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Abstract 
Optimal path planning for a shuttle mounted remote manipulator system is in
vestigated. Shuttle, robot and load are modelled as a multi-body system of rigid 
bodies whereby computer-aided modelling is used to dervive the equations of 
motion. Minimum time and minimum energy trajectories of the robot are inves
tigated which re-establish the shuttle's attitude at the beginning of the maneuver 
also at the end. The resulting constrained optimal control problems are solved 
by a recent version of the optimal control software DIRCOL [12] which is based 
on discretization of state and control variables, collocation and nonlinear pro
gramming (NLP). An improvement of internal gradient approximations, the full 
utilization of the discretized problem structure as well as of the sparsity of the 
NLP Jacobian are important factors improving the efficiency and robustness of 
the method. The resulting NLPs are solved by a recent version of the large-scale 
SQP method SNOPT [5]. A three-dimensional animation of the space robot 
trajectories is obtained using the graphics library SIGMA [1]. 

Introduction 
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With respect to the present construction of an international space station, the investi
gation of space based robotics is an interesting subject. At the moment a lot of work 
has to be done by extra vehicular activity or space walks of astronauts. As these ac
tivities can also be quite dangerous the possibility of having them performed by robots 
becomes a valuable alternative. A manipulator arm of a space-shuttle is an example 
for such a robot. 
When manipulating loads in space, one of the most important problems is that the 
manipulator base cannot be treated as inertially fixed . Thus, the shuttle will rotate 
and translate during robot motions. Hereby the linear shift can simply be evaluated 
from the angles of the manipulator joints at initial and final time, since the center of 
mass of the whole system does not move. In contrast to this, the final attitude is a 
function of the entire history of the joint angles. 
A solution to this problem is to use the shuttle's attitude control system in order 
to handle the shuttle's rotation. But this would imply an unnecessary waste of the 
shuttle's limited attitude control fuel. Another, more advanced procedure is to include 
the re-establishment of the shuttle's attitude in the path planning [9]. Therefore, the 
initial and the desired final attitude are imposed as boundary constraints to the robot 
trajectory planning problem. furthermore, the path can be optimized with respect to 
various performance indices such as time or energy. 
The first part of the present paper introduces a dynamic model of the shuttle mounted 
robot. Optimal control problems for optimal trajectory planning are formulated next. 
The optimal control problems are solved numerically using a direct collocation method. 
Finally, the obtained solution is discussed and visualized. 
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Formulation of the Optimal Path Planning Proble 

Dynamic Robot Model 

Figure 1: Kinematic model and state variables of the robotic manipulator. 

For the dynamic model the following basic assumptions are made: 

1. gravitational effects are neglected, 

2. the system rests at initial time, 

3. the robot arms and the load are three-dimensional, rigid bodies, and 

4. the shuttle's attitude control is turned off. 

These assumptions are basically the same as in [8, 9] besides the third one which = 
significantly further . In [8] massless robot links and a point-mass load are consi 
In our approach, the arms and the load are more realistically modelled as rigid 
i.e. with non-zero volumes [10] . This means that each of the robot arms and the 
are described by a nonzero mass and a nonzero inertia tensor. The moments of · 
are computed based on the geometrical shape and data given in the following ta" 

I geometry I mass data 
shuttle cuboid 104325 kg 37.19 X 8 X 6.5 m3 

1. arm cylinder 18.9 kg l = 0.6 m, r = 0.2 m 
2. & 3. arm cylinder 200kg l = 7.12m, r = 0.2m 
satellite sphere 2500kg r=2m 

The first arm is mounted about 4.3 m away from the shuttle's center of gravity -
mounting point there is a rotational joint denoted by the angle q1 . The shoul : 
elbow joints are denoted by the angles q2 and q3 . Each joint is equipped wi h 
tor. The torques, respectively the controls of the system, are denoted by (ut. u_ 
Hereby the indices of the torques are corresponding to those of the joints. F 
shuttle's attitude the angles (¢1, ¢2, ¢3JT are used. The kinematic robot model -
state variables are depicted in Figure 1 where the vector R denotes the positiOL 
center of gravity of the shuttle. The resulting equations of motion for the robo· 
angles and the shuttle's attitude angles are of the form 

M(¢,q) (:) = b(¢,q,¢,q) + ( ~) . 
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Here M E IR.6x 6 is a symmetric, positive definite inertia matrix and b E IR.6 a vector of 
gyroscopic accelerations. 
The data of the robotic manipulator has been derived from data published for the 
remote manipulator system of the U.S. space shuttle and for the robotic manipulator 
of the European Hermes project [10]. The equations of motion have been derived 
using the computer-aided multibody systems simulation program SIMPACK [7]. The 
dynamical equations have not been derived in explicit form but as a subroutine that 
can be linked to the optimization method described further on. 

Optimal Control Problem 

Two objectives for optimal robot trajectories are investigated 

energy 

and time 

J.[u] 

Jdu] 

(2) 

(3) 

For application of the minimum energy objective, the final time t1 must be prescribed. 
Otherwise, a free final time may tend to infinity (cf. Theorem 8.1 in [11], pp. 95-96). 
The initial and final position of the robotic manipulator is given by the joint angles 

q(O) = (0.9, 0.4683, 1.9f, q(t,) = (0, 0.994, 1.153f. 

To return the shuttle to its original attitude 

¢>(0) = 0, ¢>(t,) = 0 

is demanded. To ensure that the system rests at initial and final time 

~(0) = 0, ~(t,) = 0 

4(0) '=0, cj(t,)=O 

(4) 

(5) 

must hold. To define and compute a time optimal trajectory the controls have to be 
limited by their maximum possible motor torques 

Ju;J ~ Ui,max , i = 1, 2, 3 (6) 

This is essential for minimum time trajectories because the controls appear linearly 
in the Hamiltonian. It can easily be shown that any time at least one motor will 
operate at its maximum capacity as long as the corresponding state variables are not 
constrained. The joint angles of the manipulator are limited as well by 

(7) 

This is necessary in order to avoid collisions among the manipulator arms themselves 
or between them and the shuttle. However, not all collisions can be excluded only 
by the limitation of the joint angles. Therefore, further state constraints must be 
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considered. Here, only collisions between the satellite and the left side of the shuttles 
bay are examined because of the special initial and final positions. The latter collision 
avoidance can be ensured by the non-negativity of a distance function 

t..{W,Pcs) 2:: 0 (8) 

with 
t..(W ) _ { min {[[w- Pca[[ 2 : wE W}- r, if pes r/. W 

,p.,. - -min {llw- Pcsll2 : wE 8W}- r, if pea E W. {9) 

Hereby the set W := { x E ffi.3 : 2.3 < x1 < 2.5 , x3 < 0.3} approximately describes the 
left side of the shuttle's bay, and Pea is the center of a sphere with radius r which 
contains the whole satellite, i. e., the load. 
As long as the sphere does not penetrate the set W , the Euclidian distance between 
the surfaces of the sphere and the bay wall is used . Otherwise t.. takes a negative value 
related to the magnitude of penetration. The function t.. is greater or equal to zero as 
long as a safety distance is kept. It is also continuous and piecewise differentiable and 
is thus suited as a nonlinear collision avoidance constraint for numerical solution with 
the direct collocation method DIRCOL described in the sequel. 

Numerical Solution Method 

Direct Collocation and Sparse Nonlinear Programming 

Consider the general optimal control problem 

!J 

min J[u, p, t,] ~ (x(tJ ), t1) + J L (x(t), u(t), p, t) dt 
0 

unter :i; f (x(t), u(t),p, t) 
0 $ g(x(t),u(t),p,t) 
0 h (x(t), u(t),p, t) 

x : [O , t1]-+ m.n• 
U: [0, t1J -+ m.n• 
p E m_n, 

t, 

vector of state variables 
vector of control variables 
vector of control parameters 
free or given final time. 

{10 

(11 
{12 

{13 

Furthermore, explicit or implicit, linear or nonlinear boundardy conditions rna.· 
imposed on the state and control variables at initial time t = 0, final time 
switching times ts; . The nonlinear algebraic constraint h = 0 allows the treatmer.· 
semi-explicit differential-algebraic equations of index 1. 
In a direct collocation approach, the state and control variables are approximar 
elements of a finite dimensional function space [2, 13] . Here, piecewise polynomial; 
been chosen. The time interval [0, t1] is divided into m 2:: 1 phases. Each phase;.; 
subdivided by n, + 1 grid points, i = 1, ... , m {Figure 2) . In each phase, the 
variables are approximated by continuous, piecewise linear polynomials, and 1: 
variables by continuously differentiable, piecewise cubic polynomials {Figure 3 

····r ~~ 

L 
At switching points ts, = 
variables or the state va:: 
The piecewise linear aDL'!':~I 

.-ith j = 1, . .. , nu, and 
Zopp by 

Xj,app(t 

a nonlinear optimiza 
·ummary, the parame 

!em consist of the va. 
ether with the control 

y = (P1 
u(t· 

u( 

with ny (n,-



side of the shuttles 
The latter collision 

tion 

s i w 
sEW. 

(8) 

(9) 

1ately describes the 
rith radius r which 

.n distance between 
kes a negative value 
· or equal to zero as 
:e differentiable and 
.erical solution with 

m ming 

!)dt (10) 

(11) 
(12) 
(13) 

(14) 

conditions may be 
) , final time t1, or 
111s the treatment of 

:e approximated by 
3e polynomials have 
Each phase is then 

. phase, the control 
nials, and the state 
Is (Figure 3). 

Trajectory Optimization of a Shuttle Mounted Robot 75 

t~ 

Figure 2: Discretization of the time interval. 

., 
piecewise linear piecewise cubic 

Figure 3: Approximation of control and state variables. 

At switching points t5, = t~, = t~+ 1 , i = 1, . . . , m- 1, discontinuities of the control 
variables or the state variables may be included in the discretization. 
The piecewise linear approximations Uapp can be derived by the formula 

u;,app(t) = u;(t~) + (t- t~)/(t~+l - tt} ( u;(ti+l) - u;(t~)), t E [ti, ti+1] 

with j = 1, ... , nu, and the continuously differentiable, piecewise cubic approximations 
Xapp by 

3 ( i . . )' 
X;,app(t) = E Ct,k (t- tk) / (tk+l - tk) , 

1= 0 
(15) 

Co,k x;(ti) 
Ct ,k hd;,k 
c2,k -3x;(ti) 2hd;,k + 3x;(ti+l) hk!;.k+l 
C3,k 2x;(ti) + hd;,k 2x;(ti+l) + hk!;.k+l 

(16) 

with j = 1, . .. , n, . Hereby the abbreviation 

!;.k := !; (x(ti). u(ti), p, ti), hk := ti+l- ti 
k = 0, ... , n; -1, i = 1, . .. ,m 

is used. On the basis of this approximation the optimal control problem is transformed 
into a nonlinear optimization problem, which is not convex in general. 
In summary, the parameters Y of the resulting nonlinearly constrained optimization 
problem consist of the values of the state and control variables at the grid points, 
together with the control parameters, the final time and possible switching points 

Y = (Pt.··· ,Pn,, 

u(t~), ... , u(t~,). x(t~) •. . . , x(t~,). ts11 

u(t0), ... , u(t;::.), x(t0), ... , x(t;:'~), ts~( E m.nv, (17) 
m 

with ny (nu + n,) 'L:(n; + 1) + np + m . (18) 
i = l 
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The nonlinear NLP equality constraints result from the differential equations (11) which 
are to be fulfilled pointwise (collocation) 

Xj,app(t)- f; (Xapp(t), Uapp(t),p, t) = 0 (19) 

for t = 1/2(tL1 + ti), k = 1, ... , n;, i = 1, ... , m, and at tL and tt. The latter 
are implicitly fulfilled by the chosen ansatz for the state variable approximation (16). 
More NLP equality constraints result from the boundary conditions on the state and 
control variables at initial, final, and switching times 

r
1 

( x(t~), t~, x(t;:'m), t;:'m) 

ri (x(t~~~ 1 ) ,x(t~),ts,_, ) 

0 

0, i = 2, ... ,m. 

(20) 

(21) 

Further NLP equality constraints result from a discretization of the algebraic equation 

(22) 

for k = 0, . . . , n;, i = 1, ... , m. The resulting nonlinear inequality constraints are 

for k = 0, ... , n;, i = 1, ... , m. Finally, every variable must fulfill a box constraint 

xtmin ~ x;(ti) ~ xj,ma.x' j = 1, ... , nz 

utmin ~ ul(tD ~ utmaxl l = 1, ... ,nu 
k = 0, . . . , n;, i = 1, .. . , m (24) 

Pl,min ~ p ~ Pl,max, l = 1, ... 'Tip 

tsi,min ~ ts, ~ ts,,max, i = 1, ... ,m. 

All in all, the nonlinear optimization problem (NLP) 

minimize <I>(Y), Y E IR.ny 

subject to Ymm ~ y ~ Ymax> 
a(Y) 0, 

(25) 

b(Y) 2: 0 

is obtained. Typical properties of NLPs of discretized optimal control problems are: 

• The NLPs are of large-scale with very many variables and very many constraints. 

• Many of the NLP constraints are active at the solution, e. g., the equality con
straints from collocation (19). Thus, the number of "free" variables of the NLP 
is much smaller than the total number of NLP variables ny . 

• The objective of the optimal control problem can without loss of generality be 
assumed to be of Mayer type [12] . Then the NLP objective only depends on a 
few of the NLP variables whose number is independent of the number of grid 
points. 

• The NLP Jacobians are sparse and structured. 
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All these features are taken into account in the recent version 2.1 of DIRCOL [12] 
that reduces computational time and memory resources drastically when compared to 
earlier versions. Furthermore, the derivatives are approximated by a mixture of ana
lytically derived gradients and tailored finite difference approximations which improves 
robustness . 
The resulting NLP problems are solved by the large-scale sequential quadratic pro
gramming (SQP) method SNOPT [5] . SQP methods are based on evaluating the search 
direction from a quadratic approximation of the Hessian of the Lagrangian subject to 
the linearized constraints. To ensure global convergence, an augmented Lagrangian 
merit function is used for computation of the step size. SNOPT is especially efficient 
for large-scale problems with many active constraints [4]. It is based on partitioning 
the NLP variables in basic, superbasic and nonbasic variables. The Hessian of the 
Lagrangian is approximated by limited-memory quasi-Newton updates and a reduced 
Hessian algorithm is used for solving the QP subproblems. The null-space matrix of 
the current working set matrix is obtained from a sparse LU factorization. 

Local Accuracy Checks and Grid Refinement 

A user of DIRCOL doesn't have to deal with adjoint differential equations, Euler
Lagrange equations or the Maximum Principle. Nevertheless, an estimation of the 
adjoint variables >.(t) and multipliers 17(t) of equality and v(t) of inequality constraints 
are provided by DIRCOL which are obtained from the Lagrange multipliers of the 
NLP [11 , 12] . Thus, additional checks of the computed solution with consistency of 
the necessary conditions resulting from the Maximum Principle are enabled. Based on 
these estimates also local optimality error estimates and an absolute error estimate of 
the objective can be computed. 
Let <I> be the "true" minimum objective value and ~ the computed value for the dis
cretized problem. Then the absolute error of the objective is given by 

w=<I>-~. (26) 

An estimate w of w can be obtained by a sum of local error estimates in each discretiza
tion interval [11] 

m n1-l 

w=L: I: wi,k· (27) 
i=l k=O 

Let tilde- denote the numerically computed solution. The local optimality error in the 
interval [ti,ti+d is now estimated by 

t' 

w;,k = ~ 1' 5.i(t) (ii(t)- fj(x(t) , u(t),fi, t)) dt 
]=I ~~ 

ng t~+l . 
+ L: J i]j(t)gj (x(t), u(t) ,fi, t) dt (28) 

i=l ti 
nh t~+l . 

+ L: J iW)hj (x(t), u(t),ji, t) dt, k = 0, ... , n;- 1, i = 1, . . . , m . 
j=l t~ 

In DIRCOL [12] the integrals of (28) are approximated by trapezoidal sums. If the 
integration is done over the absolute values of the integrands, an upper bound of the 
absolute error is approximated. 



~~-.!· .... -

78 M. Clocker, M. Vogel, 0. von Stryk 

Several other local error estimators are also implemented. Due to the approximation 
of the state variables, the differential equations are satisfied precisely only at the grid 
points and the centers in between. An absolute error function d(t) of the differential 
equations inside the discretization interval [ti, ti+lJ is defined by a piecewise linear 
function at the points 

t~+l/4 = t~ + l/4(ti+l - ti), l = 0, . .. '4 (29) 

using the formula 

d(ti+l/4) :=max {lx;,app(t)- fj (Xapp(t), Uapp(t),Papp 1 t)l at t = ti+l/4, j = 1, . .. , n.,}, 

l = 0, .. . , 4, k = 0, .. . , n; - 1, i = 1, .. . , m. 
(30) 

At the same check points of Equation (29) the violations of the inequality constraints 
are computed. 
The above mentioned local accuracy checks are used to automatically refine the dis
cretization grid by DIRCOL. Intervals with local error estimates larger than given 
tolerances are splitted up by inserting new grid points. The resulting new NLP is then 
solved starting from the previous solution of the coarser grid. 

Results 

problem 
q3(to) 

DIRCOL-1.2 DIRCOL-2.1 speed-up 
no. with NPSOL with SNOPT factor 

2.205 3055s 65s 47 
2 2.204 2841s 107s 27 
3 2.202 2827s 79s 36 
4 2.150 3072s 182s 17 
5 2.100 3228s 97s 33 
6 2.050 3573s 100s 36 
7 2.000 4076s 121 s 34 
8 1.950 3001s 27s 111 
9 1.930 2536s 7s 363 

10 1.925 4768s 17 s 280 
11 1.900 3604s 24s 150 

sum: 36581 s 826s 44 

Table 1: Comparison of the computing times of the older version 1.2 of DIRCOL 
(with the standard SQP method NPSOL-5.0-2) and the recent version 2.1 (with the 
large-scale SQP method SNOPT 5.3-5) for a family of minimum energy robot trajectory 
problems with different initial positions and given final time t1 = 100 s. A discretization 
by n1 = 24 grid points yields NLP dimensions (25) of ny = 363, n 4 = 299, nb = 24. The 
percentage of nonzero elements of the NLP Jacobian is 8.5 %. The computing times 
refer to an SGI Indigo2 workstation with a MIPS R4400/150 MHz processor which is 
about seven times slower than a PC with a recent Pentium 11/ 500 MHz processor. 

The semi-implicit second order system (1) is formally transformed into an explicit first 
order system (11) by x := (r/1 , ~. q, q)T, i. e. , n., = 12, nu = 3, in order to apply DIRCOL. 
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A minimum energy trajectory for a fixed final time t1 = 100s is computed first . The 
minimum time trajectory with t1 = 83.77s is computed from this initial trajectory 
by a homotopy. Figure 5 shows an approximation of the history of the Hamiltonian 
computed from the approximations of state (Figure 7), control (Figure 6), adjoint 
and multiplier variables provided by DIRCOL for a refined grid of 54 non equidistant 
grid points. The problem is autonomous. Thus, the Hamiltonian must be (piecewise) 
constant. Furthermore, it must be equal to -1 at t1 for the minimum time trajectory. 
The history of the nonlinear state constraint 6. 2: 0 for collision avoidance is depicted 
in Figure 4. It becomes active at its lower bound approximately within [36 s, 59 s]. 
Figure 6 shows the computed minimum time controls. They clearly exhibit bang-bang 
structures as it is likely for a minimum time optimal control problem when the controls 
appear linearly in the Hamiltonian. Furthermore, u1 exhibits a singular behavior along 
the active subarc of the nonlinear state constraint 6.. 
A comparison of the performance of the recent version 2.1 of DIRCOL with the older 
version 1.2 that doesn't utilize the problem structure is given in Table 1. The average 
speed-up of 44 for 24 grid points becomes even larger as the number of grid points is 
increased. 
A three-dimensional visualization of the minimum time trajectory is displayed in Fig-
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Figure 7: State variables of the minimum time trajectory. 

ure 8 which has been obtained using the graphics library SIGMA [1]. SIGMA offers 
the possibility for photo-realistic visualization of material and surface structures and 
can also be used for animations. 

Summary 

Optimal path planning for a shuttle mounted remote manipulator system is investi
gated. Equations of motion are derived using computer-aided modelling with SIM
PACK where robot arms and load are modelled as three-dimensional, rigid bodies. 
Constraints are considered that avoid collisions between the robot arms and the shut
tle and that re-establish the shuttle 's attitude at the beginning of the maneuver also 
at the end. The resulting optimal control problems are solved by a direct collocation 
discretization and nonlinear programming. A recent version of DIRCOL takes into 
account the structure of the discretized problems and utilizes the sparse SQP method 
SNOPT for solving the resulting large-scale, sparse and structured nonlinear program
ming problems. The new method which utilizes much of the problem structure is orders 
of magnitude faster than the previous method without any loss of robustness. Typical 
minimum time and minimum energy trajectories are discussed in detail. 
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Figure 8: Visualization of the minimum time trajectory. 
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