
�

from SIAM News, Volume 33, Number 4

Parallel Parameter Estimation in
Full Motor Vehicle Dynamics
By Torsten Butz, Oskar von Stryk, Martin Vögel, Thieß-Magnus Wolter, and Cornelius Chucholowski

The numerical simulation of vehicle dynamics plays an important role in the development of new motor vehicles. With numerical
simulations, the road performance and handling properties of a new vehicle can be investigated before prototypes are built. In
addition to the reduced need for physical prototyping, real-time vehicle dynamics simulations within a hardware-in-the-loop test-
bench allow the testing of control units important to driving performance—such as anti-lock braking systems and electronic
stability programs—without endangering a test driver or prototype car (see Figure 1).

The development of intricate electronic vehicle control devices requires an accurate match between
the performance of the virtual car and the actual vehicle behavior. A detailed and comprehensive
vehicle model is needed to allow for the nonlinear kinematics of wheel and axle, and to depict the drive
train, steering mechanism, and tire dynamics. The vehicle model described in this article consists of
a suitable multibody system that includes force elements and kinematic connections, in addition to a
sophisticated tire model.

General-purpose methods for modeling multi-body systems use the descriptor form for the equations
of motion, leading to a large-scale system of differential–algebraic equations (DAEs) with index 3
[13]. For DAE systems, particular numerical techniques must be applied to prevent “drift-off” from
the algebraic constraints. We use a tailored model description that yields a system of ordinary
differential equations (ODEs).

Since not all the coefficients of the
differential equations are readily available, a procedure for calibrat-
ing the parameters of the virtual prototype is needed. For use in a test-
bench, the desired model parameters need to be adjusted as the
testing proceeds. This identification process can be achieved effi-
ciently by means of mathematical optimization algorithms. In prac-
tice, the required first-order derivative information can be obtained
only from finite-difference approximations. Parallel processing of
the objective function evaluations can lead to considerable reduc-
tions in the computational time for the optimization. Vehicle dynam-
ics programs are usually developed and implemented by automotive
suppliers, and a low-cost parallel computing platform is therefore
desirable. The approach presented here makes use of a heteroge-
neous network of PCs to perform fast and reliable parameter estima-
tion for dynamic vehicle models.

Numerical Simulation of Full-car Dynamics

In the work described here we used vedyna [1], a vehicle dynamics
program developed and distributed commercially by TESIS DYNAware. The vedyna simulation results show good agreement with
real vehicle behavior. Simulations with time-steps in the millisecond range can be carried out in real time with PC hardware. When
implemented on Compaq Alpha multiprocessor boards (as offered by dSPACE from Paderborn, Germany), real-time performance
can be achieved for time-steps of less than 0.5 millisecond.

The vehicle model in vedyna consists of a system of nine rigid bodies comprising the vehicle body, axle suspensions, and wheels;
additional partial models depict the characteristics of the drive train, steering mechanism, and tires (see Figure 2). Suitable
minimum coordinates and generalized velocities are used to describe the spatial state of the vehicle and its components [12]. The
equations of motion, derived from Jourdain’s principle, are:

(1)

(2)

(3)

(4)

APPLICATIONS ON
A D VA N C E D
A R C H I T E C T U R E
C O M P U T E R S
Greg Astfalk, Editor

Input

Output

Loop End Point

Online-

Animation

"Cockpit"
(for simulation

Loop Entry Point

control)

(incl. course,
environment

etc.)

("driver")

Simulation
("vehicle")

Full Car Dynamics

converter

hardware-in-the-loop
analog/digital-

braking system

brake pedal

Cruise Control

control unit
ABS

Figure 1. Hardware-in-the-loop setup for a braking system with
an ABS control unit linked to the real-time simulation of full
vehicle dynamics.

ẏ K y zBV BV BV BV= ()−1

M z Q y zDT DT DT DT DT˙ ,= ()

ẏ V zDT DT DT=

M z

Q y z y z y z

BV BV

BV BV BV ST ST DT DT

˙

, , , , ,

=

()

�

Figure 2. Components of the full vehicle
dynamics model in vedyna.

(5)

(6)

(7)

The vehicle dynamics is fully characterized by a system of 24 first-order ODEs, (1) and (2), comprising the vehicle body and
axles. Eight ODEs (7) for the spring and damper elements describe the deviations of the tires. The dynamic model of the drive train
consists of 19 ODEs, (3) and (4), including four equations governing the angular wheel speeds. Five additional ODEs, (5) and (6),
account for the dynamics of the steering system. Couplings between the separate systems occur via the generalized forces and
torques QBV.

Owing to the stiffness of this system of ODEs, numerical integration is carried out via a semi-implicit one-step Euler scheme with
a constant time-step. This tailored integration method allows a stable solution for time-steps in the range of several milliseconds.
To allow realistic implementations of virtual test-drives in the simulation, we developed models for the driver and the road [4].
Animated results for various vehicle maneuvers, including the full brake maneuver described later in this article, are available at
http://www.siam.org/siamnews/05-00/animations.

Numerical Estimation of Vehicle Parameters

The system of 56 highly nonlinear ODEs describing the vehicle dynamics, equations (1)–(7), can be summarized as:

(8)

with suitable initial values

 x(t0) = x0 (9)

In addition to the vehicle’s state variables x(t) � IRnx, which include the minimum coordinates and generalized velocities, the
full-vehicle performance is also determined by a set of model parameters p � IRnp. All the model parameters are constant for all
times t.

For adjustments to the mathematical model, observations of the real vehicle behavior are used to determine suitable estimates
for the model parameters. A physical prototype of the vehicle is used to conduct driving tests, during which we record measurement
values,

�ij = xi(tj) + �ij i � Ij , j = 1, . . . , nt (10)

M z Q y zST ST ST ST ST˙ ,= ()
ẏ V zST ST ST=

D y F C yT stat T˙ = −

˙ , ,x t g x t p t() = ()()

�

of selected vehicle state variables xi, i � Ij at nt measurement times tj. Here, Ij � {1,...,nx} denotes the subset of vehicle states that are
available, or desired, at time tj. The observed quantities are often subject to measurement errors �ij ��IR.

Consequently, we estimate the optimal values of the parameters p* by minimizing the difference between the observed values
�ij and the corresponding results obtained by numerical integration. To do so, we solve the nonlinear least-squares problem

(11)

Here, x(t, p) is the numerical solution of the model equations (8) for the parameter set p. Each evaluation of the objective function
requires the integration of the initial value problem (8)–(9) for the specific parameter values. The optimal solution often needs to
satisfy additional box constraints,

li � pi � ui i = 1, . . . , np (12)

on the parameter range. These constraints ensure optimization results compatible with the real vehicle properties.
An iterative algorithm is used, starting from a feasible initial guess p0 and gradually improving the parameter values,

 pk+1 = pk + �k d
k k = 0, 1, 2, . . . (13)

which are intended to converge to an optimal solution. Here, dk � IRnp and �k > 0 denote a suitable descent direction and a positive step-
size, respectively.

The solution of the present parameter estimation problem—the box-constrained nonlinear least-squares problem (11)–(12)—
is achieved with numerical algorithms that apply to both unconstrained and constrained optimization. For the unconstrained
problem, we use the Gauss–Newton method, implemented in the NLSCON code [5, 11], and the Levenberg–Marquardt algorithm,
in the LMDER code [10]. Each of these techniques determines a sequence of improved parameter estimates by solving an
approximate linear least-squares problem at every iteration.

For the box-constrained optimization, we use the sequential quadratic programming code NLSSOL [7, 8], which exploits the
specific least-squares structure of the objective function. Moreover, the optimization is carried out with the implicit filtering code
IFFCO [9], a projected quasi-Newton method designed for the solution of noisy minimization problems. For reasons of efficiency,
we have implemented algorithms that rely only on the first-order derivatives of the objective function with respect to the model
parameters. Additional speedup is achieved with the parallel approach, as described in the following section.

Parallel Optimization

The parameter estimation problem is solved in a framework that couples the optimization algorithms with the vehicle dynamics
simulation performed by vedyna [3].

Because of the complexity of the vehicle model, the required first-order derivatives of the objective function r(p) are generated
by finite differences. For the optimization with NLSCON, LMDER, and NLSSOL, the partial derivatives �i f(p) with respect to
the ith parameter estimate are approximated by the one-sided differences

 (14)

depending on the feasibility of p + hei or p – hei. Here, ei � IRnp denotes the ith canonical unit vector, and h > 0 is a suitable
finite-difference increment. The implicit filtering code IFFCO makes use of central-difference approximations,

(15)

whenever possible. Therefore, computation of the objective function gradient 	r(p) generally requires np to 2 np additional
evaluations of the objective function, depending on whether one-sided or central differences are used. The numerical accuracy of
the objective function value evaluations is limited by peculiarities in the integration scheme for the equations of motion and by
simplifications in the vehicle model of vedyna. Consequently, special care must be taken in the choice of the finite-difference
increments [8]. It is worth mentioning that the tailored modeling and simulation approach prohibits the application of automatic
differentiation or internal numerical differentiation techniques [2, 3].

Most of the time required for the identification process is spent on numerical integration of the model equations (8) and (9) for
the varying sets of parameters. Considerable savings in computational time can be achieved if the objective function evaluations
are performed in parallel on a cluster of computers. The necessary communication between processes on different machines across
the network is handled by remote procedure calls (RPCs). We use the ONC RPC library from Sun Microsystems, ported to
Microsoft Windows [6].

For our parallel approach, the actual optimization is performed by the client process. When the objective function derivatives

minimize
IRp

ij i j
i Ij

n

np

j

t

r p f p

x t p

∈

∈=

() = ()

= − ()()∑∑

:

: ,

1

2

1

2

2

2

1

2

η

∂ ()() =
±() − ()

±±i h

if p
f p he f p

h

∂ ()() =
+() − −()

i h

i if p
f p he f p he

h2 2

�

are needed, the remote server routines are called asynchronously, i.e., the additional objective function evaluations for the
arguments p ± hei, i = 1, . . . , np, are carried out simultaneously by all available server processes. For the central-difference
computations, one of these evaluations is performed by the client program since the objective value for the current iterate p is not
required. The UDP transport protocol is used for the exchange of data between client and server processes, because only func-
tion arguments of moderate size need to be communicated.

Optimization Results

Our program was used to estimate the brake friction coefficients for a commercial passenger car in vedyna [3]. With only a limited
number of estimated vehicle parameters, we used appropriate parameter sets, validated by TESIS DYNAware for the same vehicle
type, for the remaining coefficients of the vehicle model.

The test data consisted of measurement values recorded during a full brake maneuver. The vehicle started at rest and accelerated
to the experimentally observed speed of approximately 70 km/hour over a period of 22 seconds before braking. The recorded state
variables for the vehicle consisted of the brake pressures at the four wheels (see Figure 3) and the corresponding rotational wheel
speeds. All quantities were measured at intervals of 6
 10–3 seconds at 21.6� t � 24.6. The maneuvering data for the vehicle
were provided by an automotive supplier.

The estimated brake friction coefficients are the ratios for generated braking moments transmitted to the four wheels. Because
only disc brake models are used in vedyna, regardless of the actual brake mechanism, these coefficients reflect adjustments to the
vehicle model rather than estimates of true physical properties.

We obtained optimal parameter estimates by performing the optimization on a heterogeneous Windows NT 4.0 and Windows
98 network at TESIS DYNAware and TESIS WAMware in München. Suitable initial guesses,

 p0 = (0.33, 0.33, 0.34, 0.34)T (16)

were chosen from the default parameter values for the vehicle model. The initial parameter estimates (16) refer to the friction
coefficients for the left and right wheels, front and rear, respectively. The associated least-squares residual, indicating the quality
of the parameter values, is r(p0) = 53289.3.

The optimization produced a minimum residual r(p*) = 2603.2 for the parameter values

p* = (0.1954, 0.1772, 0.1672, 0.1669) T (17)

which were computed by the implicit filtering code IFFCO. The simulation results are compared with experimental measurements
of the rotational wheel speeds in Figure 4. The erratic deviations seen in Figure 4(b) must be attributed to measurement errors. When
these deviations are neglected, good agreement is achieved between the model and the experimental measurements. The deviations
between the estimates (17) for the left and right front wheels can be attributed to measurement errors in the input brake pressures
and to differences in wear for the respective braking devices.

We performed a statistical analysis to assess the quality of the parameter estimates. By linearizing the least-squares function f(p)
about the optimal solution, we obtained the objective function’s Jacobian J = � f(p*)/�p and the approximate variance–covariance
matrix �2 (J T J)–1. Here, � is an estimate of
the standard deviation in the measure-
ment errors �ij. We also computed ap-
proximate 95%-confidence intervals:
[0.1942,0.1967], [0.1762, 0.1782],
[0.1664,0.1680], and [0.1662, 0.1677],
respectively. Despite their limited reli-
ability in the nonlinear least-squares case,
the small interval widths indicate that the
computed values of the desired friction
coefficients are acceptable.

For comparison, the numerical optimi-
zation was also carried out sequentially,
i.e., the objective function evaluations
required for computation of the finite
differences were also performed by the
client process. In this case a Dell 400-
MHz PC was used. The processor time
required for evaluation of the objective
function was, on average, 6.1 seconds.

In the parallel approach, the client pro-
cess was executed on the same machine.
The four objective function evaluations
for the forward-difference computations

Figure 3. Input brake pressures at the left
front (a, top) and rear (b, bottom) wheels.

Figure 4. Rotational speeds of the left
front (a, top) and rear (b, bottom) wheels.

0

10

20

30

40

50

60

22 22.5 23 23.5 24 24.5

ro
ta

tio
na

l w
he

el
 s

pe
ed

 [r
ad

/s
]

time [s]

measured values
optimal solution

0

10

20

30

40

50

60

22 22.5 23 23.5 24 24.5

ro
ta

tio
na

l w
he

el
 s

pe
ed

 [r
ad

/s
]

time [s]

measured values
optimal solution

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

22 22.5 23 23.5 24 24.5

br
ak

e
pr

es
su

re
 [P

a]

time [s]

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

22 22.5 23 23.5 24 24.5

br
ak

e
pr

es
su

re
 [P

a]

time [s]

�

in NLSCON, LMDER, and NLSSOL were performed on two Sie-mens 450-
MHz PCs and two Dell 333-MHz notebooks. The processor times for the
objective function evaluations were 5.5 seconds and 6.5 seconds, respectively.
The three additional parallel evaluations for the central-difference computa-
tions in IFFCO were done on a Dell 300-MHz notebook and two Siemens PCs
with 300-MHz and 266-MHz CPUs. The processor times were 8.2 seconds, 7.3
seconds, and 8.8 seconds, respectively. The time for communication between
the client and server processes is negligible compared with the computational
time required for the optimization process and the objective function evalua-
tions.

Table 1 compares the different optimization codes [3], giving the least-
squares residual r(p*) for the respective solutions, and the computational times
tseq and tpar for the sequential and parallel executions of the optimization. The
ratios of these CPU times, i.e., the parallel speedup achieved, are shown in the last column. Also listed are the numbers of objective
function evaluations performed during the entire optimization (nseq) and by the client process in the parallel framework (npar).

For this problem, all the algorithms produced reasonably small residuals. Similarly, the parameter estimates are bounded in the
confidence intervals. Parallel execution of the finite-difference computations reduced the computational time for all algorithms by
more than a factor of two. The speedup for the sequential quadratic programming code NLSSOL was nearly optimal. The time for
the implicit filtering code was reduced by a factor of approximately three.

Conclusions

To calibrate the vehicle model of a commercial vehicle dynamics program, we developed a parameter estimation tool that relies
on observations obtained from test drives. The associated nonlinear least-squares problem can be solved by means of mathematical
optimization algorithms, most of which make use of gradient information. Because of the complexity of the vehicle dynamics
program, only the objective function derivatives can be approximated with finite differences. Use of this approach, however, results
in significant savings in computational time when the additionally required objective evaluations are performed in parallel. The
low-cost parallel computing platform used, consisting of a heterogeneous cluster of PCs, is well suited for the needs of the
automotive industry and suppliers applying vehicle dynamics simulations.

References

[1] vedyna User’s Guide, TESIS DYNAware, München, Germany, 1997.
[2] H.G. Bock, Recent advances in parameter identification techniques for ODE, in P. Deuflhard and E. Hairer (eds.), Numerical Treatment

of Inverse Problems in Differential and Integral Equations, Progress in Scientific Computing, 2, Birkhäuser, Boston, 1983, 95–121.
[3] T. Butz, Parameter Identification in Vehicle Dynamics, Diploma Thesis, Zentrum Mathematik, Tech-nische Universität München, 1999.
[4] C. Chucholowski, M. Vögel, O. von Stryk, and T.-M. Wolter, Real-time simulation and online control for virtual test drives of cars, in

H.-J. Bungartz, F. Durst, and C. Zenger (eds.), High Performance Scientific and Engineering Computing, Lecture Notes in Computational Science
and Engineering, 8, Springer-Verlag, Berlin, 1999, 157–166.

[5] P. Deuflhard and V. Apostolescu, An underrelaxed Gauss–Newton method for equality-constrained nonlinear least squares problems, in
J. Stoer (ed.), Optimization Techniques, Lecture Notes in Control and Information Sciences, 7, Springer-Verlag, Berlin, 1978, 22–32.

[6] M. Gergeleit, ONC RPC for Windows NT Homepage, http://www.dcs.qmw.ac.uk/~williams/nisgina-current/src/rpc110/oncrpc.htm,
1996.

[7] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright, User’s guide for NPSOL (Version 5.0): A Fortran package for nonlinear
programming, Numerical Analysis Report 98–2, Department of Mathematics, University of California, San Diego, 1998.

[8] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic Press, London and New York, 1981.
[9] P. Gilmore and C.T. Kelley, An implicit filtering algorithm for optimization of functions with many local minima, SIAM J. Optimization,

5 (2), 1995, 269–285.
[10] J.J. Moré, The Levenberg–Marquardt algorithm: Implementation and theory, in A. Dold and B. Eckmann (eds.), Numerical Analysis,

Lecture Notes in Mathematics, 630, Springer-Verlag, 1978, 105–116.
[11] U. Nowak and L. Weimann, A family of Newton codes for systems of highly nonlinear equations, Technical Report TR 91–10, ZIB, Berlin,

1991.
[12] G. Rill, Simulation von Kraft-fahrzeugen, Vieweg, Braunschweig, Germany, 1994.
[13] W. Schiehlen, Multibody Systems Handbook, Springer-Verlag, Berlin, 1990.

Torsten Butz (butz@ma.tum.de) and Martin Vögel (voegel@ma.tum.de) are research scientists at the Chair M2 for Numerical Analysis of the
Technische Universität München, Germany. Oskar von Stryk (stryk@ma.tum.de) is an assistant professor in the Department of Mathematics at the
Technische Universität München. Thieß-Magnus Wolter (t.wolter@tesis.de) is a project engineer at TESIS DYNAware, München. Cornelius
Chucholowski (c.chucholowski@tesis.de) is senior scientist and CEO of TESIS DYNAware, München. The project has been supported by
FORTWIHR, the Bavarian Consortium for High Performance Scientific Computing.

Algorithm r(p*) n
seq

 t
seq

 n
par

 t
par

 t
seq

/t
par

IFFCO 2603.2 204 1252.1 64 445.6 2.81

LMDER 2613.5 55 338.5 19 122.7 2.76

NLSCON 2612.7 68 416.9 24 156.7 2.66

NLSSOL 2607.9 115 704.4 23 152.3 4.63

Table 1. Comparison of computational results for
the sequential and parallel parameter estimation
schemes.

