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Towards Hybrid Optimal Control

Martin Buss, Oskar von Stryk, Roland Bulirsch, Günther Schmidt, Technische Universität München

Abstract: In this article a general class of hybrid optimal control problems with

continuous and discrete state variables and control inputs is defined. After a brief review of

conventional optimal control, major novel challenges resulting from the hybrid nature are

discussed. Some application problems are comparatively easy to solve because of the fixed

or known sequence of discrete events; however, if the number and the sequence of discrete

phases is not known a priori, the solution must then be found among a combinatorial

number of possible sequence candidates. The article presents several preliminary

approaches to the (numerical) solution of hybrid optimal control problems by hybrid

dynamic programming, by decomposition using branch-and-bound, or fixing transversality

conditions to obtain suboptimal solutions. The last two methods rely on the capabilities of

the direct collocation method DIRCOL to solving multi-phase optimal control problems

robustly and efficiently. Results obtained by the proposed methods are presented in two

examples: an underactuated robotic system with a holding brake as the discrete

component, and a hybrid, motorized traveling salesman problem.

1 Introduction

The purpose of this article is to provide an overview of
current research in theoretical and numerical methods
for solving hybrid optimal control problems, i.e., opti-
mal control problems with continuous and discrete state
and control variables. Preliminary results concerning sy-
stem theoretical issues connected to mathematical mo-
deling and to the formal definition of hybrid optimal
control problems are presented as well as first numeri-
cal approaches for solving fairly general hybrid optimal
control problems.

Conventional optimal control problems with continuous
state and control variables are commonly presented as
optimization problems in the form of two- or multi-point
boundary value problems (TPBVP or MPBVP) [25].
Studies for this class have extended to those problems
containing inequality constraints on the control and
state variables [14] and also to multi-phase problems
with discontinuities in the system equations at inter-
mediate time points [7, 9]. Intermediate time points at
which the system equations suddenly change are deno-
ted as switching times, and they separate the problem
into phases each with its own dynamics. Although the
times of switching may be unknown, a common and cri-
tically simplifying assumption is that the sequence of
the phases, i.e., the switching structure, is more or less
known.

It is not generally the case, that the switching struc-
ture is known for the class of hybrid dynamical systems
formed by a set of continuous time control systems and
a finite automaton that drives the switchings between
different system structures [4, 24, 29]. As will become
clear in the following, the right hand sides of the non-
linear differential(-algebraic) equations are of variable
structure and may vary among a discrete set of combi-
natorial choices. When calculating the optimal control
of the hybrid dynamical system, not only do the optimal
trajectories of the continuous state and control variables
and the unknown switching points between phases have
to be determined but also the optimal sequence of the
phases, i.e., the discrete state trajectory. It is the intrin-
sic combinatorial complexity, in addition to the nonli-
nearity of the continuous optimal control problem that
forms the challenges in the theoretical and numerical
solution of hybrid optimal control problems.

Some typical mechatronic application examples of hy-
brid optimal control problems are presented such as an
underactuated robot and a motorized traveling sales-
man. One of the research goals in hybrid optimal control
in the context of a multilegged walking machine is to find
the optimal solution for the ground contact positions of
each leg, the body and control trajectories, and simul-
taneously solve the combinatorial aspect of the problem
by finding the optimal gait and number of steps. The
resulting hybrid trajectory must be optimal, e.g., with
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respect to the overall power consumption of the machi-
ne.

For the organization of the article: In Section 2 a gene-
ral class of hybrid optimal control problems is defined
and illustrated in practical application examples. Sec-
tion 3 discusses some theoretical issues resulting from
the combinatorial complexity of choices for optimal dis-
crete trajectories in the context of switched phase tran-
sitions of optimal control problems. Analytical soluti-
ons even to most example problems cannot be obtained.
Thus, for solving practical problems numerical methods
are needed to efficiently compute approximate solutions.
The direct collocation method DIRCOL which provi-
des highly efficient solutions of nonlinearly constrained
multi-phase optimal control problems is briefly review-
ed in Section 4. Subsequently, two general approaches
to the numerical solution of hybrid optimal control pro-
blems are presented. The first method searches for a
global optimal solution by a branch-and-bound techni-
que, while the second one aims at a local, suboptimal
solution by fixing transition times and states to certain
values. Two application example problems solved by the
proposed numerical methods are presented in Section 5.
Section 6 summarizes the article and mentions possi-
ble directions for further research in the area of hybrid
optimal control.

2 Hybrid Optimal Control

The discrete-continuous process model of a hybrid op-
timal control problem consists of a set of ordinary dif-
ferential or differential-algebraic equations of variable
structure and variable constraint equations. The system
structure varies among a (finite) discrete set of system
descriptions each of which is associated with a speci-
fic discrete state of the considered hybrid system. The
discrete state dynamics may be modeled, e.g., by a fi-
nite state automaton or a Petri-net. For some mode-
ling paradigms of hybrid dynamical systems see, e.g.,
[4, 10, 17, 21, 26].

Most of the hybrid models in the literature consider the
hybrid state of the system as a combination of the conti-
nuous state x and a discrete state q. Likewise, the con-
trol input is a combination of a continuous component
u and a discrete-valued component v. The hybrid sy-
stem state and structure changes discontinuously when
an autonomous or controlled discrete event at a parti-
cular time or state occurs.

The hybrid optimal control problem is to find optimal
hybrid — i.e., continuous u and discrete v — control
trajectories such that an integral cost index — typical-
ly an integral of a function of the hybrid system state
and control input — is minimized subject to the system
dynamics, initial, terminal and further equality or in-
equality constraints. A general class of hybrid optimal
control problems is defined in the following.

Definition 1 The hybrid optimal control problem is de-
fined as the minimization of the hybrid cost index J

min
u, v

J(u,v) = Θ +

∫ te

ta

ψ(x,u,q,v, t) dt , (1)

subject to

ẋ = f(x,u,q,v, t) if sj(x,u,q,v, t) 6= 0 (2)

j = 1, . . . , ns
[

x(t+i )
q(t+i )

]

= φj(x,u,q,v, t
−

i ) if sj(x,u,q,v, t
−

i ) = 0 (3)

j ∈ {1, . . . , ns}

u(t) ∈ U ⊂ R
nu , v(t) ∈ V ⊂ Z

nv ,

x(t) ∈ X ⊂ R
nx , q(t) ∈ Q ⊂ Z

nq , ∀t ∈ [ta, te] (4)

0 ≤ h(x,u,q,v, t), t ∈ [ta, te] inequality constraints, (5)

x(ta) = xa, q(ta) = qa initial conditions, (6)

x(te) = xe, q(te) = qe terminal conditions, (7)

where the initial and final times ta, te are free or fi-
xed, sj are the ns switching functions and φj denotes
the explicit phase transition conditions (jump maps) oc-
curing at the zeros of one of the switching functions.
The Mayer type part Θ of the performance index is a
general function of the phase transition times (events)
ti, i = 0, . . . , N , of the continuous x(t−i ), x(t+i ) and dis-
crete states q(t−i ), q(t+i ) just before and just after the
transition event written as

Θ := Θ[ x(t−0 ),x(t+0 ), . . . ,x(t−N ),x(t+N );
q(t−0 ),q(t+0 ), . . . ,q(t−N ),q(t+N ); t0, . . . , tN ]

.

Here, ta = t0, te = tN is assumed while the number of
phases N may be given or free. The integrand ψ is a
real-valued function of the continuous/discrete state and
control variables and of time.

The minimization of (1) is subject to the initial and
terminal conditions (6), (7), admissible values for the
continuous/discrete control variables (4), and inequality
constraints (5). Obviously, valid hybrid optimal trajec-
tories have to obey the differential equations (2) and the
phase transition equations (3) of the discrete aspect. The
optimization parameters to be determined are the con-
tinuous u(t) and discrete control input trajectories v(t)
and all, some, or none of the phase transition times.

Figure 1 shows typical trajectories of a solution to a
hybrid optimal control problem. The cost index is shown
in Figure 1(a), where a discontinuous jump in the cost
occurs at the transition time t2. Likewise, the continuous
state trajectory x(t) shown in Figure 1(b) may have
discontinuities in the state at time t2 and in its rate at
time t1. The discrete state trajectory q(t) is shown in
Figure 1(c).

Remark 1 An integer-valued, scalar discrete state
q ∈ Q = [qmin, qmax] can be transformed to an nw-
dimensional binary-valued discrete state vector
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(c) discrete state trajectory

Figure 1: Typical trajectories of a hybrid system.

w ∈ {0, 1}nw by

q = qmin + w1 + 2w2 + 4w3 + . . .+ 2nw−1wnw
,

with nw = 1+ INT {log (qmax − qmin)/log 2}. In this ca-
se, the hybrid optimal control problem of Definition 1
can be recasted using binary instead of integer variables.

The solutions to hybrid optimal control problems pre-
sented in Definition 1 are deterministic open-loop trajec-
tories. Like in conventional optimal control this problem
class can be generalized to a stochastic setting or to issu-
es like optimal closed-loop feedback control. Currently,
mainly the open-loop problem is discussed in the litera-
ture with many open issues. Further research is required
to define and understand stochastic and closed-loop hy-
brid optimal control.

Example 1 An example of a hybrid mechatronic sy-
stem is the underactuated robot R2D1 with 2 rotational
degrees-of-freedom (DOFs) and only 1 actuator. Figu-
re 2 shows the kinematic structure of R2D1 with the tor-
que u1 in the 1st joint and a holding brake in the 2nd
joint. The plane of the SCARA robot can be inclined
versus gravitation. One of the typical control problems
in underactuated systems is the positioning of the un-
actuated joint, usually resulting in unstable zero dyna-
mics. For details and hybrid (switching) globally stable
control of R2D1 see [19, 20]; an overview of control stra-
tegies for underactuated (robot locomotion) systems is
given in [27].

�2
�1

x
y u1

u2
drive

holding brake

Figure 2: Kinematic structure of R2D1.

Here, we consider the hybrid optimal control problem
defined by the task to bring R2D1 from a given initial
state to a desired goal state. This is a hybrid (multi-
phase) problem because it is not known a priori how
often, at what times, and at which states the holding
brake should be activated.

The formal problem statement is as follows

min
u,v

J = min
u,v

∫ te

0

(

(x − xd)T W(x − xd) + αu2
1

)

dt

(8)

subject to the robot dynamics

Mθ̈ + h(θ, θ̇) =





u1

u2 =

{

0 if q = 1
uK if q = 2



 (9)

x(0) = x0 q(0) = 1 (10)

x(te) = xe q(te) = 2 , (11)

where W ≥ 0, α > 0, with xd(t) a desired reference tra-
jectory. The continuous state vector x = [θ1 θ̇1 θ2 θ̇2]

T

consists of the two joint angles and angular velocities.
The discrete state q corresponds to the on/off state of
the holding brake, which is assumed to be directly con-
trolled by a discrete (on/off) control input v; uK is the
breaking torque. Discontinuity surfaces sj and transi-
tion maps φj according to (2), (3) are defined in the
obvious way with no discontinuities in the continuous
state, i.e., x(t+i ) = x(t−i ) for all event times ti.

Solutions to this problem are presented later in Secti-
on 5.1

3 Theoretical Issues

3.1 Continuous optimal control problems

There are two basic approaches to solving conventional
optimal control problems:

(I) Hamilton-Jacobi-Carathéodory-Bellman (HJCB)
partial differential equations (PDEs) and dynamic
programming, and
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(II) classical Variational Calculus, Euler-Lagrange diffe-
rential equations (EL-DEQ), and the Maximum Prin-
ciple.

The first approach theoretically provides optimal feed-
back controls u∗(x, t) by solving the PDE for the value
function

−
∂V (x, t)

∂t
= min

u(t)∈U

{

ψ(x,u, t) +

(

∂V (x, t)

∂x

)T

f(x,u, t)

}

with V (x, te) = Θ(x, te). However in practice, the PDE
can only be solved numerically for very small state di-
mensions. The same holds for the corresponding dyna-
mic programming method which suffers from the curse
of dimensionality. A further, severe drawback is that ine-
quality constraints on the state variables as well as swit-
ched dynamical systems usually lead to discontinuous
partial derivatives of V and cannot easily be included.
In this context, it is rarely known that Bellman’s results
have been preceded by results of Carathéodory [23].

For the second approach, the mentioned drawbacks
usually do not hold, but only an optimal open loop con-
trol u∗(t) is obtained together with the trajectories of
the optimal state x∗(t) and adjoint (or co-state) variable
λ∗(t). This is done by solving the EL-DEQ in [ta, te]

ẋ =
∂H

∂λ
= f(x,u, t), −λ̇ =

∂H

∂x
= λT ∂f

∂x
+
∂ψ

∂x

while the optimal control minimizes the Hamiltonian

H(x,u∗, λ, t) = min
u(t)∈U

{

λT f(x,u, t) + ψ(x,u, t)
}

along the optimal trajectory x∗(t), λ∗(t). The first and
second approach are related by λ∗(t) = ∂V (x∗(t), t)/∂x
which holds along unconstrained sections of the optimal
trajectory. The solutions of the EL-DEQ describe cha-
racteristics of the HJCB-PDE. This approach has also
been extended to handle general constraints on the con-
trol and state variables [14]. Then, the EL-DEQ form a
MPBVP with a priori unknown interior switching points
denoting the times when one of the constraints becomes
active or inactive [8]. Activation or deactivation of a
state constraint switches the adjoint differential equati-
ons.

In recent years, research has also been focused on a nu-
merical synthesis of optimal feedback controls from a
family of very many characteristics of the HJCB PDE
(i.e., optimal open loop trajectories) using local Taylor
sums [5] or neural networks [6].

3.2 Multi-phase systems with given order of
phases

In many application fields, the order of phases is known
(or given) a priori, e.g., the trajectory optimization of
a hypersonic two-stage space vehicle in flight mecha-
nics [9]. The switching between two subsequent phases

is usually handled with discontinuities in the state va-
riables at interior points [7]. For this subset of hybrid
optimal control problems where the sequence of phases
is given, a selection of combinatorial complexity among
several alternative phases is not required at each pha-
se transition. Nevertheless, such multi-phase problems
usually cannot be solved analytically, except for possib-
ly in the case of very simple dynamical equations. Pro-
blems of practical relevance must therefore be solved
numerically, e.g., using the direct collocation method
DIRCOL discussed in Section 4.2.

3.3 Unknown sequence of phases and transitions

In generic hybrid optimal control problems, usually nei-
ther the order of phases, the times (events) of pha-
se transitions (switchings) nor even their number are
known in advance. These need to be determined as
part of the optimal solution which usually results in
a significant combinatorial complexity. In principle, a
multi-phase optimal control problem with unknown pha-
se transition times and states is associated with each
of the discrete state sequence candidates. A straight-
forward approach to obtain the optimal solution is to
solve all the multi-phase problems for all possible dis-
crete state sequences and to select the best one. Ho-
wever, the number of possible sequences may be NP-
complete or even infinite when allowing discrete states
to cycle. Thus, even for a moderate number of phases
this approach is not practically feasible.

The new key challenge when solving hybrid optimal con-
trol problems is to reduce the number of discrete state
sequence iterates and therewith the number of multi-
phase solutions needed. There are various ways to per-
form the search among all possibilities, e.g., branch-and-
bound as discussed in Section 4.3, heuristics, or other
simplifying assumptions, all in search for practical and
possibly suboptimal solutions to the hybrid problem.

A hybrid version of the Pontryagin Maximum Princi-
ple as well as of the HJCB-PDE are further issues of
theoretical interest. Hybrid generalizations of optima-
lity conditions — e.g., the choice of the controls such
that the Hamiltonian is minimized at all times — could
provide powerful analytical and numerical methods to
solving hybrid optimal control problems. Such theore-
tical questions are currently open issues; some prelimi-
nary results can be found in recent publications, e.g.,
[15, 24, 29].

The determination of the unknown switching structure
of active state and control constraints in conventional
optimal control may be viewed as a related problem. In
this context homotopy or continuation techniques ha-
ve been applied successfully [22]: A simplified problem,
e.g., with relaxed or untightened or even no constraints,
is solved first. Starting from this first solution a second
problem is solved with less simplifications, e.g., with a
first active constraint and a first, yet simple switching
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structure, e.g., a touch point, at the solution. This pro-
cedure is continued until one ends up with a solution
to the fully constrained problem possibly exhibiting a
complicated switching structure.

3.4 Hybrid dynamic programming

The principle of optimality and the resulting method
of dynamic programming may be generalized to hy-
brid problems, see e.g., [16] for a proposal of a hybrid
Hamilton-Jacobi-Bellman formulation using chattering
approximations.

As a consequence, hybrid optimal control problems may
in principle be solved by a hybrid version of the me-
thod of dynamic programming. This is illustrated in an
example with simple (unique) discrete dynamics.

Example 2 Let us assume a hybrid system with two
discrete states q = 1, q = 2, with the initial condition
being q = 1, x(ta) = xa and the desired terminal state
of q = 2, x(te) = xe, and free terminal time te. The con-
tinuous dynamics are

ẋ =

{

f(x,u, q = 1) = f1(x,u),
f(x,u, q = 2) = f2(x,u) .

Furthermore, it is assumed that exactly one phase tran-
sition occurs at the unknown time t1 and state x(t1)
satisfying the interior point constraint g̃(x(t1), t1) = 0.

The discrete state sequence of the example is q = 1
t1
 2.

Optimal trajectories u∗(t), x∗(t), switching time t∗1,
switching state x∗(t1) with respect to the cost index
J(x,u, te) are to be determined.

This two phase problem may be solved using hybrid dy-
namic programming, see Figure 3. Beginning with the
terminal state the TPBVP min

u
J(x,u, te) of phase 2 is

solved subject to x(te) = xe and the free (to be deter-
mined) interior point time t1 and state x(t1), satisfy-
ing g̃1 = 0. The optimal solution is to be parameteri-
zed as u∗(x(t1), t1) and the resulting remaining cost for
phase 2 also follows as a function of interior point time

and state as V (x(t1), t1) =
[

min
u
J
]te

t1

. After the remai-

ning optimal cost of phase 2 is available1, we can solve
for phase 1 by the principle of optimality as another
TPBVP with initial condition x(ta) = xa and terminal
constraint g̃1 and combine this solution with the remai-
ning cost V (x(t1), t1) for phase 2 to obtain the overall
solution V (x(ta), ta) to the two phase problem as

V (x(ta), ta) =
[

min
u
J
]te

ta

= V (x(t1), t1) +
[

min
u
J
]t1

ta

Clearly, as illustrated in the example, the complexity of
the expressions for the remaining cost parameterized by

1 Note that only in very simple cases of the continuous dy-
namical equations is it possible to analytically compute the
optimal control and remaining cost as a function of interior
point time and state.

~g1(x(t1); t1) = 0x(ta) = xa x(te) = xe
_x = f 1(x;u) _x = f 2(x;u)t = ta t = t1 t = te

V (x(t1); t1)V (x(ta); ta)

Figure 3: Example of a hybrid optimal control problem with
unique discrete state sequence.

the interior point times ti and states x(ti) increases as
the initial condition of the hybrid optimal control pro-
blem is approached from the terminal constraint with
each backwards step of dynamic programming. The dif-
ficulty in solving for the remaining cost further increases
if there exist several choices for the discrete state se-
quence as shown in Figure 4(a). One of the benefits of a
hybrid version of dynamic programming is that the com-
plexity of the overall problem may be reduced whenever
two paths backwards through the graph (with nodes re-
presenting the interior points) join, see Figure 4(b). Dy-
namic programming in this case can deliver a strategy
of which path to choose; however, the synchronisation
problem of the times on different paths and the forward
reachability problem is another complication.

(a) (b)

Figure 4: Further examples of discrete state sequences.

To summarize this discussion about hybrid dynamic pro-
gramming: For problems, where it is possible to join the
various paths of the graph representing the discrete dy-
namics, the procedure for choosing the optimal path
may be simplified. Because the remaining cost needs
to be calculated with respect to the interior point ti-
me and state parameters, the cost expressions become
all the more complicated for multi-phase problems, and
the method of hybrid dynamic programming becomes
much more difficult to apply.

These insights have inspired the development of a sub-
optimal method of hybrid dynamic programming pre-
sented in Section 4.4.

4 Numerical Issues

In this section numerical methods to efficiently solving
nonlinearly constrained optimal control problems with
multiple phases are briefly reviewed. The recently deve-
loped method DIRCOL based on sparse direct collocati-
on is described in detail. This highly efficient numerical
method makes a decomposition approach to hybrid op-
timal control problems of moderate discrete complexity
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possible: In an inner loop multi-phase optimal control
problems are solved numerically for a given sequence of
phases whereas the order and type of phases are varied
during the outer iteration. Furthermore, we present an
even faster but only suboptimal solution approach to a
particular class of hybrid optimal control problems.

4.1 Numerical optimal control methods

Within the last thirty years, the solution approach des-
cribed in Section 3.1 based on the EL-DEQ and the Ma-
ximum Principle has produced a rich and steady source
of families of numerical methods of continuously incre-
ased efficiency which can mainly be divided into two
classes: direct and indirect methods [33].

Indirect methods approximate a solution by the necessa-
ry conditions of optimality resulting from the Maximum
Principle and the EL-DEQ. Among the first family of in-
direct methods are gradient methods [35] that are based
on an iterative improvement of a control approximation
by minimization of the Hamiltonian. In each iteration
step, the equations of motion (2) are numerically inte-
grated forwards while the adjoint differential equations
are integrated backwards. Multiple shooting [8, 28] is
among the most powerful numerical methods for solving
the resulting MPBVP derived from the necessary con-
ditions of optimality of a constrained nonlinear optimal
control problem. Thus, a highly accurate and verified
(with respect to necessary conditions of optimality) so-
lution can be obtained.

Practical drawbacks of indirect methods are:

• Proper formulations of the necessary conditions (EL-
DEQ etc.) must be derived.

• Suitable initial guesses of the state and adjoint tra-
jectories must be provided to start the iterative me-
thods.

• In order to handle active constraints properly, their
switching structure must be guessed.

• Changes in the problem formulation (e.g., by a modi-
fication of the equations of motion), or low differentia-
bility properties of the model functions (e.g., by low
order interpolation of tabular data), cannot easily be
included in the solution procedure.

Most of these drawbacks have been overcome by direct
methods mainly developed during the last decade [3, 33]
and pushed by the tremendous progress in nonlinear op-
timization methods [2, 3]. These methods are based on
a transcription of optimal control problems into (finite
dimensional) nonlinearly constrained optimization pro-
blems (NLPs) by a parameterization of the control va-
riable u. Two different transcription strategies exist:

(i) Iterative simulation and optimization (direct shoo-
ting): In every iteration step of the optimization me-
thod, the equations of motion (2) are solved by a nu-
merical integration method for the current guess of
parameters.

(ii) Simultaneous simulation and optimization (direct
collocation): The differential equations (2) are only
fulfilled at a priori selected points using collocation as
an implicit integration scheme. This leads to a system
of nonlinear equality constraints for the parameters of
the resulting NLP.

While (i) satisfies the equations of motion (2) in each
iteration step, (ii) only satisfies them at a successful ter-
mination of the optimization procedure if a sequential
quadratic programming (SQP) method is used [2]. For
approach (i) the gradient information must be compu-
ted by numerical sensitivity analysis of initial value pro-
blems, while the gradient computation is easier for (ii).
The number of NLP variables of approach (i) is usually
much smaller than for approach (ii) where the number
of variables is of the order of (nx+nu) times the number
of collocation points. On the other hand, NLP gradient
and Jacobian structure of (ii) are very sparse.

4.2 Direct collocation method DIRCOL for
multi-phase optimal control problems

Direct methods promise high flexibility and robustness
when solving optimal control problems numerically to
low or moderate accuracies. Additionally appealing in
the direct collocation approach is the potentially faster
computation compared to direct shooting. This is due to
the simultaneous simulation and optimization approach
and will only be effective if the NLP sparsity can fully
be utitilized. Otherwise the NLP size will severly limit
the efficiency.

u~

i i+2t t e... nt
... t i+1/2 t i+1

f(x,u,t      )i+1/2

t  = t

x~
.

x~

t  =t1a

Figure 5: Direct collocation parameterization of continuous
state and control variables.

In DIRCOL [31] a discretization of x by piecewise cu-

bic Hermite polynomials x̃(t) =
∑

k

αkx̂k(t) and of u

by piecewise linear functions ũ(t) =
∑

k

βkûk(t) is app-

lied [13, 30] on a discretization grid ta = t1 < t2 < . . . <
tnt

= te, see Figure 5. The equations of motions (2) are
pointwise fulfilled at the grid points and at their re-
spective midpoints resulting in a set of nonlinear NLP
equality constraints a(y) = 0 (collocation). Any control
or state variable inequality constraints are to be satis-
fied at the grid points resulting in set of nonlinear NLP
inequality constraints b(y) ≥ 0. Here, y denotes the ny

parameters of the parameterization

y = (α1, α2, ..., β1, β2, ..., te)
T .
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The resulting nonlinearly constrained optimization pro-
blem basically reads as

NLP: min
y

ϕ(y) subject to a(y) = 0, b(y) ≥ 0,

where ϕ denotes the parameterized cost index (1).

A carefully selected discretization ũ, x̃ must satisfy cer-
tain convergence properties. One requirement is that the
discretized solution must approximate a solution of the
EL-DEQ and the Maximum Principle if the grid beco-
mes fine enough, i.e., for nt → ∞ and max{ti+1 − ti :
i = 1, . . . , nt − 1} → 0 [30].

A great advantage of the direct collocation approach
is that it provides reliable estimates λ̃ of the adjoint
variable trajectory along the discretization grid. These
estimates are derived from the Lagrange multipliers of
the NLP [30]. They enable a verification of optimality
conditions of the discretized solution although the EL-
DEQ have not been solved explicitly.

Also, local optimality error estimates can be derived
that enable efficient strategies for successively refining a
first solution on a coarse grid [30, 31]. Thus, a sequence
of related NLPs must be solved whose dimensions incre-
ase with the number of grid points.

NLPs can be solved most efficiently numerically by SQP
methods. In each SQP iteration a current guess of the so-
lution y∗ is improved by the solution of a quadratic sub-
problem derived from a quadratic approximation of the
Lagrangian of the NLP subject to the linearized cons-
traints [2, 11]. The NLPs resulting from a direct collo-
cation discretization have several special properties [32]:

• The NLPs are of large-scale with very many variables
and very many constraints.

• Most of the NLP constraints are active at the so-
lution, e.g., the equality constraints from collocation.
Thus, the number of free NLP variables is much smal-
ler than the total number of variables ny.

• The NLP Jacobians (∇a(y),∇b(y)) are sparse and
structured. Only a few percent of the elements will be
nonzero, and the percentage decreases as the number
of grid points increases.

These features can fully be utilized by the recently deve-
loped large-scale SQP method SNOPT [11]. The compu-
tational speedup achievable by utilizing the NLP struc-
ture is more than a factor of one hundred for typical
discretized optimal control problems when compared to
standard “dense” SQP methods [32].

To tackle fairly general multi-phase optimal control pro-
blems the recent version of DIRCOL [31, 32] has been
extended to handle also

• dynamical equations defined in multiple phases,

• general phase connecting and phase transition condi-
tions,

• phase dependent general inequality and equality cons-
traints, i.e., differential-algebraic equations of varia-
ble structure.

4.3 Decomposition of hybrid optimal control
problems using branch-and-bound

If the discrete state is identified with a finite sequence
of phases and the discrete control can be described by
an integer variable, then the hybrid optimal control pro-
blem can be described as a mixed-integer optimal con-
trol problem (MIOCP). A direct collocation or direct
shooting discretization then results in a mixed-integer
NLP (MINLP). The numerical solution of MINLPs is
a topic of current research [1, 12]. Not many methods
are available yet to handle nonconvex problems as is the
case for discretized optimal control problems.

We suggest a decomposition approach to the solution of
MIOCPs with multiple phases [32, 34]:

• In the inner iteration, a primal multi-phase optimal
control problem is solved for given discrete state and
control variables. This yields an upper bound on the
hybrid performance index.

• In the outer iteration, the discrete variable is altered
depending on global lower and upper bounds on the
hybrid performance index.

More precisely, if the discrete states q are directly con-
trolled by the discrete controls v (as in Example 1), and
after the integer-valued variables have been represented
by binary-valued variables w ∈ {0, 1}nw (cf. Remark 1),
the MIOCP reads as follows:

Definition 2 The mixed-integer (mixed-binary) opti-
mal control problem is defined as the minimization of
the hybrid cost index J

min
u, w

J(u,w) = Θ +

∫ te

ta

ψ(x,u,w, t) dt , (12)

subject to

ẋ = f(x,u,w, t) if sj(x,u,w, t) 6= 0 (13)
[

x(t+i )
q(t+i )

]

= φj(x,u,w, t
−

i ) if sj(x,u,w, t
−

i ) = 0 (14)

u(t) ∈ U ⊂ R
nu , w ∈ {0, 1}nw , x(t) ∈ X ⊂ R

nx , (15)

0 ≤ h(x,u,w, t), t ∈ [ta, te] inequality constraints, (16)

x(ta) = xa initial conditions, (17)

x(te) = xe terminal conditions, (18)

where the initial time ta and the final time te are free or
fixed. The Mayer type part Θ of the performance index is
a general function of the phase transition times (events)
ti, i = 0, . . . , N , of the continuous x(t−i ), x(t+i ) and of
the binary w

Θ := Θ[ x(t−0 ),x(t+0 ), . . . ,x(t−N ),x(t+N );w; t0, . . . , tN ] .

Here, ta = t0, te = tN may be specified while the number
of phases N may be given or free. The integrand ψ is a
real-valued function of the continuous and binary state
and control variables and of time.
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A branch-and-bound technique is applied to efficiently
search the entire solution space performing a truncated
binary tree search for the binary variable:

• At the root of the binary search tree, all binary va-
riables are relaxed, i.e., w ∈ [0, 1]nw .

• In each inner node some of the binary variables are 0
or 1, all others are relaxed.

• At the leaves of the search tree, all binary variables
are 0 or 1.

• The partially relaxed binary variables at an inner no-
de define a hybrid optimal control problem whose nu-
merical solution by DIRCOL yields a lower bound on
the hybrid performance index for all nodes at sub-
sequent branches. An upper bound is obtained by
solving a hybrid optimal control problem for a not
relaxed binary variable.

• If the hybrid performance index associated with a
lower bound in a node is greater than the current
best upper bound of the whole search tree, than all
subsequent branches from this node can be cut off.

This approach solves the hybrid optimal control problem
to the global optimum assuming the resulting multi-
phase control problems are solved optimally. However,
the performance of the method is very sensitive to the
initial guess for the binary variables. Thus, further rese-
arch is needed for

• methods to find a good initial estimate of the discrete
control variables, i.e., a good upper bound on the hy-
brid optimal control performance index, and for

• improved estimates of lower bounds on the hybrid
optimal control performance index, e.g., by applying
necessary or sufficient conditions derived from a hy-
brid HJCB partial differential equation or inequali-
ty, or from a hybrid Maximum Principle using the
adjoint variable estimates provided by DIRCOL. Ho-
wever, both approaches yet need to be established
through future investigation.

Another drawback of the proposed approach is that the
existence of solutions to the relaxed problems must be
ensured, where the relaxed problem may not be of any
physical significance with respect to the underlying ap-
plication.

4.4 Suboptimal hybrid solution approach

By choosing fixed values for the transition times and
states it is possible to decompose the multi-phase opti-
mal control problem into several TPBVPs, because the
coupling via transversality conditions being part of the
optimality conditions vanishes. Problematic in this ap-
proach is that the choice for a priori unknown transition
times and states can be far away from the optimal choice
when using heuristics.

By assuming fixed values of transition times and states
on a grid, one can define a (large) set of TPBVPs with
fixed initial and terminal conditions, which can then be

solved numerically. Further, by assuming that one can
compute these solutions very efficiently, it is possible to
construct a weighted graph between all the grid nodes
with the optimal cost on its vertices. Finally, the sub-
optimal solution to the original hybrid optimal control
problem can be found in this weighted graph using a
graph search algorithm.

The advantage of this method is that one of-
ten has an insight into what are reasona-
ble transition times and states by knowledge
about the physics of the application. A ma-
jor disadvantage is that the number of TPBVPs
increases with the number of grid nodes for transiti-
on times and states higher than at polynomial order.
On the other hand it requires significantly less effort
compared to a straightforward dynamic programming
approach which additionally discretizes all states and
times.

Many interesting theoretical questions for this approach
remain unanswered, e.g., a quantitative measure (esti-
mation) of the distance from optimality, if one should
reduce to TPBVPs or treat some of the phases together
in a MPBVP with free transition conditions.

The approach has been successfully used in determining
suboptimal solutions in complex mechatronic situations.
Even though the suboptimal solution may be far off the
optimum, the method can at least provide practically
useful suboptimal solutions, which may be a good initial
starting point for other search procedures.

5 Application examples

5.1 Underactuated robot R2D1

In the following solutions to the hybrid optimal control
problem of R2D1 previously defined in Example 1, we
consider the case of the specific initial and terminal con-
ditions

x(0) =









1.2
0

0.8
0









, x(te) =









π/2
0

−π/2
0









,

with the discrete state of the holding brake as q(0) = 1,
q(te) = 2. The terminal time is fixed te = 5 and α = 20.

Optimal solutions for two and four phases were compu-
ted using DIRCOL discussed in Section 4.2. The joint
velocity x4 = θ̇2 = 0 is constrained to zero at the inter-
nal switching points when the holding brake is activated
once/twice in the 2/4-phase problem.

Figures 6, 7 show the optimal trajectories for the two
and four phase problems, respectively. The switching
points are indicated by vertical lines in the plots.

In Figure 6, the swinging motion used to increase the
velocity θ̇2 until time t1 can be observed. The desired
zero velocity condition θ̇2(t1) = 0 holds at the time t1
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Figure 6: Optimal trajectories of the two phase solution.
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Figure 7: Optimal trajectories of the four phase solution.

when the holding brake is closed. Note that the desired
angle of θ2 = −π/2 is achieved at the time of switching;
the second joint does not move in the second phase. The
desired final state is reached at te = 5. Figure 6(c) shows
the cost index versus time. The optimal cost index value
is 1292.

When solving the four phase problem the holding brake
is switched off on off on. Figure 7 shows the optimal
solution. When comparing the results, it is clear that
the trajectories of the four phase problem are “smoo-
ther” and better “controlled”, cf. Figures 6(b) and 7(b).
The first joint again shows a swinging motion. A signi-
ficant improvement of the four phase problem is a 25%
reduction in overall cost which is now only 972.

This result clearly shows that an important question
of hybrid optimal control problems is to establish the
optimal number of phases.

5.2 Motorized traveling salesman

C3

C C21

α

y

x

v

Figure 8: The motorized traveling salesman.

Example 3 A salesman spends his time visiting nc ci-
ties cyclically. In one tour he visits each city just once
and finishes up in the origin where he started. In what
order should he visit them to minimize the overall travel
time? The Traveling Salesman Problem (TSP) is one of
the most prominent members of combinatorial optimi-
zation problems [18]. Here, we investigate a dynamical
extension of the TSP as suggested in [32] to demon-
strate the strong interaction of continuous and discrete
dynamics in hybrid optimal control. The salesman is
supposed to drive a car (Figure 8). The task is to deter-
mine the steering angle velocity γ and the accelerating
or braking force β (continuous controls) and the order
(discrete control) in which the nc cities Ck = (xc

k, y
c
k)T ,

k = 1, . . . , nc, have to be visited such that the overall
travel time is minimized. There are no further restricti-
ons on the path, i.e., the “road”, in the (x, y)-plane.

A simplified kinematical model of the car is given by

ẋ(t) = v(t) cos(α(t)), x(0) = 0 = x(te),
ẏ(t) = v(t) sin(α(t)), y(0) = 0 = y(te),
v̇(t) = β(t), v(0) = 0 = v(te),
α̇(t) = γ(t), α(0), α(te) free.

(19)

A phase describes the travel between two cities. Thus,
the number N of phases is equal to nc +1. Let tci denote
the time when the i-th city is passed. Then the motori-
zed TSP problem is formulated as a MIOCP according
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(a) C1 → C2 → C3 and C3 → C2 → C1 (te = 7.621).
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(b) C2 → C3 → C1 and C1 → C3 → C2 (te = 10.02).
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(c) C3 → C1 → C2 and C2 → C1 → C3 (te = 10.77).

Figure 9: Minimum time tour candidates for 3 cities (left:
tour in the (x, y)-plane, right: velocity v); arrows indica-
te forward tour; minimum time problem solution is C1 →
C2 → C3 (or backwards C3 → C2 → C1) in (a).

to Definition 2 by u = (γ, β)T , x = (x, y, v, α)T and

min
u, w

J(u,w) := te (20)

sj(x,u,w, t
c
i − 0) :=

(

x(tci − 0)
y(tci − 0)

)

−

nc
∑

k=1

wi,k

(

xc
k

yc
k

)

(21)

x(tci + 0) = φj(x,u,w, t
c
i − 0) := x(tci − 0) (22)

nc
∑

i=1

wi,k = 1,

nc
∑

k=1

wi,k = 1, 0 ≤ wi,k ≤ 1. (23)

The latter constraints ensure that each city is visited
exactly once on each tour.

Each tour is a permutation of nc cities. Also the pro-
blem is autonomous. Thus, a tour driven forwards or
backwards yields the same travel time. Therefore, the
number of possible tours is (nc)!/2. The number of tours
increases not polynomially with the number of cities. For
example, for 3 cities the number of tours is 3, for 5 cities
it is 60, for 10 cities it is 1 814 400, and for 50 cities it
is approximately ≈ 1.52 × 1064. Now if we assume that
all tours for 5 cities can be computed in one second in-
clusive the selection of the best one, then to solve the
problem for 20 cities in this way will need approximate-
ly 20!/5! ≈ 2.03 × 1016 s ≈ 643 million years. The TSP
is NP-complete!

For nc = 3 cities C1 = (1, 2), C2 = (2, 2), C3 = (2, 1),
the three possible tours are displayed in Figure 9. For
each of the tours the continuous controls have been opti-
mized using DIRCOL with respect to the terminal time
for a given discrete variable, i.e., order of cities, i.e.,
sequence of phases. The binary search for the optimal
binary and continuous controls is quickly finished for
only 3 cities. The general branch-and-bound tree search
combined with the multi-phase optimal control solution
by DIRCOL described in Section 4.3 is currently being
implemented.

6 Conclusions

After defining a rather general class of hybrid opti-
mal control problems, we presented a typical exam-
ple of a two-phase mechatronic application to illustra-
te the novel challenges. The two main solution ap-
proaches to conventional optimal control problems —
(i) Hamilton-Jacobi-Carathéodory-Bellman PDEs and
dynamic programming, (ii) Euler-Lagrange differential
equations and the Maximum Principle — were briefly
summarized. Extensions of these approaches to multi-
phase optimal control problems were discussed for the
case when the optimal discrete state sequence is a priori
known or given as part of the problem. The key challen-
ge when solving hybrid optimal control problems is that
neither the order of the phases, nor the times of phase
transitions, nor their number are known and therefo-
re have to be determined when solving the problem. A
hybrid version of the method of dynamic programming
based on a hybrid formulation of the principle of opti-
mality was illustrated and the difficulties arising from its
application to solving hybrid optimal control problems
were presented.

Another central part of the article discussed numerical
issues when solving hybrid optimal control problems.
Again, a brief historic review of direct and indirect me-
thods is followed by the description of more recent work,
such as the direct collocation method DIRCOL to sol-
ve multi-phase problems. With this approach, optimal
control problems are transcribed to nonlinear parameter
optimization problems subject to collocation constraints
(point-wise fulfillment of the differential and constraint
equations) resulting in a set of equality and inequali-
ty constraints for the nonlinear program. DIRCOL in
its most recent version is extremely efficient by exploi-
ting Jacobian sparsity of the resulting parametric op-
timization problem; this is accomplished by relying on
the advanced sparse SQP solver SNOPT. The numerical
robustness of DIRCOL is another important aspect.

On the basis of DIRCOL, a new paradigm to solving hy-
brid optimal control problems has become feasible, i.e.
an inner/outer iteration scheme. In the inner iteration
DIRCOL is used to solve a specific multi-phase problem
for a fixed discrete state sequence of the original hybrid
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problem. The resulting optimal cost index is then used
in an outer iteration to decide which discrete state se-
quence to solve next. Within this class of inner/outer
iterative algorithms, the two approaches of i) branch-
and-bound combined with (binary) discrete variable re-
laxation, and ii) suboptimal solution by choice of fixed
transition times and states (possibly on a grid) at phase
transitions, have been presented. Both approaches have
in common that a significant number of outer iterations
is not regarded as problematic because of the efficiency
with which the solutions to the multi-phase problems of
the inner iteration are obtainable by DIRCOL.

Using the proposed numerical methods, two applicati-
on examples were solved. For the underactuated robot
R2D1, optimal 2/4-phase solutions were directly com-
puted by DIRCOL. Remarkable is that in this case the
4-phase solution resulted in a cost reduction of appro-
ximately 25% which illustrates the importance of de-
termining the optimal number of phases when solving
hybrid optimal control problems. The purely combina-
torial TSP was extended to the hybrid dynamic case
with the motorized traveling salesman problem. For a
very limited number of cities together with their connec-
ted number of multi-phase problems, we presented the
optimal solutions obtained by DIRCOL.

Fact is — despite all the overview and discussion in this
article as well as consideration of the most recent pu-
blications in this area — that hybrid optimal control is
a widely open field of research with many of the main
theoretical and practical questions being still unanswe-
red. Some preliminary numerical methods were sugge-
sted here; however, many theoretical issues connected to
these remain. The methods need to be applied to mo-
re problems from various application domains to inspire
further research and development of this exciting field
of hybrid optimal control.
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