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Abstract. A newly developed tw(}-level driver model is presented. On the anti­
cipation Ievel, optimal control problems for a reduced vehicle dynamics model are 
solved repeatedly on a rumring prediction hori'l;on to yield near optimal setpoint 
trajectories for the full model. On the ::~tabilization Ievel, a nonlinear po::~ition con­
troller is developed to accurately track the setpoint trajectorie::; with a full motor 
vehicle dynamics model in real-time. The formulation of the optimal control prob­
lems on the anticipation Ievel is based on a nonlinear single track model which is 
extended by a complex tire model and further nonlinear model details such as to 
match the main properties of the full vehide dynamics model. The optimal con­
trol problems are solved efficiently by a recently developed sparse direct collocation 
method. ~umerical results for various vehicle maneuvers are presented, including a 
time-optimal double lane change at high speed. 

1 lntroduction 

Driving eomfort and safety of modern passenger ears ean highly be improved 
by electronic vehicle control units (ECL"s) actively interfering in the vehi­
cle dynamics. Popular examples include anti-lock braking systems (ABS) 
and electronic stability programs (ESP). However, through the use of ECUs 
the vehicle design and the dynamical driving properties become even more 
complex. Therefore, major ear manufaeturers as well as autornative suppli­
ers make use of suitable software for virtual prototyping in order to cut the 
product development time and cost, and to improve the design quality. 

Specifically, Hardware-in-the-Loop (HIL) experiments provide efficient, 
cost effective, reproducable, and save tests for ECUs. Here, a test bench is 
used to link the EGC to the numerical real-time simulation of the full motor 
vehicle dynamics (Fig. 1). Furthermore, to rate the handling and driveability 
properties of a virtual prototype, the performance ofthe closed loop of driver7 

vehicle7 and environment must be investigated in real-time [27]. Thus, hand­
ling characteristics of the physical prototype such as body roll, ride quality 
including vibration and bumps, vehicle safety, and performance parameters 
can be predicted. 
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Fig.l. Hardware-in-the-Loop setup for a braking system with AßS control unit 
linked to the real-time simulation of full motor vehide dyna.mks. 

To realistically simulate the full motor vehicle dynamics in real-time tai­
lored models of the vehide dynamics and the road properties a.re needed 
(Sect. 2). A new driver model consisting of two Ievels is outlined in Sedi. 3. 
On the anticipation Ievel, optimal control problems on a moving prediction 
hori7.on (Sect. 3.3) are solved for a newly developed extended single-tra.ck 
vehide model (Sect. 3.2). Thus, optimal open-Ioop controls and trajediories 
are obtained, e. g., specifying the location and the velocity of the vehicle's 
center of gravity along the road. The latter are used as setpoint trajectories 
for the nonlinear real-time position control which serves to compensate any 
disturbances on the stabilization level of the driver model (Sect. 3.5). For the 
efficient numerical solution of the optimal control problems on the anticipa­
tion Ievel, a recently developed version of a sparse direct collocation method 
has been employed (Sect. 3.4). 

The numerical results for va.rious virtual test drives demonstrate the effi­
dency of the a.pproa.ch (Sect. 4). 

2 Modeling and Simulation of Full Vehicle Dynamics 

To realistically "test drive" entire vehides in the computer, computer models 
of the whole car, including the suspensions, the powertrain, the engine, the 
steering mechanism, and EGC s are required along with models for the road 
geometries and conditions. 

2.1 Numerical Simulation of Full Motor Vehicle Dynamics in 
Real-Time with veDYNA 

A detailed and comprehensive vehicle model is needed to allow for the nonlin­
ear kinema.tics of wheel and a.xle, and to describe the drive train, the steering 



An Optimal Control Approach To Real-Time Vehicle Guidance 3 

semi em piric tire model 

multi body system axle kinematics 

steering system 

Fig. 2. Submodels of the full motor vehicle dynamics model of veDYNA. 

mechanism and the tire dynamics. Our vehicle model consists of a suitable 
multibody system with kinematical connections and force elements which is 
supplemented by a sophisticated tire model. General purpose methods for 
modeling multibody systems use the descriptor form of the equations of mo­
tion leading to a large-scale system of differential-algebraic equations (DAEs) 
of index 3 [20]. For DAE systems particular numerical techniques must be 
applied to prevent a "drift-off" from the algebraic constraints [21]. Here, we 
make use of an optimally tailored model description which yields a system of 
ordinary differential equations (ODEs) which is suitable for real-time simu­
lation. 

The vehicle model of veDYNA consists of a system of nine rigid bodies 
comprising the vehicle body, the axle suspensions and the wheels. Further 
submodels are employed to depict the characteristics of the drive train, the 
steering mechanism, and the tires (Fig. 2). Suitable minimum coordinates 
and generalized velocities are used to describe the spatial state of the vehicle 
and its components [19]. The equations ofmotion are derived from Jourdain's 
Principle yielding 
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YBv = Kßt(YBv) ZBv 

Mnr inr = Qnr(Ynr,znr) 

ilnr = Vnr znr 

Msr(Ysr,YBv) isr = Qsr(Ysr,zsr) 

ilsr = Vsr zsr 

D YT = Fstat - C YT· 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Thus, the vehicle dynamics is fully characterized by the system of 24 first­
order ODEs comprising the vehicle body and the axles, (1) and (2). Eight 
ODEs (7) describe the lateral and longitudinal deviations of the tires by 
means of spring and damper elements. The vertical deformations of the tires 
are covered by (1). The dynamic model ofthe drive train consists of 19 ODEs, 
(3) and ( 4), including four equations governing the angular wheel speeds. Five 
additional ODEs account for the dynamics ofthe steering system (5) and (6). 
Couplings between the separate systems occur via the generalized forces and 
torques Q BV. Wind forces and moments result in additional forces applied 
to the multibody system of the vehicle [17,19]. 

The tire forces have a significant impact on the dynamical behavior of a 
vehicle. The semi-empirical tire modelthat is used here describes the behavior 
of a real tire accurately [11,19]. About 80 parameters which can be measured 
or estimated enter the model for each tire in veDYNA. The model covers 
different driving situations, including effects at the driving limits such as 
sliding and spinning. The actual tire model is selected online depending on 
the respective road and weather conditions [1]. 

Due to the stiffness of the system (1)-(7) its numerical integration is 
carried out recursively with a semi-implicit one-step Euler scheme using a 
constant step size [19]. In particular, the integration method makes efficient 
use of the special block structure of the ODEs which yields 

k+1 k + h (M h 8Qsr h2 8Qsr V: )-
1 

Qk ZsT = Zsr ST - -- - -- ST ST 
8zsr 8ysr 

(8) 

k+1 k + h V: k+1 Ysr = Ysr sr Zsr (9) 

k+1 k Znr = Znr + h ( M h 8Qnr h2 8Qnr V ) -
1 

Qk DT- --- -- DT DT 
8znr 8ynr 

(10) 

k+1 k 
Ynr = Ynr + hV k+1 

DTZDT (11) 

k+1 k ZBV = ZBV + h ( M _ h 8QBv _ h2 8QBv K-1) -
1 

Qk 
BV 8 8 BV BV ZBV YBV 

(12) 

k+1 k 
YBv = YBv + hK-1 k+l BVZBV · (13) 

It turnsout that a fast and stable solution is possible in real-time on modern 
PC hardware. 
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The development of intricate vehicle control devices requires the perfor­
mance of the virtual car to match the actual vehicle behavior accurately. 
For calibrating the vehicle model of veDYNA, a parameter estimation tool 
has been developed which relies on observations obtained from physical test 
drives. The associated nonlinear least-squares problems are solved efficiently 
by means of mathematical optimization algorithms. Significant speed-ups in 
the computational time are achieved when employing a low-cost parallel com­
puting platform, such as a heterogeneaus duster of PCs, which is well suited 
for the needs of the autornative industries and suppliers applying vehicle 
dynamics simulations [4]. 

2.2 Parameterized Road Model 

Fahrbahnmittellinie 

( a) The curvature of the road's center 
line is a piecewise linear function of 
the arc length. 

(b) The variable transverse profile en­
ables the modeling of bumps, dips, 
treads etc. 

Mittellinie 

(c) Road sections with different surface properties (traction values, roughness). 

Fig. 3. Components of the parameterized road model veDYNA Advanced Road. 

To exercise the dynamic vehicle models under various road conditions (test 
tracks, public streets) in the computer, three-dimensional road geometries 
such as banked curves, hills, and bumpy roads, as well as variations in the road 
parameters due to weather and road surface conditions must be considered. 
These parameters vary widely on real courses, but can be controlled easily 
for virtual test drives if suitable models are employed. 

Forthis purpose, we developed the tailored and parameterized road model 
veDYNA Advanced Road (Fig. 3) for the application in real-time vehicle 
dynamics simulations [22]. The course of the road is defined by means of the 
center line which is a curve in R 3 . Its vertical projection onto the horizontal 
plane is defined by a curve in lll2 whose curvature is a piecewise linear function 
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of the arc length as it is usual in road construction. The vertical coordinate 
of the center line can be seleeted arbitrarily. A variable transverse profile can 
be added at each point of the center stripe for generating three-dimensional 
road properties like bumps and dips. Road surface properties such as traetion 
coefficients and the grade of roughness or smoothness are further pa.rameters 
of the transverse profile, thus, permitting a description of different road and 
weather conditions. 

The roa.d model is flexible and easy-to-use. A realistic road model can 
be obtained with quite a few parameters, though it is possible to increase 
the level of detail arbitrarily. lVloreover, the road model is well suited for 
real-time simulation. We refer to [22] for details. The road model has been 
incorporated into a graphical user interface of the MATLAB/Simulink em­
ulation of veDYNA and into the 3D-visualization socket for computed test 
drives. Thus, the comfortable, modular modeling and visualization of any 
test course of interest is made possible. 

3 Optimal Control Approach to Driver's Anticipation 
and Response 

To enable virtual test drives the control actions ofthe vehicle's driver, such as 
steering, braking, accelerating, gear shifting, and operating the clutch, must 
be simulated by a virtual driver. In this context, we do not want to investi­
gate the specific biomechanical, neuromuscula.r or psychological behavior of 
a human driver. Rather, a mathematical driver is needed for investigating 
the objective handling properties of the virtual prototype vehicle. Therefore, 
a virtual driver can use information which a human driver usually does not 
have (and cannot use directly), e. g., the traction values at the tires or the 
exact side slip angle. Hmvever, we require that the driver model is able to 
guide the virtual car along a test track at the dynamicai driving Iimits in 
a way which is close to the performance of experienced human test drivers. 
An optimal control approach is motivated by ':the basic assumption ... that 
the well-motivated, well-trained human operator behmres in a near optimal 
manner subject to his inherent limitations and constraints, and his control 
task" [12]. 

The two-level model of Donges [6] has been a fundamentai contribution 
to modeling the driver's response. The control tasks in vehicle guidance are 
separated into tasks on the guidance and the stabilization Ievel. 1\ owadays, 
ECU s are typically considered to be control systems on the stabilization 
level to compensate for disturbances and enabling the driver to manage the 
vehicle's dynamic behavior even in critical situations [7]. By this definition, 
control systems on the guidance level are systems that assist the dri ver in 
his/her steering task by looking ahead of the vehicle (anticipation). 
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3.1 Two-Level Driver Model 

Wehave developed a two-level driver model for the use within the vehide dy­
namics simulation program veDYNA (Sect. 2.1). On the stabilization level of 
our driver model, a position control algorithm precisely guides a virtual vehi­
cle, described by the full motor vehicle dynamics simulation of Sect. 2, along 
setpoint trajectories for the location and the velocity of the vehicle's center 
of gravity (Sect. 3.5). On the anticipation Ievel, the near optimal setpoint 
trajectories are computed by repeatedly solving optimal control problems for 
an extended single-track vehide model by means of numerical optimi:;r,ation 
(Sects. 3.2, 3.3). The result is a virtual driver who is able to guide the virtual 
ca.r on a virtual road at high speeds as well as during ~xtreme maneuvers 
where skidding and sliding effects take place (d. Sect. 4 and [5,23]). 

3.2 Extended, Nonlinear Single-Track Vehicle Dynamics Model 

\ 

"<>. \ 
"<>.,/ \ 

\ 
\ 

VI> 

\ 

Fig. 4. Single-trad< vehide model 

For the numerical computation of optimal setpoint trajectories for the positon 
and the velocity of the vehicle's center of gravity along the road, a reduced 
vehicle dynamics model is required. The model must be reduced sufficiently 
such as to enable the online 1mmerical solution of optimal control problems, 
but it must also be detailed enough to represent the main properties of the 
full vehide. 

For this purpose, we have developed a significantly extended, nonlinear 
single-track model (Fig.4). The single-track model due to [18] is based on the 
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Table 1. Variables of the single-track vehicle model 

ß sideslip angle [rad] 
'lj; yaw angle [rad] 
Wz yaw angular velocity [rad/s] 
v velocity of the center of gravity [m/s] 
X, Y position of center of gravity [m] 
Dv steering angle (at tire) [rad] 
O:v, O:h sideslip angle at front and rear wheel [rad] 
Sv, Sh front and rear lateral forces [N] 
H front and rear longitudinal forces [N] 
T drag force (wind) [N] 
lv, lh horizontal distance of front/rear a.xle to center of gravity [m] 
m mass of the vehicle [kg] 
(} inertia due to z-a.xis [kg m2

] 

assumption that the center of gravity of the vehicle has zero height above 
a planar road. Thus, the left and right tire loads are equal even in case of 
large lateral accelerations; the two tires at the front and the rear axle are 
treated as one single "wide" tire. Moreover, under the given assumptions the 
tire loads are also constant during acceleration and braking maneuvers, and 
changes in the roll or pitch angle cannot occur. Therefore, it is not necessary 
to model the axle kinematics, e. g. by spring and damper elements, and the 
single-track model behaves as if the tires were rigidly linked to the vehicle 
body. 

The single-track vehicle dynamics depends on the acceleration, the brak­
ing and the lateral forces acting on the fictitious front and rear wheels. The 
acceleration and braking forces V and H at the front and rear wheels vitally 
determine the vehicle's velocity v; the steering angle 8v is used to guide the 
vehicle along any curve. Only six vehicle state variables ( cf. Table 1) are 
contained in the equations of motion (14) - (19). 

/J(t) = Wz(t) - m ~(t) [ ( H(t) - T(v(t))) sin(ß(t)) 

+ Sv(av(t)) cos(8v(t) + ß(t)) + Sh(ah(t)) cos(ß(t))] (14) 

~(t) = Wz(t) (15) 

wz(t) = ~ [sv(av(t)) lv cos(8v(t)) - Sh(ah(t)) zh] (16) 

v(t) = ~ [H(t) cos(ß(t)) - T(v(t)) 

- Sv(av(t)) sin(8v(t) + ß(t)) + Sh(ah(t)) sin(ß(t))] (17) 
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X(t) = v(t) cos(1/J(t) - ß(t)) (18) 

Y(t) = v(t) sin(1/J(t) - ß(t)) . (19) 

Approximations for the side slip angles at the front and the rear wheel 
can be computed from 

(20) 

(21) 

provided that the yaw angular velocity Wz is "small". Although the lateral 
forces Sv and Sh mainly depend on the respective side slip angle, also the 
longitudinal force H has to be taken into account. In particular, the vector 
(Sv,Sh,H)T = F(av,ah,Hdes) isahighlynonlinearfunctionofthesideslip 
angles and a desired longitudinal force Hdes. The latter can be interpreted as 
accelerating or braking pedal position. The function F serves to account for 
the interdependencies between lateral and longitudinal forces. Under stan­
dard driving conditions (i. e., av, ah, Hdes are small enough) Sv and Sh are 
almost independent of Hdes, and H is essentially given by Hdes. However, 
if the overall slip - which is calculated internally for each tire when eval­
uating F - becomes larger, the direction and the magnitude of the overall 
tire force determines the magnitude of the lateral and the longitudinal forces. 
The function F also switches between accelerating and braking, and considers 
different drive train configurations, such as front-, rear- and all-wheel drive. 

When combining the single-track model with a suitable tire model, the 
main dynamical vehicle properties, including skidding effects, can be de­
scribed properly [14,15,27]. As the most important enhancement we linked the 
nonlinear single track model with the sophisticated tire model used within 
the realistic full vehicle dynamics simulation package veDYNA (Sect. 2.1). 
This tire model, which is denoted by F here, covers the nonlinear interde­
pendecies between the lateral and the longitudinal forces. Both veDYNA and 
our extended single-track model use the same subprograms and input data to 
evaluate the current road contact and to compute the respective tire forces. 
Thus, the forces H, Sv, and Sh in the single-track vehicle dynamics are com­
puted by means of the tire model of the full motor vehicle dynamics program. 
Each tire model depends on ab out 40 parameters, i. e., half of the parameters 
of the full veD YN A tire model. Moreover, the large extension of the nonlinear 
lateral and longitudinal dynamics and the consideration of wind forces make 
the extended single-track model suitable for computing optimal setpoint tra­
jectories which are consistent with the full vehicle dynamics simulation. The 
computational results for the extended single-track model are in good agree­
ment with the full vehicle dynamics simulations, although only six ODEs are 
needed instead of 56 (cf. Sect. 4). 
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3.3 Optimal Control Problem on a Moving Horizon 

The minimum time control problern for the extended nonlinear single-track 
model is stated as to 

minimize J[u] = t1 + PoXs(tt) (22) 

where the nx = 8 state variables and the nu = 2 control variables are given 
by 

(23) 

The optimal control problern is subject to the equations of motion given by 
the Eqs. (14) - (19) and the additional equations 

(24) 

Here, p0 , p1 , p2 2: 0 denote suitable non-negative weights. Even if only a small 
weight Po for Xs (t 1) = ft'; (Pl ui + p2u~) dt is considered in the objective (22), 
the Hamiltonian becomes regular and the solution is more smooth. 

The maximum vehicle speed is constrained by 

(25) 

The non-negativity of two nonlinear state constraints 

0 ~ gi (x(t)), i = 1,2, (26) 

ensures that the left and right road limits are obeyed during the maneuver. 
By the Principle of Optimality, the optimal control problern over a long 

course may be decoupled into several problems over smaller sections without 
loss of optimality, provided that the optimal trajectory x* is known for some 
intermediate values. From the basic dynamical vehicle properties and the 
geometry ofthe course, intermediate values x~,i' xj,j ofthe optimal trajectory 
can often be estimated quite well, e. g., by considering the maximum vehicle 
speed and the maximum lateral acceleration in a curve. Then, the optimal 
control problern on a prediction horizon [t0 , tt] with the unknown duration 
t 1 - t0 consists in optimally steering the vehicle from a given initial state to 
a given final state, i. e., 

Xi(to) = Xo,i, Xj(tt) = Xj,j, i Eh jE Jj, hfj C {1, ... ,8}. (27) 

The optimal trajectory x*(t), u*(t), t 0 ~ t ~ tf, must satisfy various 
necessary conditions derived from the Euler-Lagrange differential equations 
(EL-DEQs) and the Maximum Principle, e. g., [16,24]. Some of them can be 
used for an a-posteriori verification of the consistency of the solution com­
puted by the method described in Sect. 3.4. Let A.: [t0 , tt]-+ ]Rn, denote the 
adjoint or costate variable, 'f} the multiplier function of the state constraints, 
and 1i(x, u, A., rJ) = 2::~== 1 A.di(x, u) + L:j 'f/j9j(x, u) the Hamiltonian. Then: 
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- The Hamiltonian 1-l of an autonomaus problern must be a (piecewise) 
constant function of time for the optimal trajectory. 

- The final value of x8 ( t 1) is free. Thus, the corresponding adjoint variable 
A.8 must satisfy 

(28) 

for the Mayer type objective (22). 
- The Hamiltonian is a nonlinear function of the control u2 = 8v. Thus, 

(29) 

must hold for all parts ofthe optimal trajectory lacking active constraints 
that affect u2 • 

3.4 Sparse Direct Collocation for N umerical Optimal Control 

Consider the general optimal control problern on the horizon [ t0 , t 1] 

J[u] = <p (x(tt ), t1) + {t' L (x(t), u(t), t) dt ~ min! (30) 
}to 

subject to x = f (x(t), u(t), t), (31) 

0 ~ gi (x(t), u(t), t), i = 1, ... , n9 , (32) 

0 = rj (x(to), to, x(tt ), t1), j = 1, ... , nr, (33) 

where x: [to,tt] -+]Rn, and u: [to,tt] -+ JRnu denote the state and the 
control variables respectively. 

Direct shooting and direct collocation methods both promise high flexibil­
ity and robustness when solving optimal control problems numerically with 
low or moderate accuracies [3,26]. However, in many practical applications 
the problern functions only have low, local differentiability properties, i. e., 
discontinuities in the first or second derivatives. Thus, obtaining a useful gra­
dient approximation for shooting-type discretizations takes much more effort, 
since a numerical sensitivity analysis for initial value problems with switch­
ing points must be carried out. On the other hand, for a collocation-type 
discretization a careful, but much eheaper finite difference approximation 
may be sufficient, where no special treatment of discontinuities in first or 
second derivatives by switching functions is required. A further advantage of 
the direct collocation approach is the potentially faster computation as com­
pared to direct shooting, because the ODE simulation (31) and the control 
optimization problems (30), (32) are solved simultaneously for collocation, 
but not iteratively as by shooting methods. To achieve an optimal speed-up 
for collocation, the NLP sparsity must fully be utilized. Otherwise the large 
size of the NLP will severly limit the efficiency. 
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In the sequel, we make use of a discretization for x by piecewise cubic Her­
mite polynomials x(t) = ~. n.x.(t) and a discretization for u by piecewise 
linear functions ii(t) = ~ • .ßkuk(t) on a discretization grid t0 = t1 < t2 < 
... < tnt = t,. Adherence to the equations of motion is prescribed at the 
grid points and their respective midpoints (collocation at Lobatto points), 
thus yielding a set of nonlinear NLP equality constraints a(y) = 0. More­
over, any inequality constraints on the eontrol or state variables are to be 
satisfied at the grid points which results in set of nonlinear NLP inequaiity 
constraints b(y) ~ 0. In both cases, y = (a,,a2, ... ,.ß,,.ß2,···,tf)r derrotes 
the ny parameters of the parameterization. The resulting nonlinearly con­
strained optimization problern basically reads as 

NLP: min <!i(y) subject to a(y) = 0, b(y) ~ 0, (34) 
y 

where c[J : rrtny -+ IR denotes the parameteri7,ed eost index (30) with y E JRny, 
and a : JRny -+ JRn~~. , b : JR.ny -+ JR.nb are the nonlinear KLP constraints. 

The selected discretizations fi, X must satisfy certain convergence prop­
erties. One requirement is that the discreti7,ed solution must approximate a 
solution of the EL-DEQs and the Maximum Principle if the grid becomes 
arbitrarily fine, i. e., for nt--+ oo and max{ti+l- ti: i = 1, ... ,nt- 1}--+ 0 
[24]. A great advantage of the direct collocation approach is that it provides 
reliable estimates .\ of the adjoint variable trajectory along the discretiza­
tion grid. These estimates are derived from the Lagrange multipliers of the 
NLP [24]. They enable a verification of the optimaiity conditions for the 
discretized solution although the EL-DEQs have not been solved explicitly. 

J\:Ioreover, loeal optimality error estimates ean be derived which enable 
efficient strategies for successively refining a first solution on a coarse grid 
[24,25]. Thus, a sequence of related NLPs must be solved whose dimensions 
increase with the number of grid points. The numerical solution of the KLPs 
can be dorre efficiently by sequential quadratic programming (SQP) methods. 
In eaeh SQP iteration the eurrent guess of the solution y* is improved by 
solving a quadratic subproblem, derived from a quadratic approximation of 
the Lagrangian of the 1\LP, subject to the linearized constraints [2,9]. The 
NLPs which result from a direct collocation discretization have several spe­
cific properties: 

The l\LPs are large-scaie with very many variables and very many con­
straints. 
Most of the NLP constraints are active at the solution, e. g., the equality 
eonstraints from collocation. Thus, the number ns of free NLP variables 
is much smaller than the total number of variables ny. 

The constraints' Jacobians (Va(y), Vb(y)) are sparse and structured. 
Only a small number of the elements will be nom-;ero, and the pereentage 
decreases as the number of grid points increases. 
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- The NLP objective P(y) only depends on a few, fixed number of variables 
regardless of the actual grid size, provided that the objective (30) is of 
Mayer type, i. e., L = 0. 

These features are fully utilized by means of the recently developed large­
scale SQP method SNOPT [9] which partitions the NLP variables into ba­
sie, superbasic and nonbasic variables. The Hessian of the NLP Lagrangian 
function is approximated by limited-memory quasi-Newton updates, and a 
reduced Hessian algorithm is used for solving the QP subproblems. The null­
space matrix of the working set in each iteration is obtained from a sparse 
LU factorization. 

When compared to standard "dense" SQP methods, the computational 
speed-up which can be achieved by fully utilizing the NLP structure is more 
than a factor of one hundred for typical discretized optimal control problems 
(Sect. 4). The described sparse direct collocation method is implemented 
in the software DIRCOL [24,25], which is freely available from the authors 
and has already been distributed upon request to about 40 institutions from 
research and industry. 

3.5 Nonlinear Position Control of Optimal Setpoint Trajectories 

On the stabilization level of our driver model, a nonlinear position control 
of the vehicle's center of gravity along the road is employed to guide the 
full vehicle dynamics model [14,22]. We use the computed optimal trajec­
tory (X*(t), Y*(t)) =: (wx(t),wy(t)) of the center of gravity as a setpoint 
("target") for the actual position (X(t), Y(t)) of the vehicle. The setpoint 
trajectories ((wx(t),wy(t)) are repeatedly computed by solving optimal con­
trol problems for the reduced vehicle model (cf. Sections 3.2, 3.3 and 3.4). 
The computed optimal controls u* are not directly used here. 

The position control algorithm is based on the theory of nonlinear system 
decoupling and control originally developed for robot control [8]. Several state 
variables ofthe full vehicle dynamics model in veDYNA enter into the control 
law, among them the direction ofthe velocity ofthe vehicle's center of gravity 
v = 'ljJ- ß, the side slipangle ß, the actual position (X(t), Y(t)) and velocity 
(X(t), Y(t)), as well as the position ofthe target ((wx(t),wy(t)), its velocity 
((wx(t), wy(t)) and its acceleration ((wx(t), wy(t)). We compute a desired 
front lateral force s~es and a desired longitudinal force Hdes by 

s~es(t) = -Sh(x(t))- m [ ( cos(v(t))ß(t) +sin(v(t))) a~es(t) + 

( sin(v(t)) ß(t)- cos(v(t))) a~es(t)] (35) 

Hdes(t) = T(x(t)) + m [ cos(v(t)) a~es(t) + sin(v(t)) a~es(t)], 
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Fig. 5. Numerical solution ofthe minimumtime double lane change maneuver with 
the extended nonlinear single track model for 161 grid points. Left: trajectory in 
the (X, Y)-plane. Right: comparison of the computed control it2 = Jv (solid, red 
line) and the function -5..7/(2p25..s) (dashed, green line) over time (cf. Eq. (29)). 

where the desired second derivatives ades = (a~es, a~es)T of the Coordinates 
X, Y are given in inertial coordinates and calculated as follows 

a~es(t) :=A(w~or(t)- X(t)) + 2VA(wx- X(t)) + Wx 

a~e8 (t) := A ( W~0r(t) - Y(t)) + 2VA ( Wx - Y(t)) + Wx. 

4 N umerical Results for Virtual Test Drives 

(36) 

4.1 Minimum Time Double Lange Change of a Passenger Car 

As an example, we consider the ISO double lane change which shall be per­
formed in minimum time with a standard passenger car, i. e., a BMW E30 
with rear wheel drive. 

First, on the anticipation level of our driver model, the optimal control 
problern for the corresponding single-track model (Sects. 3.2, 3.3) is solved by 
the method of Sect. 3.4. The control constraint during the lane change consists 
of a maximum speed of Vmax = 33 [m/s] ~ 119 [km/h], and the weights are 
given by p0 = 5 · 10-6 , p1 = 10-7 , p2 = 103 . The problern formulation 
also includes an optimal acceleration maneuver on a straight road before the 
actual double lane change is performed. There, the vehicle is accelerated from 
the initial velocity v(to) = 8 [m/s] ~ 29 [km/h] to its maximum value Vmax 

within 5.1s which is kept until ij = 11.2958s. 
The numerical results for different improvements V1 - V 4 of the sparse 

direct collocation method DIRCOL are reported in Table 2 (standard SQP: 
NPSOL-5.0 [10], sparse SQP: SNOPT-5.3-5 [9]). For reasons of demonstra­
tion, only equidistant grid points have been used here. Though, usually it 
is much more efficient to apply grid refinement based on suitable local er­
ror monitaring functions [24]. The speed-up factor for the improved collo­
cation methods depends on the grid size; for the most advanced version V 4 
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Table 2. Numerical results for the minimumtime double lane change with the 
extended single-track model for the varying utilization of the NLP structure and 
sparsity 

nt ny na nb ns Jacbn itn. CPU [s] CPU memory 
PIII/500Mhz speed-up [MB] 

min:sec 

21 200 160 42 - 9.3% vo 32 0:26 
- Vl 58 0:36 
24 V2 36 0:05 
24 V3 30 0:03 
30 V4 24 0:01 

41 400 320 82 - 4.7% vo 55 7:17 
- Vl 86 9:57 
51 V2 151 2:27 
54 V3 44 0:20 
54 V4 23 0:03 

81 800 640 162 - 2.4% vo 75 73:30 
- Vl 110 108:40 

109 V2 74 9:27 
110 V3 46 2:00 
109 V4 65 0:29 

161 1600 1280 322 - 1.2% vo 56 486:40 
- Vl 39 329:10 

217 V2 26 31:40 
224 V3 18 7:58 
219 V4 24 0:55 

VO: standard finite differences + standard SQP 
Vl: analyt. deriv. &fin. diffcs. + standard SQP 

VO/Vi 

1.0 
0.7 
5.2 
8.7 

26.0 
1.0 
0.7 
3.0 

21.9 
145.7 

1.0 
0.7 
7.8 

36.8 
152.1 

1.0 
1.5 

15.4 
61.1 

530.9 

V2: analyt. deriv. &fin. diffcs. + sparse SQP - no structure 
V3: analyt. deriv. &fin. diffcs. + sparse SQP + NLP-structure 

1.4 
1.4 
1.7 
1.3 
0.5 
5.3 
5.3 
6.6 
4.8 
1.2 

21 
21 
25 
17 

2 
83 
83 
94 
64 

3 

J[u] 

11.28235 
11.28233 
11.28235 
11.28235 
11.28235 
11.29100 
11.29102 
11.29142 
11.29107 
11.29147 
11.29657 
11.29658 
11.29660 
11.29670 
11.29660 
11.29852 
11.29853 
11.29852 
11.29856 
11.29852 

V4: analyt. deriv. &fin. diffcs. + sparse SQP + NLP-structure + sparse Jacobian 

of DIRCOL, it is more than 500 when using 161 grid points (Table 2). The 
computed solution for the finest grid is depicted in Fig. 5. It should be noted, 
however, that for the online computation it is not necessary to solve the prob­
lern on the finest grid. A moderate accuracy of the solution is sufficient for 
which a computational time smaller than the time needed for the maneuver 
or its simulation can be achieved. 

The optimality condition (29) for the computed trajectory is satisfied to 
reasonable accuracy (Fig. 5, right), although the adjoint differential equations 
have not been solved explicitly. Furthermore, condition (28) is also satisfied 
with high accuracy. The computed estimate 5..~(tt) = 4.999325·10-6 agrees 
with the optimal value A.~(tt) = p0 = 5 ·10-6 to four digits. 

In the second step, the computed optimal trajectories for the single-track 
model serve as near optimal setpoint trajectories for the nonlinear real-
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Fig. 6. Zoom into the state space trajectories for the last part of the double lane 
change maneuver with a BMW E30 at 119 km/h. Left: center of the front axle (-) 
and its near optimal setpoint trajectory (- - -). Right: deviation from the setpoint 
trajectory for the recent position controller (-) as compared to an earlier version 
(-- -). 

time position control of the full motor vehicle dynamics model in veDYNA 
(Sect. 2.1). The difference between the state space trajectories (X*, Y*) and 
(X, Y) of the reduced and the full vehicle dynamics model is hardly visible. 
A zoom into the end of the double lane change ( cf. Fig. 6) shows a maxi­
mum difference of about 7 cm. The small tracking errors for the double lane 
change maneuver at high speed is quite remarkable for the only rear wheel 
driven car, and demonstrates both, the capabilities of the position controller 
ofthe driver model, as well as the good prediction ofthe full vehicle dynamics 
behavior by the significantly smaller, extended single-track model. 

4.2 Further Vehicle Manenvers 

Recently, Lim and Hedrick suggested a longitudinal and lateral vehicle con­
troller for automated vehicle operation of passenger cars [13]. The position 
controller was applied to a challenging test maneuver with quick changes 
in road curvature and braking in turns (Fig. 7, left). High lateral accelera­
tions of about 5m/s occur. Wehave investigated the same maneuver with 
the full vehicle dynamics model of a BMW E30 and the position controller 
from Sect. 3.5 which was used to track the given setpoint trajectory. For our 
approach (Fig. 7, right), we observed only one tenth of the deviation from 
the setpoint trajectory that have been reported in [13]. 

Finally, a fast virtual test drive of the full-scale vehicle dynamics model of 
a BMW E30 has been performed along the BMW handling course at Asch­
heim which is about 2 km long (Fig. 8). Animated results for further vehicle 
maneuvers arealso available from http:/ jwww-m2.ma.tum.de/Projekte/kfz. 
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Fig. 7. Results for the driving cycle of [13]. Left: numerical simulation of the longi­
tudinal and lateral acceleration of the vehicle's center of gravity with veDYNA and 
the position controller from Sect. 3.5. Right: longitudinal and lateral deviations of 
the setpoint trajectory. 

Acknowledgement. The authors thank Dr.-lng. Karl Naab ofBMW AG for 
helpful discussions and support and Dipl.-Math. Torsten Butz for carefully 
proofreading the manuscript. This research has been supported by the Federal 
BMBF under grant 03-BU7TM2-8. 

References 

1. veDYNA User's Guide. TESIS DYNAware GmbH, München, Germany (1997) 
2. Barclay, A., Gill, P.E., Rosen, J.B.: SQP methods and their application to 

numerical optimal control. In: W.H. Schmidt et al. (eds.): Variational Calculus, 
Optimal Control and Application, Int. Series of Numerical Mathematics 124, 
Birkhäuser, Basel (1998) 207-222 

3. Betts, J.T.: Survey of numerical methods for trajectory optimization. AIAA J. 
Guidance, Control, and Dynamics 21, 2 (1998) 193-207 

4. Butz, T., von Stryk, 0., Wolter, T.-M.: A parallel optimization scheme for pa­
rameter estimation in motor vehicle dynamics. In: Proc. European Conference 
on Parallel Computing 2000, München, August 29-31 (to appear) 

5. Chucholowski, C., Vögel, M., von Stryk, 0., Wolter, T.-M.: Real time simu­
lation and online control for virtual test drives of cars. In: H.-J. Bungartz, F. 
Durst, C. Zenger (eds.): High Performance Scientific and Engineering Com­
puting, Lecture Notes in Computational Science and Engineering 8, Springer­
Verlag, Berlin (1999) 157-166 

6. Donges, E.: Two Ievel model of driversteering behavior. Human Factors 20, 6 
(1978) 691-707 



18 M. Vögel, 0. von Stryk, R.. ßulirsch, C. Chucholowski, T.-M. Wolter 

+ 

Fig. 8. Virtual test drive along the BMW test trad< at As(:hheim induding a short 
icy set:tion of the road surfa<:e. The red line denotes the nea.r optimal setpoint 
trajectory for the vehide's center of gravity on a dry road. 

7. Donges, E., Naab, K.: Regelsysteme zur Fahr:t:eugführung und -Stabilisierung 
in der Automobiltechnik at- Automatisierungstechnik 44, 5 (1996) 226-236 

8. Freund, E.: Fast nonlinear control with a.rbitra.ry pole-plat:ement for industrial 
robots a.nd manipulators. Inte.rn. J. Rob. Res. 1, 1 (1982) 65-78 

9. Gill, P.E., Murray, W., Saunders, M.A.: S~OPT: An SQP algorithm for large­
scale constrained optimization. R.eport NA 97-2, Department of Mathematics, 
University of California, Sa.n Diego (1997) 

10. Gill, P.E., Murray, W., Sa.unde.rs, M.A., Wright, M.H.: User's guide for NPSOL 
(Version 5.0): A Fortran package for nonlinear programming. ~umerical Anal­
ysis R.eport 98-2, Department of Mathematics, University of California, San 
Diego, 1998. 



An Optimal Control Approach To Real-Time Vehide Guidance 19 

11. Gip~er, lVI.: D~S-Tire- ein dynami::~che::~, räumliche::~, nichtlineare::~ Reifenmod­
elL In: Berechnung im Automobil bau, VDI-Bericht Nr. 650, Düsseldorf: VDI­
Verlag (1987) 115-135 

12. Kleinman, D.L.; Baron, S.; Levison, \V.H.: An optimal control model of human 
re~pon~e, part I: theory and vo..lidation. Automatica 6,3 (1970) 357-369 

13. Lim, E. H. M., Hedrick, J. K.: Lateral and longitudinal vehide control coupling 
for automated vehicle operation. Proc. American Control Conf., San Diego, CA 
(June 1999) 3676-3680 

14. I\·fayr, R.: Verfahren zur Bahnfolgeregelung für ein automatisch geführtes 
Fahrzeug. Di::~::~ertation, Univer::~ität Dortmund (1991). 

15. Mitschke, M.: Dynamik der Kraftfahrzeuge. Band C: Fahrverhalten. 3. Aufl., 
Springer-Verlag (1994) 

16. Pesch, H.J.: A practical guide to the solution of real-life optimal control prob­
lern,. Control and Cybernetic" 23 (1994) 7-60 

17. Popp, K., Schiehlen, VV.: Fahrzeugdynamik Stuttgart: Teubner (1993) 
18. Rieckert, P.; Schunck, T.E.: Zur Fahrmechanik des gummibereiften Kraft-

fahrzeugs. Ing.-Archiv, Bd. XI (1940) 210-224 
19. Rill, G.: Simulation von Kraftfahrzeugen. Braunschweig: Vieweg 1994 
20. Schiehlen, \V.: Multibody Sy::~tem::; Handbook. Springer-Verlag, ßerlin (1990) 
21. Simeon, ll.: MllSPACK- Numerical integration ::~oftware for con::~trained me­

chanical motion. Surv. Math. Ind. 5 (1995) 169-202 
22. Vögel, M.: Fahrbahnmodeliierung und Kursregelung fiir ein echtzeitfri.higes 

Fahrdynamikprogramm. Diplomarbeit, Zentrum Mathematik, Technische Uni­
ver,ität München (1997) 

23. Vögel, M., von Stryk, 0., Bulirsch, R., Chucholowski, C.: Vehicle Dynamics 
Simulation. In: H.-C. Hege, K. Polthier (eds.): VideoMath Festival at ICM '98, 
Berlin. A Collection of :rv1athematical Videos (Springer-Verlag, 1998) 

24. von Stryk, 0.: Numeri~che Lö::~ung optimaler Steuerung::~probleme: Di::~kreti­

::~ierung, Parameteroptimierung und Berechnung der adjungierten Variablen. 
Fortschritt-Berichte VDI, Reihe 8, Nr. 441, VDI-Verlag, Düsseldorf (1995) 

25. von Stryk, 0.: User's Guide for DIRCOL Version 2.1: A direct collocw­
tion method for the numerical solution of optimal control problems. Report, 
Lehr::~tuhl M2 Höhere Mathematik und ~umeri::~che Mathematik, Techni::~che 
Universität München (November 1999) 

26. von Stryk, 0., Bulirsch, R.: Direct and indirect methods for trajectory opti­
mization. Annals of Operations Research 37 {1992) 357-373 

27. Zomotor, A.: Fahnverktechnik: Fahrverhalten. 2. Aufl. \Vürzburg: Vogel (1991) 




