
Preprint, TU-Darmstadt, 2004: To appear in: PAMM - Proceedings in Applied Mathematics and Mechanics

A decomposition approach for optimal control problems with integer in-
ner point state constraints

Markus Glocker∗1
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A large class of optimal control problems for hybrid dynamic systems can be formulated as mixed-integer optimal control
problems (MIOCPs). A decomposition approach is suggested to solve a special subclass of MIOCPs with mixed integer inner
point state constraints. It is the intrinsic combinatorial complexity of the discrete variables in addition to the high nonlinearity
of the continuous optimal control problem that forms the challenges in the theoretical and numerical solution of MIOCPs.

During the solution procedure the problem is decomposed at the inner time points into a multiphase problem with mixed
integer boundary constraints and phase transitions at unknown switching points. Due to a discretization of the state space
at the switching points the problem can be decoupled into a family of continuous optimal control problems (OCPs) and a
problem similar to the asymmetric group traveling salesman problem (AGTSP).

The OCPs are transcribed by direct collocation to large-scale nonlinear programming problems, which are solved effi-
ciently by an advanced SQP method. The results are used as weights for the edges of the graph of the corresponding TSP-like
problem, which is solved by a Branch-and-Cut-and-Price (BCP) algorithm.

The proposed approach is applied to a hybrid optimal control benchmark problem for a motorized traveling salesman.
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1 Decomposition approach

A MIOCP with inner point constraints can be defined as minimizing the performance index

J [u,v, z] =
∑

i=0,...,nc

ϕ (x(tci ), t
c
i ) +

∫

[t0,tf ]

L(x(t),u(t),v(t), t) dt (1)

s.t. ẋ(t) = f(x(t),u(t),v(t)), t0 ≤ t ≤ tf , (2)
cmin ≤ c(x(t),u(t),v(t)) ≤ cmax, (3)

0 = r(x(tci ), z, t
c
i ), t0 = tc0 ≤ tc1 ≤ · · · ≤ tcnc = tf , (4)

with u(t) ∈ U ⊂ IRnu , v(t) ∈ V ⊂ ZZnv , x(t) ∈ X ⊂ IRnx , z ∈ {z1, . . . , znw} ⊂ ZZnz×nw for all t ∈ [t0, tf ] [1]. In this
work it is assumed, that no integer control v(t) is present. Further a transformation of the mixed integer problem into a mixed
binary problem (MBOCP), which is linear in the binary parameters is done. Therefore equation (4) is replaced by

0 =
∑

j=1,...,nw

wijr(x(tci ), zj , t
c
i ) =: R(x(tci ), t

c
i )wi, 1 =

∑

j=1,...,nw

wij , wi ∈ {0, 1}nw , i = 0, . . . , nc. (5)

This transformation can also be done analogue for other constraints depending on integer parameters or variables. Thus a
mixed integer problem can always be transformed into a mixed binary problem, which is linear in the binary variables.

To find a solution for the MBOCP one could solve all problems related to feasible w and choose the one with lowest cost.
This approach may work for small numbers nw, but it is not appropriate if nw grows. Therefore other approaches are needed.

At the inner points tci the MBOCP can be cut into phases. Thus the same inner point constraint must hold at the end of one
and at the beginning of the next phase. In addition phase transitions are introduced, which assure the continuity of the states.
A closer look to one of these phases shows, that it is impossible to solve this phase independent of the others, because of the
transitions at the switching points tci . If the state at initial and final time of the phase would be fixed and w would be given
the single phase OCP could be solved. If the states are discretized (xi,0, . . .xi,nd ) at the switching points tci not violating
the inner point constraints (Fig. 1l), the single phase OCP can be solved for each pair of initial values (wk,xi,l) =: pa and
final values (wo,xi+1,m) =: pb independent of the other phases. Thus for each of these point to point trajectories an optimal
cost cab can be evaluated numerically. This is done by direct collocation. Hereby the time interval is discretized. The state
variables are approximated on this grid by continuous piecewise cubic and the control variables by non-continuous piecewise
linear functions. The collocation constraints are fulfilled at Gaussian points, the other constraints are fulfilled pointwise. So
the OCPs are transcribed into large sparse NLPs, which are solved by the state of the art SQP-solver SNOPT (P. E. Gill et al.).

Each discrete point pi can be interpreted as a vertex in a graph G(V,E) (Fig. 1m), and all edges ij ∈ E between two
vertices pi and pj , i, j ∈ V can be adopted with the optimal cost of the corresponding single phase OCP as its weight. If the
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Fig. 1 Solution steps of the decomposition approach.

OCP can not be solved the weight can be set to infinity. An approximation of the MBOCP is a valid path in this graph. For the
edges binary variables, which are equal to one if the edge is part of the path and zero otherwise, are introduced to formulate a
linear combinatorial problem, which is numerically solved by the BCP algorithm SYMPHONY (T. K. Ralphs).

2 Motorized Traveling Salesman Problem (MTSP)

As an example the hybrid benchmark-problem of the motorized traveling salesman [1] is solved. The task of the salesman is
to find an acceleration and braking force β̄(t) and a steering angle velocity γ̄(t) to control the car and in addition an order
w̄i of the cities to be visited by him to minimize the overall traveling time. This problem is easily scalable in continuous
(i.e. car model) and discrete (i.e. number of cities) complexity. Here the car is assumed to be a simple point mass located in
(x(t), y(t)) with velocity v(t) and driving direction α(t) and only nc = 6 cities are considered. Thus the problem reads as

min J [u,w] = tf + 2

∫

[t0,tf ]

(β(t)2 + γ(t)2)dt (6)

s.t. (ẋ(t), ẏ(t), v̇(t), α̇(t))T = (v(t) cos(α(t)), v(t) sin(α(t)), β(t), γ(t))T (7)

(x(0), y(0), v(0), α(0))T = x(tf ), y(tf ), v(tf ), α(tf ))T (8)
0 ≤ v(t) ≤ 10, |β(t)| ≤ 2, |γ(t)| ≤ 1. (9)

(x(tci ), y(tci ))
T −Cwi = 0,

∑

i=0,...,nc

wi = (1, . . . , 1)T . (10)

Where C = (C0, . . . , Cnc) ∈ IR2×nc includes the cities locations and wi ∈ {0, 1}nc is an unit vector. For decomposition
the states v(tci ) and α(tci ) are discretized into overall nd = 40 (5 for velocity, 8 for angle) points. Neglecting any symmetries
nc(nc−1)n2

d = 1200 similar single phase OCPs have to be solved, which leads to a computation time of about 3 hours (0.15s
per problem on a 2GHz PC). With the achieved costs cij the resulting combinatorial problem is an asymmetric group TSP [2].

min
∑

ij∈E
ωijcij (11)

sc.
∑

ij∈η+({l},Pk)

ωij ≤ νl,k,
∑

ij∈η−({l},Pk)

ωij ≤ νl,k, ∀ l ∈ Pk, k ∈ {1, . . . , nc}, (12)

∑

l∈Pk ;

νl,k = 1,
∑

ij∈E(Pk)

ωij = 0, ∀ k ∈ {1, . . . , nc}, (13)

∑

ij∈E(Q)

ωij ≤ |I | − 1, ∀ Q =
⋃

k∈I
Pk, I ⊂ {1, . . . , nc}, (14)

ωij ∈ {0, 1}, ∀ ij ∈ E, νk ∈ {0, 1}, ∀ k ∈ {1, . . . , nc} (15)

with η+(Q,R) := {ij ∈ E
i ∈ Q, j ∈ V \R}, η−(Q,R) := {ij ∈ E

i ∈ V \R, j ∈ Q} and E(Q) := {ij ∈
E
i, j ∈ Q}. Using BCP the problem could be solved in 12 minutes. The cost of the discretized journey (Fig. 1r) are 40.98.

Solving the continuous problem for this fixed order of cities (Fig. 1r, dotted line) leads to a cost of 37.87. The difference is
quite large. Thus a refinement or a linear interpolation of the cost on the state discretization could improve the results of the
presented decomposition approach.
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