calcium

how fast the force converges to zero with contractive velocitgn concentrationy in the muscle which finally results in force

resp. how fast the force converges to the maximum forexertion. This is modeled by:

with excentric velocity. For fast muscleg € [0.25, 1], while

T 1s
normalized muscle length

for slow musclesgs € [0.1,0.25]. The overall force-velocity ¥ = balbsu =)
relation is given by: How the calcium ion concentration relates to the force exerted
1 wM is given by the following equation:
— vmgs WM <0
T A Fap (o)) = (@)
frv (M) = AP T (b (w)?

The overall muscle activation dynamics is shown in Figure 3.

M
1-1.33 o3
Ur]&a,:l:"él ,’UIW > 0.
1——2
oM

Ymax 4

Figure 1 shows two examples of the force-velocity relation for 4)hMus|cIe_ path:'ghe muscleblengths an% VSIO_C"F'es netladed
a fast and a slow muscle. for the relations above may be expressed by joint angles

and joint angular velocityj;:

ZM Z(Q17q25"')7
M

v = v(qlaQ27"'7qlaQQa"')

To calculate the torques that result from the linear muscle

forces, the muscle path, i.e. the force insertion points and force

exertion direction (or the resulting lever arm directly), have to
sy, ey T be modeled. Anyway the resulting lever arm depends on the

joint angles only (the first indexindicates the number of the

Fig. 1. Force-velocity relation for a slove{ = 0.1,c4 = 0.02; left) and 2 muscle or muscle group, the second ingeke number of the

fast (s = 1.0, c4 = 0.1; right) muscle. joint, the muscle has effects on; not all combinations,gf

are needed):

2) Tension-length relationMuscle forces result from bio- dij = dij(q1,q2,-.-)-
chemical structures that grip into each other and thereby caus
the movgment respectlvg force. l.t is obvious, that the MOoMs section, the total muscle force may be stated as:
overlapping structures exist, the higher are the forces that may
be established. If the mus_cle is expar_1ded, less overlapping F'(v, 1™, v™M) = Fis° 40 (y) fro (M) fry (™).
area and thus less potential force exists. If the muscle on ] ) o
the other hand is shortened, the structures obstruct each oth& Resulting active torquesThe torque in joint;j that
and also less force may be exerted. This is modeled with tigSUlts from the muscle forces is (with appropriate index sets

following equations, where; and ¢, are parameters for the i that indicate which muscles do effect to joif)t

force-velocity factor
ity

%) Total muscle forceWith the factors given in the previ-

effect of decrease of forces when expanding resp. shortenin M M
the muscle: b ’ P J Tja = Z di i Fi(vi, ;7,07
ZEIJ‘
~EHO-E
e 1 LG M <1t 7) Passive torquestn addition to the active torques, passive
fro (ZM) = torques have to be considered. Passive torques depend on

M

S Cwrroa DAY Y M vM ~ (bold letters indicate the vector of all occurring
¢ i M > 1

lengths, velocities, calcium ion concentrations), and the joint
Figure 2 gives an example of the relation. angles. They model passive effects of tendons, ligament and



the connective tissue (especially at the boundaries of thkjorithm and an approach for an object oriented implemen-
feasible joint angle intervals) [11], [31]: tation of the algorithm tailored to its structure may be found
MM in [12].

Tjp = Tip( Y- q)-

. S B. Sensitivities
The total torque applied to jointis 7; = 7; . + 7, Note that

for robotic systemsu is the torque and is equal to the control Information about sensitivities are essential not only for

in the optimal control problem if no detailed motor modeftumerical optimization but also for non-linear analysis, pa-
is used. For biomechanical systemsis the control (i.e. the rameter identification and calibration. Exact sensitivities are

muscle activations) and = (71,7, ...) are the torque for the superio_r to approximations (e.g. by fi_nite differences) but then
dynamics calculations. not available at re_asonablt_a_cpst._ Jain [1_5] showed that in the
operator formulation sensitivity information may be gained
[1l. DYNAMICS ALGORITHMS at low cost from ABA. The resulting iterative algorithms
provide sensitivity information. Manipulator Jacobian may be
calculated as well as sensitivities of inverse dynamies
The basic equations of motion are those for a rigid, multgnd forward dynamic#¢ w.r.t. position, velocity and control

A. Dynamics algorithms for tree structured systems

body system (MBS) experiencing contact forces variables for tree-structured rigid MBS:
i = M) (Bu—Cla.d)-G(a)+(a) 1) du = Vudq+ Vgudd+ Vudi,
0 = g.(q) 04§ = V.Gou+ V,4oq+ V;Goq.

where N equals the number of links in the system,equals The occurring partial derivatives may be stated in stacked
the number of actively controlled jointsy{ € RV*¥ is the operator notation. The resulting recursive algorithm is an
square, positive-definite mass-inertia matéixc R contains extension of the forward dynamics recursive algorithm with
the Coriolis and centrifugal forces, ¢ RY the gravitational modified inboard sweep and two additional sweeps.

forces, andu(t) € R™ are the control input functions which

are mapped with the constant matri® € RN*™ to the IV. OPTIMIZATION TECHNIQUES

actively controlled joints. The ground contact constragiss A. Forward vs. inverse dynamics solution

R™ represent holonomic constraints on the system from which

i s ) 3 Simulation of a time dependent behavior of a human move-
the constraint Jacobian may be obtaingd= 9. ¢ RPNV,

i o X d . ment modeled with the techniques stated in Section IIl not
while f. < R" is the ground constraint forcg, ¢, and§ € R ony means numerical integration of a high dimensional ODE
are the generalized position, velocity and acceleration vect{siem put also the solution of a static or dynamic optimization

respectively. _ _ . _ problem for the redundant muscle groups involved. If you con-
These equations may be established with several algorithigigier 4 sequence of static postures of a movement this results

We use articulated body algorithm (ABA) due to its numeroyg 5 sequence of static optimization problems. Their solution
advantages over other methods. ABA is a recursive numeri¢glyever only for slow movements give approximations of
algorithm of orderN (with N the number of links in the 5cceptable quality to the solution of the dynamic optimization

MBS). Because the systems we look at are generally of v&fyshlem over the whole time horizon of the movement (i.e. to
high dimension, recursive algorithms can show their advanGgg optimal control problem) [2], [9].

in computational effort compared to non-recursive methods a) Inverse dynamics simulation and optimization:

[27]. ABA is tailored to tree structured, fully three dimensionall d _ imulation . q
systems and shows a high flexibility in exchange of par gverse dynamics simufalion for a given, €.g. measured move-

of the model (kinematic and kinetic data, actuation conta@em calculates the muscle activations of the muscles involved
situations). ABA may be formulated analytically in operato\"ndgr the assgjlmptlan otL_certaln C”f”a fotf slcl)lvmgl thg re-
formulation, which due to the special stacked structure of tﬁjém ancytpro err;). y IIS zaCipproac prac |caty only g'VteTa
operators involved numerically may be realized by recursive eMeNts may be analyzed, new movements may not be
calculations in three sweeps from base to tip and vice ver %Iculated and goal oriented movements (€.g. reaching certain

[7], [21]. Additional sweeps may be added to handle conta)&"t].t z:;mgclies) ma5y not at all or may only very limitedly be
forces and sensitivity information. oppimlze ’:'g't[ ] end | d . imulation to th
The main idea of the algorithm lies in the fact that the mass pproaches 1o extend Inverse dynamics simufation to the

matrix may be inverted explicitly using a factorization of thé)pt|m|zapon Of. humgn movements rely on v_ery.spemall_zed
assumptions (like min/max criteria) to the objective function

trix: :
mass matrix for solving the redundancy problem of the muscles and use
M = (I-KOH)'D(I+ KOH), a low dimensional parameterization of the free parameter
MY = (I-KUH)D™ I+ KUH)T space to efficiently solve the resulting optimization problem

numerically [19], [20].
where the occurring operators have physical interpretationsd=or slow movements dynamic properties of wobbling
[16]. A review of all the occurring operators, the recursivenasses have no effect to the quality of the solution and only



for slow movements special min/max-criteria for solving thémited by the integration method and the forward difference
redundancy problem of the human musculoskeletal systérancation error.
on muscle-tendon-level may be justified. The overall forces For example the computing times for human jumping with a
and torques at one joint then are distributed to the muscleg model with 9 muscle groups and three joints [25], [6] have
according to different parameters of the muscles. But if fasteeen reported to be in the region of days on a workstation in
movements shall be investigated other optimality criteria hai©96 [23]. For a three-dimensional model of the whole body
to be used. with 54 muscle groups computing times on workstations in
From the biomechanics point of view not only faster movahe region of months have also been reported [1].
ments but also other optimality criteria are of interest. By now In [3] computing times are compared when using MIMD
there are no methods to solve these problems with invers&rallel computers and vector parallel computers. The method
dynamics simulation satisfactorily. First approaches to thiem [18] is used for a 14 dof model with 46 muscle-tendon
efficient treatment of loops of parallel muscles, may be fourgtoups. Computing times were up to three month on a normal
in [17]. Inverse dynamics however here also is not solved foomputer (SGI Iris 4D25), 77 h on a vector parallel computer
any general optimality criterion. In a two-level algorithm firsand 88 h on a MIMD parallel computer.
the joint torques and then the muscle forces are calculated. The problem investigated in Section V-B with 2 joints and
b) Forward dynamics simulation and optimization; 5 muscle groups required computing time in the region of

With forward dynamics simulation, in contrast, analysis ofcveral hours on 1996's workstations [24].

given movements as yveII as .the calculgtlon a_md optimizatl . Efficient forward dynamics optimization using direct col-
of free movements is possible. Starting with the musc

Gcation
activations (that are to be determined) forward dynamics

simulation calculates the resulting movement. By forward A direct collocation method [29], [30], [28] is used to solve
dynamics simulation it is possible to analyze movements #ye resulting optimal control problems. States and controls are
parts of the human body or the whole body if the resultingPProximated by piece cubic resp. linear polynomials on a
high dimensional nonlinear optimal control problems can géne discretization grid which can be refined successively. By
solved efficiently. a collocation approach the differential equations and nonlinear
One advantage of analyzing human movements with fdfoPlicit and boundary conditions are transcribed to a nonlinear
ward dynamics simulation is that differences of measured aRgpblem with the piecewise coefficients as variables. The
calculated movements may be integrated into the optimalfigsulting NLP is solved using efficient sequential quadratic
criterion which allows compensation of measurement errdPs0gramming method SNOPT ([8]), which exploits sparsity
(e.g. [25]), while with inverse dynamics simulation smalln NLP gradients and Jacobians that is a result of the special
measurement errors for a measured trajectory may resultSHHcture of the piecewise polynomial discretization.
large errors of the computed muscle forces. Using the direct collocation approach the differential equa-
tions are solved synchronously to the optimization, i.e. there is
B. Common approaches to forward dynamics optimization N0 need to integrate the differential equations several times to

) o ] _ get gradient information. This results in a much more efficient
Up to now numerical optimization using forwards dynamicgnyard dynamics calculation.

simulation is commonly treated by methods that are not
optimally tailored to the problem’s structure. Most methp. Use of sensitivity information

Oqs trqnsform the optlmal con.trol p“’b'.e”.‘ |n_to a finite- The sequential quadratic programming method SNOPT does
dimensional, constrained, nonlinear optimization problem

N ot need user defined derivative information, but may also
(NLP) by parameterization of the controls [1,3,17,18,26] %n : L X v )
so-called direct shooting approach [30]). The resulting NL proximate derivatives by difference approximation. How

) . ) ) —ever, exact derivatives are useful for robustness and efficiency.
is usually solved using sequential quadratic programmi . : . . -
rst experiments comparing results with SNOPT's derivatives
methods. L . . .
and exact sensitivities gained from the dynamics algorithm

For numerical calculation of the gradients of the objectiv, 2] showed slight improvements in computation time and
function and constraints w.r.t. the optimized parameters t 8nvergence ([13], [14])

sensitivity matrix of the solution of the system of differentia
equations w.r.t. the optimized parameters has to be compute§, NUMERICAL AND EXPERIMENTAL RESULTS

For human movements this is usually done by external nu- . )

merical differentiation with differences approximation whicH" Robotics: Walking robots

is a numerically quite expensive approach [17,18,26] becausaValking trajectories for both a four legged (see Figure 4)
the differential equations of the system have to be integratadd a humanoid robot (Figure 6, the robot was constructed in
numerically at least as often as grid points in the discretizatigmint work with a group from TU Berlin, now TU Munich)

of the controls exist. This leads to overall very high computinigave been optimized ([26], [4]). Experimental results matched
times for movements with a higher number of muscle groupthe calculated trajectories very well. Sequences of the obtained
The accurancy of the computed gradient approximation ggits are shown in Figures 5 and 7.



Fig. 4. The four-legged Sony robot (left) and the kinematical structure ¢
one leg (right).

Fig. 7. Snapshots of a step sequence.

controls as follows:

T i hip angle
q2 knee angle
q1 hip velocity
T = | ¢o = knee velocity ,
T cat concentration muscle 1
L 75 ] i cat concentration muscle 9
[ uy ] [ activation of muscle 1
us | | activation of muscle 5

The kicking movement was optimized with respect to
elapsed time, i.e. the merit function @&(x(t),tr) = t;.
Fig. 5. Four scenes from an animation of a computed trot gait. Compared to the measured motion trajectories (and the
results of [22], [25], which match the measured data very
well), our results show a shorter time and higher maximum
angles (Figure 10). The reason is, that in [22] the maximum
muscle forces were modified to match the optimized time of
the measurement. Obviously our optimal movement is another

A time optimal kicking movement has been investigateqocal minimum. Nevertheless, the controls (Figure 11) show
Kinematic and kinetic data of the musculoskeletal system gfe same characteristics.
well as muscle model parameters and measured reference datdomputing time and size of the resulting NLP are shown
have been taken from &pele [22,25], whose data is based ofh table 9. The direct shooting approach used in [22], [25]
those of Hatze [10]. The model (cf. Figure 8) consists of tWyr 11 grid points required in the region of hours to compute
joints, two rigid links and five muscle groups. the solution ([24]). Comparing the computing time with our

The problem is formulated in a first order forma = approach (Figure 9) and considering how computational speed
f(z,u,t) as an optimal control problem with 9 states and Bas progressed since 1996, we still obtain a speed up of two
orders of magnitude.

VI. CONCLUSIONS AND OUTLOOK

We reviewed efficient numerical multibody systems dy-
namics algorithms and optimization techniques that allow
solving the forward dynamics optimization in biomechanics
in a general form two orders of magnitude faster than present
methods.

Future work includes refinements of the model:

« wobbling masses and

« a contact situation of the foot, which shall be modeled

by a detailed foot model.
Further motions of larger parts of the human body or of the
Fig. 6. Humanoid Kinematic Structure. complete human body shall be investigated. Measurements

B. Biomechanics: Kicking motion

height 80 cm




grid points| 10 60
nonlinear

constraints| 81 829
nonlinear

variables | 129 | 531
computing

time 1.2s| 6.3s
Fig. 9. Size of the resulting

NLP and computation time on a
1700 MHZ+ Athlon XP for two
different numbers of grid points in

Fig. 8. Kinematic structure of the the discretization of the proposed

leg with 5 muscle groups.

approach.

005 01 of5 02 025 03 03 04 045 05 005 01 0f5 02 025 03 035 04 045 05

Fig. 10. Hip (left) and knee (right) angle trajectories for kicking motion.

muscle 1
muscle 2

0.1

muscle 3
~
muscle 4

0.1 0.2 0.3

time

0.4

EMG (controls)

= = = calciom ions concentration

muscle 5

of joint angle. trajectories, ground reaCtllon forces and thi(?‘g. 11. Results from optimization: Controls (corresponding to EMG) and
anthropometric data of the proband supplied from cooperatitgcium ions concentrations.

groups will be used to investigate muscle activations for given
motion. The methods presented in this paper are already
capable in principle of handling this class of problems.
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