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ABSTRACT

Numerical simulation and optimization of gaits for quadruped robots based on nonlinear multi-
body dynamics models of legged locomotion have made progress recently. A fully three-
dimensional dynamical model of Sony’s four-legged robot is used to state an optimal control
problem for a symmetric, dynamically stable gait. The optimal control problem is solved by
a sparse direct collocation method. Numerical problems related to the high-index differential
algebraic equations of motion are avoided by substituting the differential algebraic equations
by an equivalent set of reduced dynamics ordinary differential equations. Numerical and exper-
imental results validate the model and the methods used for gait generation.

1 INTRODUCTION

Generating dynamically stable symmetric gaits for legged robots is still a challenge. For a given
gait pattern, landing time and point of each leg are prescribed, i.e. they depend on parameters.
The trajectory of each joint between lift-off and landing is not uniquely determined. To over-
come this problem of redundancy, the problem of finding a dynamically stable symmetric gait
is formulated as an optimal control problem, involving the robot’s dynamics and several addi-
tional constraints. Efficient methods are needed for both the dynamics and the resulting optimal
control problem. The resulting trajectories are implemented on the robot using the given tra-
jectory tracking control on joint level. Therefore, the optimal control problem formulation for
the computation of reference trajectories for a dynamic gait must account for possible inaccu-
racies in the dynamic model and parameters as well as for external disturbances. All aspects of
generating a reference trajectory by dynamic optimization, that can be implemented on the real
robot, are presented here for Sony’s four-legged robot AIBO (www.aibo.com).

The organization of the paper is as follows. Section 2 describes the robot dynamics model and
the algorithm for evaluating the dynamics. The formulation of the optimal control problem and
the numerical method used for solving it are presented in Section 3. Numerical and experimental
results are given in Section 4.
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2 EFFICIENT DYNAMIC MODELING

2.1 SONY’S FOUR-LEGGED ROBOT
In this paper we will concentrate on finding dynamically stable gaits for Sony’s AIBO (Fig-
ure 1). Nevertheless, the methods presented here may be used for other legged robots, too. The
kinematical structure of the robot consists of several actuated joints as described in the next
subsection. Originally designed as a toy and entertainment robot, there also exist worldwide
competitions for teams of autonomous soccer playing robots (www.RoboCup.org). For this ap-
plication fast and stable gaits are mandatory. The robot contains an onboard CPU of 196 MHz,
which in autonomous soccer competitions mainly must be used for image processing using the
integrated CCD-camera and image understanding (localisation of the robot itself, of team mates,
opponents, goals and the ball). For RoboCup, a software architecture based on Sony’s real-time
operating system AperiOS and Sony’s OPEN-R-library has been developed [2], which gives a
comfortable way of implementing off-line computed joint trajectories in the robot and receiving
the resulting sensor data for joint angles during execution.
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Figure 1: The four-legged Sony robot (left) and the kinematical structure of one leg (right).

2.2 Dynamic Model
Our model of Sony’s four-legged robot consists of a 9-link tree-structured multibody system
(MBS) with a central torso attached to a relatively heavy head at a fixed position and four two-
link legs. Each leg contains a 2 DoF universal joint in the hip and a 1 DoF rotational joint in the
knee. A minimum set of coordinates consists of 18 position and 18 velocity states �q�t�� q̇�t��
which include a three-parameter Euler angle vector for the orientation, a three-dimensional
global position vector, and their time derivatives for the torso, and additionally three angles and
their velocities for each leg. The 12 control variables u�t� correspond to the applied torques in
the legs. The required kinematical and kinetical data for each link (length, mass, center of mass,
moments of inertia) have been provided by Sony to the authors.

2.3 Motor Characteristics Model
Motor restrictions are of essential importance when calculating optimal gait trajectories. As no
further details are available for this robot, motor characteristics have to be estimated. As a first



step, maximum angular velocities qi�max and maximum torques of each of the joints ui�max have
been estimated by an iterative comparison of calculated trajectories and sensor data for each
joint: Estimates of the maximum angular velocities and maximum torques used as constraints
in the optimal control problem described in Section 3 for computing reference trajectories for a
dynamic gait have been reduced successively until the observed error between calculated joint
angle trajectories and measured joint angle trajectories becomes small. As already mentioned
in the experiments set-point trajectory tracking control in each joint was used as provided by
the manufacturer of the robot.

This procedure ensures that the calculated trajectories can be implemented on the real robot.
However, by the restrictions obtained in this manner are likely to be too restrictive. A more
detailed model of the joint actuators will most likely lead to better gait trajectories in simulation
and experiment.

2.4 Articulated Body Algorithm
Various approaches exist for dealing with multibody systems’ equations. We chose articulated
body algorithm (ABA) due to its several advantages over other methods like symbolic methods,
composite rigid body algorithms or natural coordinates. ABA is a numerical, recursive, order N
algorithm (where N is the number of links in the multibody system). It shows a high modularity
with respect to exchange of submodels within the dynamic structure, useful when considering
different actuators or limb complexity, and varying contact situations of different feet having
contact with ground. It is useful to be able to work with the same model, even if parts of the
model are substituted by improved models. Also a model that may be used in all different situa-
tion when considering the robot is desired: ABA may be used in off-line trajectory calculation,
estimation of parameters in the model and model-based on-line controllers as well.

The basic equations of motion are those for a rigid, multibody system experiencing contact
forces

q̈ � M �q��1
�

Bu�C �q� q̇��G�q�� Jc�q�T fc

�

0 � gc�q�
(2.1)

where N equals the number of links in the system, m equals the number of actively controlled
joints, M � �

N�N is the square, positive-definite mass-inertia matrix, C � �
N contains the

Coriolis and centrifugal forces, G � �N the gravitational forces, and u�t� � �m are the control
input functions which are mapped with the constant matrix B � �N�m to the actively controlled
joints. The ground contact constraints gc � �

nc represent holonomic constraints on the system
from which the constraint Jacobian may be obtained Jc �

∂gc
∂q � �

nc�N , while fc � �
nc is the

ground constraint force. q, q̇, and q̈ are the generalized position, velocity and acceleration
vectors respectively.

The articulated body algorithm exploits the tree structure of the multibody system by calculating
dynamics in several sweeps from base to tip and tip to base. Three sweeps are needed for eval-
uating forward dynamics, two additional sweeps treat contact situations. The transfer operators
from one link to the subsequent resp. preceding link have equivalents in Kalman Filter theory,
making the algorithm interesting from a mathematical point of view. Details may be found
in [5]. We use the implementation SOAFOR (Spatial Operator Algebra Fortran routines [5]) of
the articulated body algorithm.



2.5 Reduced Dynamics Algorithm
The numerical difficulties associated with the system of differential algebraic equations of high
index, resulting from the general modeling approach of multibody dynamics and algebraic equa-
tions for contact, can be avoided. This is done by a reduced dynamics method, treating explicitly
only the independent states qI , which are global orientation and position and states related to
legs in contact with ground, and using inverse kinematics to determine the dependent states qD

of the other legs:

qI :� global orientation, position; swing leg(s) states
qD :� contact leg(s) states

qI may be computed from all states q using a constant mapping Z, i.e. qI � Zq. The solution
of the reduced dynamics

q̈I � ZM �q̃��1 �Bu�C
�
q̃�

˙̃q
�
�G �q̃�� JT

c fc
�

�

where q̃ consists of the independent states and of the dependent states determined from inverse
kinematics, then may be proven to be the solution of the initial system of differential algebraic
equations (2.1) [5]. Inverse kinematics for each leg of the robot here has a unique solution
if agreements concerning the bending of joints are made. This makes it possible to deal with
reduced dynamics algorithms. As a result, 24 instead of 36 states can describe the model and a
set of ordinary differential equations only instead of a system of differential algebraic equations
may be considered.

3 OPTIMAL CONTROL

3.1 Optimal Control Problem
The problem of finding a symmetric gait for the robot is stated as an optimal control problem.
Different gait patterns such as walk, trot, rack, canter and rotary or transverse gallop differ in the
duty factor of each foot, i.e. the fraction of a total stride cycle during which the foot is in contact
with ground, and relative phases of feet, i.e. the order and time displacement of feet reaching
ground [1]. However there is no essential difference in the modeling and optimization approach
presented in this paper when applied to different gait patterns. We consider the optimal control
problem for a trot, which is characterized by a duty factor of 0�5 and diagonal legs lifting off and
landing synchronously. The trot gait has a special property of symmetry (which, for example,
gallop has not) that enables us to reduce the problem formulation to a half stride, consisting of
one phase. For more complicated gait patterns, more phases may be needed: During one phase
contact situation may not change for sake of having to deal with a well defined set of considered
states (states related to legs with feet in contact with ground are not considered when using the
reduced dynamics approach). Since additional conditions on change of phases are similar to
those on the boundary, it is easy to transfer the following considerations to other gait patterns.
The optimal control problem is stated as follows:

minJ �q� q̇�u� t f � subject to minimize the merit function J subject to

M q̈ � Bu�C �q� q̇��G �q�� JT
c fc� system of MBS ODE

gc �q� � 0 contact algebraic conditions

b
�
q�t0��q�t f �� t0� t f

�
� 0 boundary conditions

n�q�u�� 0 nonlinear inequality constraints,

qmin � q� qmax� umin � u� umax box constraints on state and control variables.



Note that the optimal control problem in this notation contains the differential algebraic equa-
tion of multibody system differential equations and contact algebraic equations. However, when
solving the optimal control problem, this system of differential algebraic equations can be re-
placed by the reduced dynamics equations.

Useful merit functions are, for example, time t f , energy
�
∑m

i�1 u2
i , or combinations of both [7].

Boundary conditions contain conditions for

� symmetry resp. anti-symmetry of states,

� foot placement, i.e. conditions that force the feet to be placed on desired positions (which
may depend on parameters and therefore may also be subject to the optimization),

� contact forces at the end of a stance phase, that allow the foot to lift off.

Nonlinear inequality constraints are:

� Hips of legs in contact with the ground must stay within a maximum radius of the leg,
so that the inverse kinematics solution required for reduced dynamics has a well-defined
solution.

� The swing feet must move above a certain curve above ground, for example a proper sine
curve. This property increases stability by avoiding contact with the ground resulting
from deflexions of bodies and joints, and which could lead to stumbling of the robot.

� Slipping is avoided by limiting the horizontal contact forces relative to the vertical contact
forces.

� Vertical contact forces must be positive, i.e. the robot may only push to ground but may
not pull from ground.

� Further constraints to be considered in the problem formulation are detailed motor charac-
teristics. By now the box constraints for minimal and maximal values of angular velocities
and torques only give a rough estimate of the real actuator data.

Note that stability is not enforced explicitly, while of course implicitly it is ensured by period-
icity of the generated gait and may be checked by one of the criteria given in [7]. More details
on each of the constraints may be found in [3], where the constraints are stated for a humanoid
robot.

3.2 Solving the Optimal Control Problem
For solving the optimal control problem, the method DIRCOL [8] is used. The states and
controls are approximated by piecewise cubic resp. piecewise linear polynomials on a discrete
and successively refinable time grid. The optimal control problem is thereby transcribed into a
nonlinear program with the coefficients of the polynomials as variables, which may be solved
by a sequential quadratic and, due to the special structure of the variables, sparse programming
method [4]. For more details we refer to [6, 8].



Figure 2: Four scenes from an animation of a computed trot gait.

4 RESULTS

4.1 Numerical Results
Here, we present numerical results for generating an optimal trajectory for a trot gait. Note that
although the states of the optimal control problem include velocities and orientation of the main
body, those states are not used for implementation. For the calculations, of course, these states
are necessary. The interesting part of the solution is the set of twelve trajectories, one for each of
the robot’s leg joints. The solution may be visualised not only by plotting the trajectories (as in
Figure 3, where the calculated trajectories are plotted in comparison to the sensor data received
when implementing the trajectory), but also by animating the robot for each of the calculated
states. In Figure 2 four single images of a computed trot are shown, each for a different contact
situation.

4.2 Experimental Results
To implement the computed joint position trajectories on the robot, a decentralized trajectory
tracking control scheme is used which utilizes the available servo motor control (e.g., PD or
PID) of each actuated joint of the robot. Involving the data from joint angle sensors, the differ-
ence qe between actual joint angle qa and reference joint angle qr of each joint can be measured.
An additional error compensation angle qd is calculated, e.g., in case of a PID controller, by
qd�t� � kpqe�t�� ki

�
qe�t�dt � kd

∂qe
∂t �t� involving the three PID-controller constants kp�ki�kd .

This angle is added to the actual angle to get a new wanted angle qr � qa� qd� as shown in
Figure 4 for all joints of one leg.

The first experiments for a trot were not quite successful because the robot’s feet slipped on
ground and the measured angle trajectories did not match the calculated ones, despite a well
working PID-controller scheme. The second problem was solved by adjusting maximum ve-
locities and torques in the optimal control problem as described in Section 3. Sensor data now
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Figure 3: The experimentally measured joint angle trajectories (dotted lines; joint an-
gle [rad] versus time [s]) for the first hip joints and the knee joints match the computed
reference trajectories (solid lines) quite well after considering improved estimates for max-
imum torque and velocity constraints. For the second hip joints, the constraints have not
yet been adapted resulting in the depicted difference. The joint trajectories are shown for
about two and half strides of the trot gait.

very well match the calculated trajectories for each of the twelve actuated joints (cf. Figure 3).
Slipping was avoided by adding an additional constraint on the horizontal contact forces, cf.
Section 3. No further control scheme for ensuring stability of the system is used or available.
Therefore, the calculated reference trajectories and the system itself have to be robust against
errors in the model concerning deflexions of bodies and joints. For the trajectories this is con-
sidered by involving the constraints on the swing height. A major practical problem for this
approach results from the construction of the robot’s feet and the not actuated small tip body,
which makes it difficult to guarantee well-defined contact situations. This problem may be cir-
cumvented by a slight hardware modification if ”shoes” are attached yielding good experimental
results. Proper shoes also have a good effect on slipping, which may be reduced by choosing
appropriate materials for the shoes, thus allowing faster movements. Without proper shoes and
using the conservative velocity and torque restrictions in dynamic optimization, a maximum
speed of 18 cm/s is achieved in simulation and experiment for the trot gait.
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Figure 4: Decentralized PID-control scheme for the three joints of one leg.

5 CONCLUSION AND OUTLOOK

Based on first experimental results, the underlying optimal control problem has been refined by
additional conditions to avoid slipping, and the dynamic robot model has been refined by a more
detailed motor model. Having detailed and accurate models also of the actuators, even faster
gaits than trot may be implemented, e.g. gallop. Using the described methods for simulation
and optimization of refined dynamic robot models a whole suite of different quadruped gaits
may be realized quickly.

Future work will include the refinement of motor characteristics using experiments and inverse
dynamics algorithms, the investigation of other gaits than trot, and walking on underarms in-
stead of the feet for the front legs which reduces the possibility of falling down in case of a
lateral shock through collision with another robot.
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