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Abstract— Locomotion of both walking robots and biomechan-
ical systems show redundancies in the joint angle trajectory
required to move the leg to a certain position and biomechanical
systems additionally in muscle recruition. This paper shows
the use of efficient dynamics modeling, dynamics algorithms
and optimal control techniques to solve for optimal solutions
to (goal oriented or measured reference) motions that as well
solve the redundancy problems. Forward dynamics calculations
are performed to solve both problems synchronously. A new
approach proposed by the authors to the forward dynamics
simulation and optimization problem outperforms commonly
used methods by two orders of magnitude in numerical efficiency.

I. INTRODUCTION

Complex dynamic systems like walking robots need sophis-
ticated approaches for generating stable motions. Although
feedback control will be needed in most cases, basic (walk-
ing) trajectories (upon which the control layer may act) are
essential. The approach we discuss in this paper is based
on dynamics modeling and optimal control. Biomechanical
systems’ actuation is more complicated than those of walking
robots. Never the less, the techniques of walking robot trajec-
tory optimization may be used to investigate biomechanical
systems as well. The drawback of forward dynamics solution
to the problem is its high numerical effort compared to
inverse dynamics approaches. On the other hand it can handle
much more general models. We show a new approach to
forward dynamics computation that is faster by two orders
of magnitude compared to methods used right now.

The outline of the paper is as follows: Section II introduces
the system components this paper deals with, Section III
reviews an efficient dynamics algorithm for both walking
robots and biomechanical systems. Optimization techniques
used are presented in Section IV. Numerical and experimental
results are presented in Section V. Section VI concludes the
paper.

II. WALKING ROBOTS AND BIOMECHANICAL SYSTEMS

A. Characteristics of walking robots

Walking robots are characterized by a high number of actu-
ated or non-actuated joints, frequent changes in the kinematic
structure due to switching contact situations (single or double
limb support), and tree structure when contacts are cutted
and treated separately. Actuation commonly is comparatively
simple with walking robots: Each joint has at most one motor
and each motor is directly connected to one joint. Motors
itself are characterized by maximum (short-time or permanent)
torque resp. current, angle constraints, gear ratio and axis
inertias. Control variables therefore may be joint torques or
motor currents.

B. Biomechanical systems

Biomechanical systems differ from walking robots in several
points. One main difference lies in actuation: In biomechanics,
joints are actuated by muscles, which primarily exert linear
forces. Muscles may span over several joints and commonly
one joint is connected to several muscles. Nevertheless tree
structure may be conserved when muscles are assumed to have
no mass or having its mass rigidly attached to the bones.
Knowing the force insertion points (which depend on the
joint angle, cf. muscle paths Section II-C.4), torques may be
calculated and inserted directly into the problem. Controls for
biomechanical system are the muscle activations (cf. Section
II-C.3). Once the linear force for each muscle is determined,
each joint’s torque is calculated taking into account the muscle
path (Sections II-C.5, II-C.4). In contrast to the robots’ rigid
links, biomechanical structures show high flexibility. Also the
wobbling masses should be taken into account (but are not
considered yet in this paper). Contact situation of human feet
with the ground are much more complex than rigid robot’s
feet’s contact with the ground. For the example of kicking
investigated in Section V-B however, this is not necessary
because there is no contact of the swing leg that has to be
modeled at all.
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C. Muscle modeling

Each muscle shows some characteristic behavior due to its
structure. We review the resulting relations ([22]) and short
explanations for them; the structure itself shall not be reviewed
here. The relations give factors to be multiplied with the
maximum isometric force.

1) Force-velocity relation:The active force a muscle may
exert depends on its velocity. It is equal to the muscle
maximum isometric force at zero velocity and equal to zero
at the maximum contraction velocity. The active force is
higher than the maximum isometric force if the muscle has
excentric velocity. The overall relation not only depends on the
maximum velocity but also on parametersc3, c4 that indicate
how fast the force converges to zero with contractive velocity
resp. how fast the force converges to the maximum force
with excentric velocity. For fast musclesc3 ∈ [0.25, 1], while
for slow muscles,c3 ∈ [0.1, 0.25]. The overall force-velocity
relation is given by:
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Figure 1 shows two examples of the force-velocity relation for
a fast and a slow muscle.
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Fig. 1. Force-velocity relation for a slow (c3 = 0.1, c4 = 0.02; left) and a
fast (c3 = 1.0, c4 = 0.1; right) muscle.

2) Tension-length relation:Muscle forces result from bio-
chemical structures that grip into each other and thereby cause
the movement respective force. It is obvious, that the more
overlapping structures exist, the higher are the forces that may
be established. If the muscle is expanded, less overlapping
area and thus less potential force exists. If the muscle on
the other hand is shortened, the structures obstruct each other
and also less force may be exerted. This is modeled with the
following equations, wherec1 and c2 are parameters for the
effect of decrease of forces when expanding resp. shortening
the muscle:
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Figure 2 gives an example of the relation.
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Fig. 2. Tension-length relation with
c1 = 0.017 andc2 = 0.015.
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Fig. 3. Activation dynamics with
b1 = 7, b2 = 7, b3 = 1.

3) Activation dynamics:Muscles may not exert force in-
stantaneously. Muscle excitationu leads to increased calcium
ion concentrationγ in the muscle which finally results in force
exertion. This is modeled by:

γ̇ = b2(b3u− γ)

How the calcium ion concentration relates to the force exerted
is given by the following equation:

fAD (γ(u)) =
(b1γ(u))3

1 + (b1γ(u))3

The overall muscle activation dynamics is shown in Figure 3.

4) Muscle path:The muscle lengths and velocities needed
for the relations above may be expressed by joint anglesqi

and joint angular velocityq̇i:

lM = l(q1, q2, ...),
vM = v(q1, q2, ..., q̇1, q̇2, ...)

To calculate the torques that result from the linear muscle
forces, the muscle path, i.e. the force insertion points and force
exertion direction (or the resulting lever arm directly), have to
be modeled. Anyway the resulting lever arm depends on the
joint angles only (the first indexi indicates the number of the
muscle or muscle group, the second indexj the number of the
joint, the muscle has effects on; not all combinations ofi, j
are needed):

di,j = di,j(q1, q2, ...).

5) Total muscle force:With the factors given in the previ-
ous section, the total muscle force may be stated as:

F (γ, lM , vM ) = F iso
maxfAD(γ)fTL(lM )fFV (vM ).

6) Resulting active torques:The torque in jointj that
results from the muscle forces is (with appropriate index sets
Ij that indicate which muscles do effect to jointj):

τj,a =
∑

i∈Ij

di,jFi(γi, l
M
i , vM

i ).

7) Passive torques:In addition to the active torques, passive
torques have to be considered. Passive torques depend on
lM , vM ,γ (bold letters indicate the vector of all occurring
lengths, velocities, calcium ion concentrations), and the joint
angles. They model passive effects of tendons, ligament and



the connective tissue (especially at the boundaries of the
feasible joint angle intervals) [11], [31]:

τj,p = τj,p(lM , vM ,γ, q).

The total torque applied to jointj is τj = τj,a +τj,p Note that
for robotic systemsu is the torque and is equal to the control
in the optimal control problem if no detailed motor model
is used. For biomechanical systemsu is the control (i.e. the
muscle activations) andτ = (τ1, τ2, ...) are the torque for the
dynamics calculations.

III. DYNAMICS ALGORITHMS

A. Dynamics algorithms for tree structured systems

The basic equations of motion are those for a rigid, multi-
body system (MBS) experiencing contact forces

q̈ = M(q)−1
(
Bu− C(q, q̇)− G(q) + Jc(q)T f c

)

0 = gc(q)

whereN equals the number of links in the system,m equals
the number of actively controlled joints,M ∈ RN×N is the
square, positive-definite mass-inertia matrix,C ∈ RN contains
the Coriolis and centrifugal forces,G ∈ RN the gravitational
forces, andu(t) ∈ Rm are the control input functions which
are mapped with the constant matrixB ∈ RN×m to the
actively controlled joints. The ground contact constraintsgc ∈
Rnc represent holonomic constraints on the system from which
the constraint Jacobian may be obtainedJc = ∂gc

∂q ∈ Rnc×N ,
while f c ∈ Rnc is the ground constraint force.q, q̇, andq̈ ∈ R
are the generalized position, velocity and acceleration vectors
respectively.

These equations may be established with several algorithms.
We use articulated body algorithm (ABA) due to its numerous
advantages over other methods. ABA is a recursive numerical
algorithm of orderN (with N the number of links in the
MBS). Because the systems we look at are generally of very
high dimension, recursive algorithms can show their advances
in computational effort compared to non-recursive methods
[27]. ABA is tailored to tree structured, fully three dimensional
systems and shows a high flexibility in exchange of parts
of the model (kinematic and kinetic data, actuation, contact
situations). ABA may be formulated analytically in operator
formulation, which due to the special stacked structure of the
operators involved numerically may be realized by recursive
calculations in three sweeps from base to tip and vice versa
[7], [21]. Additional sweeps may be added to handle contact
forces and sensitivity information.

The main idea of the algorithm lies in the fact that the mass
matrix may be inverted explicitly using a factorization of the
mass matrix:

M = (I −KΘH)T D(I + KΘH),
M−1 = (I −KΨH)D−1(I + KΨH)T ,

where the occurring operators have physical interpretations
[16]. A review of all the occurring operators, the recursive

algorithm and an approach for an object oriented implemen-
tation of the algorithm tailored to its structure may be found
in [12].

B. Sensitivities

Information about sensitivities are essential not only for
numerical optimization but also for non-linear analysis, pa-
rameter identification and calibration. Exact sensitivities are
superior to approximations (e.g. by finite differences) but often
not available at reasonable cost. Jain [15] showed that in the
operator formulation sensitivity information may be gained
at low cost from ABA. The resulting iterative algorithms
provide sensitivity information. Manipulator Jacobian may be
calculated as well as sensitivities of inverse dynamics∂u
and forward dynamics∂q̈ w.r.t. position, velocity and control
variables for tree-structured rigid MBS:

∂u = ∇qu∂q +∇q̇u∂q̇ +∇q̈u∂q̈,

∂q̈ = ∇uq̈∂u +∇qq̈∂q +∇q̇q̈∂q̇.

The occurring partial derivatives may be stated in stacked
operator notation. The resulting recursive algorithm is an
extension of the forward dynamics recursive algorithm with
modified inboard sweep and two additional sweeps.

IV. OPTIMIZATION TECHNIQUES

A. Forward vs. inverse dynamics solution

Simulation of a time dependent behavior of a human move-
ment modeled with the techniques stated in Section III not
only means numerical integration of a high dimensional ODE
system but also the solution of a static or dynamic optimization
problem for the redundant muscle groups involved. If you con-
sider a sequence of static postures of a movement this results
in a sequence of static optimization problems. Their solution
however only for slow movements give approximations of
acceptable quality to the solution of the dynamic optimization
problem over the whole time horizon of the movement (i.e. to
the optimal control problem) [2], [9].

a) Inverse dynamics simulation and optimization:

Inverse dynamics simulation for a given, e.g. measured move-
ment calculates the muscle activations of the muscles involved
under the assumption of certain criteria for solving the re-
dundancy problem. By this approach practically only given
movements may be analyzed; new movements may not be
calculated and goal oriented movements (e.g. reaching certain
joint angles) may not at all or may only very limitedly be
optimized, e.g. [5].

Approaches to extend inverse dynamics simulation to the
optimization of human movements rely on very specialized
assumptions (like min/max criteria) to the objective function
for solving the redundancy problem of the muscles and use
a low dimensional parameterization of the free parameter
space to efficiently solve the resulting optimization problem
numerically [19], [20].

For slow movements dynamic properties of wobbling
masses have no effect to the quality of the solution and only



for slow movements special min/max-criteria for solving the
redundancy problem of the human musculoskeletal system
on muscle-tendon-level may be justified. The overall forces
and torques at one joint then are distributed to the muscles
according to different parameters of the muscles. But if faster
movements shall be investigated other optimality criteria have
to be used.

From the biomechanics point of view not only faster move-
ments but also other optimality criteria are of interest. By now
there are no methods to solve these problems with inverse
dynamics simulation satisfactorily. First approaches to the
efficient treatment of loops of parallel muscles, may be found
in [17]. Inverse dynamics however here also is not solved for
any general optimality criterion. In a two-level algorithm first
the joint torques and then the muscle forces are calculated.

b) Forward dynamics simulation and optimization:

With forward dynamics simulation, in contrast, analysis of
given movements as well as the calculation and optimization
of free movements is possible. Starting with the muscle
activations (that are to be determined) forward dynamics
simulation calculates the resulting movement. By forward
dynamics simulation it is possible to analyze movements of
parts of the human body or the whole body if the resulting
high dimensional nonlinear optimal control problems can be
solved efficiently.

One advantage of analyzing human movements with for-
ward dynamics simulation is that differences of measured and
calculated movements may be integrated into the optimality
criterion which allows compensation of measurement errors
(e.g. [25]), while with inverse dynamics simulation small
measurement errors for a measured trajectory may result in
large errors of the computed muscle forces.

B. Common approaches to forward dynamics optimization

Up to now numerical optimization using forwards dynamics
simulation is commonly treated by methods that are not
optimally tailored to the problem’s structure. Most meth-
ods transform the optimal control problem into a finite-
dimensional, constrained, nonlinear optimization problem
(NLP) by parameterization of the controls [1,3,17,18,26] (a
so-called direct shooting approach [30]). The resulting NLP
is usually solved using sequential quadratic programming
methods.

For numerical calculation of the gradients of the objective
function and constraints w.r.t. the optimized parameters the
sensitivity matrix of the solution of the system of differential
equations w.r.t. the optimized parameters has to be computed.
For human movements this is usually done by external nu-
merical differentiation with differences approximation which
is a numerically quite expensive approach [17,18,26] because
the differential equations of the system have to be integrated
numerically at least as often as grid points in the discretization
of the controls exist. This leads to overall very high computing
times for movements with a higher number of muscle groups.
The accurancy of the computed gradient approximation is

limited by the integration method and the forward difference
truncation error.

For example the computing times for human jumping with a
leg model with 9 muscle groups and three joints [25], [6] have
been reported to be in the region of days on a workstation in
1996 [23]. For a three-dimensional model of the whole body
with 54 muscle groups computing times on workstations in
the region of months have also been reported [1].

In [3] computing times are compared when using MIMD
parallel computers and vector parallel computers. The method
from [18] is used for a 14 dof model with 46 muscle-tendon
groups. Computing times were up to three month on a normal
computer (SGI Iris 4D25), 77 h on a vector parallel computer
and 88 h on a MIMD parallel computer.

The problem investigated in Section V-B with 2 joints and
5 muscle groups required computing time in the region of
several hours on 1996’s workstations [24].

C. Efficient forward dynamics optimization using direct col-
location

A direct collocation method [29], [30], [28] is used to solve
the resulting optimal control problems. States and controls are
approximated by piece cubic resp. linear polynomials on a
time discretization grid which can be refined successively. By
a collocation approach the differential equations and nonlinear
implicit and boundary conditions are transcribed to a nonlinear
problem with the piecewise coefficients as variables. The
resulting NLP is solved using efficient sequential quadratic
programming method SNOPT ([8]), which exploits sparsity
in NLP gradients and Jacobians that is a result of the special
structure of the piecewise polynomial discretization.

Using the direct collocation approach the differential equa-
tions are solved synchronously to the optimization, i.e. there is
no need to integrate the differential equations several times to
get gradient information. This results in a much more efficient
forward dynamics calculation.

D. Use of sensitivity information

The sequential quadratic programming method SNOPT does
not need user defined derivative information, but may also
approximate derivatives by difference approximation. How-
ever, exact derivatives are useful for robustness and efficiency.
First experiments comparing results with SNOPT’s derivatives
and exact sensitivities gained from the dynamics algorithm
[12] showed slight improvements in computation time and
convergence ([13], [14]).

V. NUMERICAL AND EXPERIMENTAL RESULTS

A. Robotics: Walking robots

Walking trajectories for both a four legged (see Figure 4)
and a humanoid robot (Figure 6, the robot was constructed in
joint work with a group from TU Berlin, now TU Munich)
have been optimized ([26], [4]). Experimental results matched
the calculated trajectories very well. Sequences of the obtained
gaits are shown in Figures 5 and 7.
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Fig. 4. The four-legged Sony robot (left) and the kinematical structure of
one leg (right).

Fig. 5. Four scenes from an animation of a computed trot gait.

B. Biomechanics: Kicking motion

A time optimal kicking movement has been investigated.
Kinematic and kinetic data of the musculoskeletal system as
well as muscle model parameters and measured reference data
have been taken from Spägele [22,25], whose data is based on
those of Hatze [10]. The model (cf. Figure 8) consists of two
joints, two rigid links and five muscle groups.

The problem is formulated in a first order forṁx =
f(x, u, t) as an optimal control problem with 9 states and 5
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Fig. 7. Snapshots of a step sequence.

controls as follows:

x =
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activation of muscle 5
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

The kicking movement was optimized with respect to
elapsed time, i.e. the merit function isΦ(x(tf ), tf ) = tf .

Compared to the measured motion trajectories (and the
results of [22], [25], which match the measured data very
well), our results show a shorter time and higher maximum
angles (Figure 10). The reason is, that in [22] the maximum
muscle forces were modified to match the optimized time of
the measurement. Obviously our optimal movement is another
local minimum. Nevertheless, the controls (Figure 11) show
the same characteristics.

Computing time and size of the resulting NLP are shown
in table 9. The direct shooting approach used in [22], [25]
for 11 grid points required in the region of hours to compute
the solution ([24]). Comparing the computing time with our
approach (Figure 9) and considering how computational speed
has progressed since 1996, we still obtain a speed up of two
orders of magnitude.

VI. CONCLUSIONS AND OUTLOOK

We reviewed efficient numerical multibody systems dy-
namics algorithms and optimization techniques that allow
solving the forward dynamics optimization in biomechanics
in a general form two orders of magnitude faster than present
methods.

Future work includes refinements of the model:
• wobbling masses and
• a contact situation of the foot, which shall be modeled

by a detailed foot model.
Further motions of larger parts of the human body or of the
complete human body shall be investigated. Measurements



Fig. 8. Kinematic structure of the
leg with 5 muscle groups.

grid points 10 60
nonlinear
constraints 81 829
nonlinear
variables 129 531
computing
time 1.2 s 6.3 s

Fig. 9. Size of the resulting
NLP and computation time on a
1700 MHZ+ Athlon XP for two
different numbers of grid points in
the discretization of the proposed
approach.
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Fig. 10. Hip (left) and knee (right) angle trajectories for kicking motion.

of joint angle trajectories, ground reaction forces and the
anthropometric data of the proband supplied from cooperating
groups will be used to investigate muscle activations for given
motion. The methods presented in this paper are already
capable in principle of handling this class of problems.
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