
Obtaining Minimum Energy Biped Walking Gaits with Symboli
Models and Numeri
al Optimal ControlM. Hardt1 K. Kreutz-Delgado2 J.W. Helton3 O. von Stryk11 Zentrum Mathematik, Te
hn. Univ. M�un
hen, D-80290 M�un
hen, Germany2 Dept. of Ele
. Eng., UCSD, 9500 Gilman Dr., La Jolla, CA 92093-0407, U.S.A.3 Dept. of Math., UCSD, 9500 Gilman Dr., La Jolla, CA 92093-0112, U.S.A.We dis
uss our solution to the problem of generating symmetri
, periodi
 gaits for a 5-link bipedrobot. We seek to approximate natural motion through the minimization of its inje
ted energy.Our model stands out in that we 
onsider the 
omplete nonlinear dynami
al model for the robotmoving in the sagittal plane of forward motion. Both phases of walking, the swing and double-support phases, are expli
itly modeled, in
luding the 
onta
t and 
ollision e�e
ts 
hara
teristi
 ofea
h phase. A large number of 
onstraints involving the 
onta
t for
es, 
onditions for periodi
ity,and the range of motion must be 
onsidered whi
h ensure the validity of the 
al
ulated motion. Thesolution of this 
omplex problem was made possible through the use of various symboli
, dynami
alalgorithms relating to multibody systems in 
ombination with powerful numeri
al optimal 
ontrolsoftware. Re
ent improvements in both areas have also further in
reased the potential to treat evenmore 
omplex biped models. The symboli
 nature of the re
ursive multibody algorithms, used forevaluating the dynami
s and in
uen
es of 
onta
t and 
ollision, fa
ilitate any 
hanges made to thenumber of limbs, points of a
tuation, or to the mass and inertia properties of the system. This
exibility allows one to readily treat many di�erent 
ases su
h as the undera
tuated 
ase whenno ankle torques are allowed, and the introdu
tion of impulsive for
es for 
ontrol purposes. Theminimum energy walking problem be
omes a path planning problem on a 14-dimensional statespa
e with saturation and algebrai
 
onstraints on the state variables. The solution will satisfya Hamilton-Ja
obi-Bellman type equation along the optimal path. The optimal 
ontrol softwareDIRCOL may solve su
h multi-phase problems with various forms of 
onstraints, and it handleswell the high degree of nonlinearity and dimensionality found in our problem. A newly availableversion of this software has also provided a substantial de
rease in the required 
omputing time forgenerating solutions. We dis
uss these and other improvements to our solution approa
h in thispaper.1 Introdu
tionModeling and understanding the seemingly simple pro
ess of human walking remains as one ofthe more diÆ
ult resear
h problems in multibody systems and roboti
s due to its 
omplexityand high dimension. There are many variations of walking in humans, though we will 
on
ernourselves only with the periodi
 motion asso
iated with moving at a 
onstant average speedon a 
at surfa
e. Due to the 
omplexity of the problem, 
ompromising simplifying modelingassumptions were often made in previous work to make it more tra
table. Even a simple 5-link biped robot with all rotational joints and full motion degrees of freedom will have a 14dimensional state spa
e when represented with respe
t to generalized 
oordinates. One alsoen
ounters a di�erential-algebrai
 system when 
onta
t 
onstraints of the leg with the groundare 
onsidered.A very thorough investigation into minimum energy walking with numeri
al methods wasundertaken early on in [2℄ using a highly simpli�ed model whi
h resulted in a 2-link manipu-lator. The idea of sear
hing for a passive walking motion whi
h 
an approximate better theminimum energy motion witnessed in humans was also expressed in the work of M
Geer [9℄ andlater with Goswami et al. [5℄. The minimum energy path is desirable for it exhibits stabilizing,attra
tive properties. Our experiments have shown that many walking traje
tories, naively
hosen to approximate walking motion, 
an require a huge in
rease in energy over that of the1



optimally 
al
ulated minimum energy motion. Other re
ent work also investigating minimumenergy motion with simpli�ed models may be found in [11℄. Very interesting walking ma
hineswere 
onstru
ted by M
Geer [9℄ and also by Kajita [8℄. Kajita modeled the biped dynami
s asan inverted pendulum with point masses whose simpli
ity for
ed an interesting and unusual
onstru
tion of the biped.To properly model walking, one should 
onsider expli
itly both phases of walking. The�rst phase has one leg in 
onta
t, while in the shorter se
ond phase both legs are in 
onta
twith the ground. The diÆ
ulty with this perspe
tive, however, is that one is fa
ed with adi�erential-algebrai
 system with a varying number of algebrai
 
onstraints. The 
ollision ofthe leg with the ground results in jump 
onditions on the velo
ities while there also existssaturation 
onstraints on the state variables and the a
tuators.In this paper, we explain how our numeri
al approa
h is able to produ
e solutions whi
hsatisfy these and other 
onstraints. The �rst step towards redu
ing the 
omplexity of theproblem was made in modeling the dynami
al system very eÆ
iently using re
ently developedre
ursive, symboli
 algorithms [6℄. This allows one to 
hange the model \easily" and to greatlyspeed (the very many) fun
tion evaluations whi
h o

ur in running an optimization 
ode (oreven a simulation). This is des
ribed in [6℄ and in this paper we brie
y sket
h how re
ursivesymboli
 dynami
s are used on the biped.Another important step was the 
reation of a redu
ed dynami
s algorithm for evaluatingthe un
onstrained redu
ed-dimensional dynami
s of the biped whi
h a

ount for the 
onta
t
onstraints [7℄. This makes it possible to integrate in time the redu
ed system rather thanthe full di�erential-algebrai
 dynami
al system. This algorithm was �rst presented in thedes
ription of this work found in [7℄.The last 
omponent of our solution approa
h involves the use of powerful numeri
al optimal
ontrol software (DIRCOL) [14, 15, 16℄. This re
ently developed software 
an handle 
ontrolproblems of high dimension with many forms of 
onstraints. We des
ribe how we su

essfullyapply these 
al
ulational tools to our problem. Our des
ription in
ludes 
oordinate sele
tionswhi
h proved essential for ours and possibly for other numeri
al approa
hes, see Se
tion 3.5.We also indi
ate numeri
al experien
e with the use of DIRCOL in Se
tion 5.1.We �nally dis
uss our experimental �ndings and 
ompare a few of them to medi
al �ndingson humans. Noteworthy are:� Minimum energy walk for biped model (without expli
it modeling of the feet) has a mu
hslower walk than the optimal human walk.� The optimal model walk has shorter steps than the optimal human walk; however, steplength 
omparisons with the human walk are diÆ
ult be
ause our model has no feet. These�ndings suggest an area for future work.� The 
urve \energy of optimal walk (resp. optimal step length) vs average forward velo
-ity," whi
h we obtained numeri
ally, has the same qualitative shape as the hyperboli
 (resp.linearly) relationship 
lini
ally observed in humans.In an attempt to add a
tuation whi
h might resemble the a
tion of feet we in
luded twofor
es. First we allowed an additional lifto� for
e whi
h a
ts as an impulse dire
ted upward onthe bottom of the swing leg when it lifts o� of the ground. This resembles the upward thrustimparted by the foot at lifto�. Se
ondly, we allowed ankle torques at the point of 
onta
t ofthe legs with the ground.In the dis
ussion of our numeri
al experiments, we studied many di�erent model variationsand present here a few of them. For example, we turn the lifto� impulse and ankle torques onand o�. Other parameters whi
h are varied are the biped's step length, the time of one step,and the proportion of time 
orresponding to the 
onta
t phase. We also dis
uss the e�e
t ofthese parameters on the system energy. Findings on the lifto� impulse and the ankle torquesare: 2



� Impulsive lifto� for
es help prevent torque saturation, smooth the walking motion, andredu
e the energy 
onsumed.� Ankle a
tuation smooths the walking step and distributes the required input torquesmore equally among the hip, the knee, and the ankle.Preliminary results for the solution of this problem were �rst presented in [7℄ while thewhole paper is based on [6℄.2 Human WalkingThe human walking step is 
omposed of two di�erent phases. The �rst phase is the swingphase or single support phase when one foot is on the ground while the other swings. Thisphase begins with the moment of lifto� and ends with the 
ollision of the swing foot with theground. This phase makes up the majority (80 � 90%) of the duration of the walking stepin human walking. The se
ond phase is 
alled the double support phase as both feet are onthe ground while the body is moving forward. This phase usually makes up only a small part(10� 20%) of the human walking step.

Figure 1: Walking PhasesAlso of interest are the transitions between phases. Immediately at the beginning of theswing phase is the moment of lifto�. Here, the foot is just propelling the body forward sothat the leg loses 
onta
t with the ground. The other transition between the swing and doublesupport phases is 
hara
terized by a 
ollision of the swing foot with the ground. Figure 1gives a graphi
al depi
tion of our biped model �rst in the swing phase, then in the doublesupport phase.Some additional detailed de�nitions 
an be useful. The 
aden
e is de�ned as the numberof steps in a standard time frame (e.g. steps/min). The step length is the distan
e betweenthe same point on ea
h foot during the double support phase. The stride length, on the otherhand, is the distan
e traveled between two su

essive foot strikes of the same foot and is equal3



to two step lengths. Ea
h stride is, thus, 
omposed of one right and one left step length. Allmeasurements given will be in meters.3 Model and Dynami
s3.1 Biped ModelMany of the essential 
hara
teristi
s of the human walking motion may be 
aptured with a5-link planar biped walking in the two-dimensional sagittal plane, the verti
al plane bise
tingthe front of the biped. The model 
ontains two links for ea
h leg plus a large, massive torso,whi
h also fun
tions as the base of the tree-stru
tured multibody system. Though the motionis 
onstrained to the 2-dimensional verti
al sagittal plane, in our experiments we model thelinks with a 3-dimensional ellipti
al shape and a uniform distribution of mass. The physi
aldata 
orresponding to the model used in our experiments 
an be found in Table 1.Table 1: Biped Model Physi
al DataLink Mass Length RadiusTorso 20 kg 0.72 m 0.12 mUpper Leg 7 kg 0.50 m 0.07 mLower Leg 4 kg 0.50 m 0.05 mThough feet are not in
luded in our biped model, mu
h of their in
uen
e may be modeled inways whi
h do not in
rease the dimension of the system. From the 
ontrol perspe
tive, two ofthe main 
ontributions of the feet, when not expressly 
onsidering fri
tion, are the introdu
tionof ankle torques and the lifto� for
e produ
ed as the heel 
omes o� of the ground. It is possibleto in
lude ankle torques in the model by treating these as external for
es in
uen
ing the tipsof ea
h leg at the points of 
onta
t. Rather than modeling a lifto� for
e whi
h lasts the entireduration of the double 
onta
t phase, as is normally the 
ase with the foot, we model thelifto� for
e as an instantaneous impulsive for
e o

urring at the moment of lifto�. This lastte
hnique has 
ertain numeri
al advantages though it 
annot 
ompletely reprodu
e the e�e
tof the foot as will be shown in the reports of our numeri
al experiments.There are a total of 14 states, 6 
ontrol variables, and 1 
ontrol parameter in our 
ontrolproblem if an impulse lifto� for
e is modeled.x1{x3 torso orientation and position in the verti
al planex4{x6 torso angular and linear velo
ityx7,x8 angle position and velo
ity of leg 1 hipx9,x10 angle position and velo
ity of leg 1 kneex11,x12 angle position and velo
ity of leg 2 hipx13,x14 angle position and velo
ity of leg 2 kneeu1,u2 applied torque at leg 1 hip and kneeu3,u4 applied torque at leg 2 hip and kneeu5,u6 applied torque at leg 1 & 2 ankles3.2 Re
ursive, Symboli
 Dynami
al AlgorithmsThe state equations of the biped walker are those of a multibody system experien
ing 
onta
tfor
es, �� =M�1(u+ JT
 f
 � C � G) : (1)4
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Figure 2: At the beginning of phase 1 an impulse for
e fimp 
an propel the body forward. During phase 2,both legs experien
e 
onta
t for
es.In equation (1), M is the square, positive-de�nite mass-inertia matrix, C is the ve
tor ofCoriolis and 
entrifugal for
es, G is a ve
tor of gravitational for
es, u are the applied torquesat the links, J
 is the 
onstraint Ja
obian, and f
 is the 
onstraint for
e.Several di�erent approa
hes to re
ursive, symboli
 multibody algorithms were studied,
ompared, and represented in a unifying formalism in [6℄. This work also in
luded the extensionof several algorithms to multiple degree of freedom joints and tree-stru
tured systems. Theapproa
h is based on de
omposing the dynami
al quantities into physi
al, matrix operators.The various link operations are sta
ked into larger, matrix operators whi
h, in turn, provide avery 
lean notation whi
h 
an easily be manipulated for estimation and 
ontrol design purposes.For high dimensions, re
ursive, symboli
 dynami
al models are more eÆ
ient for 
al
ulatingthe forward dynami
s than other non-re
ursive pro
edures whi
h require 
onstru
ting andinverting the entire mass-inertia matrix,M.3.3 Conta
t and Redu
ed Dynami
sSpe
ial re
ursive algorithms have also been developed to determine the 
onta
t for
es expe-rien
ed by the biped under 
onta
t and the resulting generalized a

elerations �� whi
h areprodu
ed. See Appendix 1, also see [7℄ and the referen
es found therein.An important 
omponent of our dynami
al modeling whi
h also 
ontributed to our abilityto solve this problem was the development of a Redu
ed Dynami
s Algorithm whi
h makesuse of the Conta
t Algorithm and whi
h is more fully des
ribed in Appendix 2. Be
auseof the 
onta
t 
onstraints, we are fa
ed with a di�erential-algebrai
 system. Two 
oursesof a
tions are possible when it is ne
essary to integrate the dynami
s, one being the use ofspe
ially tailored integration routines whi
h often require the partial derivatives of the various
onta
t 
onstraints. The preferable approa
h, however, is to use a redu
ed un
onstrained setof dynami
s whi
h evolve on the 
onstraint manifold. Then it is possible to use standardintegration pro
edures. This latter approa
h is the one we take.5



In the �rst phase of the biped motion, where one leg is swinging, the 
onta
t 
onstraintsredu
e the total degrees of freedom from 7 to 5. Thus, using the Redu
ed Dynami
s Algorithm,an un
onstrained 10-dimensional state spa
e 
an represent the system during this period in-stead of the full 14 dimensions for the 
ompletely free system. The remaining 4 states and theirtime derivatives 
an be determined from the 10 independent states and their time derivatives.Similarly in the shorter se
ond phase, when both feet are in 
onta
t with the ground, 
onta
t
onstraints allows us to work with a system with only a 6-dimensional state spa
e.3.4 Collision and Impulsive For
esClosely related to the Conta
t Algorithm is the Collision Algorithm. This algorithm 
al
ulatesthe dis
ontinuous jump in generalized velo
ities resulting from inelasti
 
ollisions of the multi-body system with its environment. We model the 
ollision of the swing leg as it makes 
onta
twith the ground in this manner. The re
ursive algorithm determines �rst the instantaneousimpulsive for
e experien
ed by the system, then propagates it throughout all the links of themultibody system.In several of our experiments, we introdu
e an impulsive for
e along the axis of the legabout to lift o� of the ground thereby aiding the biped in maintaining its forward momentum.The Collision Algorithm 
an also be used to determine the resulting jump in the generalizedvelo
ities. The magnitude of the impulsive for
e be
omes an additional 
ontrol parameterwhi
h must be in
luded into the energy 
riteria to be dis
ussed in Se
tion 4. Figure 2displays both the in
uen
e of the 
onta
t for
es on the biped model and the introdu
tion ofan impulsive lifto� for
e.3.5 Box Constraints and Polar Position CoordinatesMagnitude 
onstraints on the state, 
ontrol, and parameter variables, su
h as those arising fromsaturation 
onstraints, translate mathemati
ally to simple inequality 
onstraints on individualvariables. Su
h 
onstraints are typi
ally 
alled box 
onstraints. Numeri
ally, these usually arethe most tra
table type of inequality 
onstraints, making it preferable to put 
onstraints inbox form whenever possible. Mu
h worse are inequality 
onstraints on nonlinear fun
tions ofthe states, 
ontrols, and parameters.It is desirable to �nd, if possible, a 
hange of 
oordinates to reformulate a nonlinear in-equality 
onstraint as a simple box 
onstraint with a di�erent set of variables. This simple tri
kturns out to be very important for dealing with a key 
onstraint in our biped motion problem,namely, that the length of the leg on the ground and the hip height are 
ompatible. In Cartesian
oordinates, this translates to a nonlinear inequality 
onstraint whi
h, if implemented dire
tly,has numeri
ally unpleasant 
onsequen
es. Indeed, we were unable to solve biped optimal pathplanning problems until we realized that by using polar 
oordinates the hip vs. leg length
onstraint be
omes equivalent to a 
olle
tion of box 
onstraints.We give here more details on this and other box 
onstriants. Re
all that there exist twoposition variables des
ribing the x and y position 
oordinates for the torso and, 
onsequently,the entire biped robot. These position 
oordinates are represented in the lo
al torso 
oordinatesystem. The nonlinear inequality 
onstraints whi
h we mentioned above is that the hip remainat a distan
e from the origin no greater than the length of an extended leg. This requirementa�e
ts leg 1 whi
h supports the body during the swing phase. With the use of the Redu
edDynami
s Algorithm, the position and velo
ity variables for leg 1 are not part of the stateused in the optimization pro
ess. Their values must be 
al
ulated via inverse kinemati
s andthe Collision Algorithm every time the dynami
s need to be evaluated. If the hip is too farfrom the origin, then we will not have suÆ
ient information to determine the state of leg 16



plus the system will have entered a free-
ying 
on�guration during phase 1 or a single-support
on�guration during the double support phase. By 
onverting the x; y 
oordinates to polar
oordinates r and �, it is then possible to pla
e a simple magnitude 
onstraint on r whi
h willserve the same fun
tion as the nonlinear inequality 
onstraint previously mentioned.Additional box 
onstraints on the state variables 
orrespond to ensuring a sensible rangeof motion for the robot su
h as that the knee may not bend ba
kwards. We pla
e magnitudebox 
onstraints as well on the applied torques at the hip, knee, and ankle. We will des
ribe inthe experiment se
tion how these 
onstraints be
ome a
tive while moving at higher velo
itiesand how impulsive lifto� for
e 
an partially remedy the problem. The bounds we pla
e on theankle torques are only half of those at the hip and knees.3.6 Boundary ConstraintsAs we are solving a �nite-time problem, the boundary 
onstraints of the biped walking problemrepresent an important part of the problem de�nition. We allow a number of parameters tobe variable. These are as follows:p1 = step length (meters)p2 = magnitude of lifto� impulsive for
ep3 = time of 
ollision (se
onds)p4 = average forward velo
ity (meters/min)At the initial and �nal time, periodi
ity of the states and 
ontrols must be enfor
ed while inbetween phases 
ontinuity is enfor
ed. Another boundary 
onstraint is that if an impulsivelifto� for
e is in
luded at the beginning of phase 1, then the velo
ities must re
e
t the suddenjump 
aused by the impulsive for
e. Given the magnitude of the impulsive for
e p2, theCollision Algorithm 
an determine the resulting new velo
ities for the beginning of phase 1.A further boundary 
onstraint is the swing leg must also land at the time of 
ollision, p3, at astep size equal to p1. Sin
e in our experiments we 
onstrain the proportion of phase 1 to 85%of the total time of the walking step, the �nal or total time (also variable) may be determinedfrom the phase 1 duration p3.3.7 Nonlinear Inequality ContraintsThere are several 
onstraints whi
h must be enfor
ed along the duration of the walking step.First, we must ensure that the swing leg always remain above ground while in motion duringphase 1. This involves a series of simple kinemati
 
al
ulations. Additionally, we require thatthe verti
al 
omponent of the 
onta
t for
es in ea
h phase remain positive so that there is nota premature lifto� of the leg from the ground. If this 
omponent does not remain positive andwe are still 
onstraining the leg to be in 
onta
t, then the 
on�guration will not make sense.These 
onta
t 
onstraints do require a signi�
ant amount of 
omputation in order to eval-uate them, and we have determined them to be ne
essary as they 
an easily be violated ifthey are left out. In fa
t, the ne
essity of these 
onstraints inspired us to begin working witha more 
omplex tree-stru
tured model with the torso as the base of the biped and full posi-tional degrees of freedom in the plane. A simpler model would take the foot whi
h is alwaysin 
onta
t with the ground during one step to be the base. Several investigators take thisapproa
h in their handling of the problem, but this prevents the veri�
ation of the 
onta
tfor
e inequalities. 7



4 Minimum Energy Performan
eExperiments have shown humans to walk in an energy eÆ
ient manner. In [10℄, a detailedstudy is presented of energy expenditure in a
tual human walking where resear
hers haveexplored the relationships whi
h exist between real energy data and human walking motion.A simple yet fairly a

urate relationship is one in whi
h the energy expended is quadrati
 inthe forward velo
ity, Ew = 32 + 0:005v2 : (2)Here v is the average forward velo
ity inm/min andEm is the energy requirement in 
al/kg/minfor the average human subje
t. An often more desirable set of units for walking energy is tomeasure it per distan
e traveled (m = meters) rather than per time elapsed (min = minutes)sin
e this 
onveys more the notion of energy e
onomy. We denote this form of energy as Em.Its units are 
al/kg/m, and it is related to Ew and the previous relationship byEm = Ewv = 32v + 0:005v : (3)This fun
tion will now have a hyperboli
 shape. This and most other fun
tional relationshipssu
h as (3) indi
ate a minimum energy motion of an 80 m/min walking velo
ity with an energyexpenditure of 0.8 
al/kg/m. The experiments also show average 
aden
es of 105 steps/minand an average step length of 0.75 m for an adult male.In our study, we shall minimize a quantity proportional to the inje
ted energy into thesystem, the integral of the applied torques,J = �Z T10 uTu dt+ Z TT1 uTu dt�=step length ; (4)where T1 is the time at the end of the �rst phase (swing phase), and T is the time at the endof the se
ond phase (double-
onta
t phase). Dividing by the step length, the distan
e betweensu

essive heel strikes, gives the expended energy per meter traveled. If an impulsive for
e isadded, then this 
ontrol parameter will also be added into the performan
e,J=�Z T10 uTu dt+Z TT1 uTu dt+ u2imp�=step length: (5)This general form of minimal energy performan
e was also used in [11℄.The performan
e J is not a measure of the me
hani
al work performed on the system, andwe are unable to determine the 
hange in energy of the body from J . In fa
t, for our bipedmodel, we are minimizing a quantity proportional to the energy required for a motion. Inhumans, this is analogous to the di�eren
e between me
hani
al energy and metaboli
 energy.As no system, not even a human, is perfe
tly eÆ
ient, these quantities will di�er and theirrelationship in humans still remains a very diÆ
ult and unanswered problem [10℄. In roboti
s,we do not have metaboli
 energy, but for a simple a
tuation model, our approa
h amounts tominimizing the energy required for dire
t drive motors at the joints to produ
e the requiredtorques. This approa
h provides a more numeri
ally tra
table way of rea
hing our performan
eobje
tives.5 Numeri
al Optimal ControlDire
t optimization methods for optimal 
ontrol are 
hara
terized by the minimization of a
ost fun
tional whi
h is a fun
tion of the system state and the 
ontrol input u. An example8



of su
h a method is the program DIRCOL [14, 15, 16℄, whi
h 
an handle impli
it or expli
itboundary 
onditions, arbitrary nonlinear equality and inequality 
onstraints on the state vari-ables, and multiple phases where ea
h phase may 
ontain a di�erent set of state equations.DIRCOL fun
tions by pa
kaging the optimal 
ontrol problem along with its 
onstraints intoa 
onstrained, nonlinear minimization problem whi
h is solved by an SQP-based optimization
ode NPSOL [3℄, or SNOPT [4℄ whi
h takes advantage of sparsity.The output of the numeri
al optimal 
ontrol program will be the optimal open-loop solutionfor the 
ontrol u(t) and the 
orresponding state traje
tory x(t) at the 
hoi
e of grid pointsin time. DIRCOL dis
retizes the state and 
ontrol variables in time over the traje
tory. The�neness or 
oarseness of the dis
retization 
an have a large in
uen
e over the time required togenerate a solution. The re
ently released DIRCOL 2.0 using sparse optimization te
hniqueshas shown itself to be faster and more robust.As previously mentioned, there are a total of 14 states, 6 
ontrol variables, and 1 
ontrolparameter in our 
ontrol problem. All of these quantities have magnitude saturation boundspla
ed upon them in the optimization pro
ess, though the majority never be
ome a
tive.The 
ontrol saturations are the most important as in many experiments these will saturate,parti
ularly at higher speeds. The bounds on the ankle torques are also smaller than those atthe other joints, as the ankles 
annot provide as great a for
e as the hips and knees 
an.In addition to magnitude 
onstraints, there are expli
it 
onstraints on the initial and �nalstate of ea
h phase whi
h assign those 
onstrained states and 
ontrols a �xed value whi
hmay depend on other known values. These are 
alled expli
it boundary 
onditions, whileimpli
it boundary 
onditions are those for whi
h the states and 
ontrols must satisfy a nonlinearalgebrai
 equation. Finally, we have nonlinear inequality 
onstraints whi
h must be satis�edby the states and 
ontrols along the duration of the walking step. The 
onstraints outlined inSe
tion 3.6 result in a total of:Expli
it boundary 
onditions at initial and �nal time: 13Expli
it boundary 
onditions in between phases: 17Impli
it boundary 
onditions at initial and �nal time: 7Impli
it boundary 
onditions in between phases: 3Nonlinear Inequality Constraints in phase 1: 2Nonlinear Inequality Constraints in phase 2: 35.1 Optimization TrialsThe high degree of nonlinearity and high dimension of the problem, along with all the 
on-straints, make it unreasonable to assume that by spe
ifying the state equations, boundary
onditions, and inequality 
onstraints together with a naive initial guess of the solution, theoptimization pro
edure will immediately �nd an optimal solution. Various simpler problemswere �rst solved su
h as that of standing in pla
e and then moving only small distan
es. Infa
t, an iterated pro
ess was undertaken whi
h gradually approximated the a
tual problem,whereby the solution of ea
h generalization of the problem was made using the previous oneas an initialization.For most trial runs, we used 13 grid points in time, 8 in the �rst phase and 5 in the se
ondphase. As the number of grid points has a large in
uen
e on the length of ea
h optimizationrun, it is preferable to use a 
oarse grid, then to re�ne the grid if more exa
t solutions areneeded. Run times depend on the starting values given to the problem and the problem to besolved. 9



DIRCOL transforms the 
omplete problem to a nonlinear optimization problem with 197variables, 131 nonlinear equality 
onstraints, and 23 inequality 
onstraints. The number offun
tion 
alls during a sample optimization run are:DIRCOL Version 1.2 2.0Optimization Program NPSOL SNOPTFun
tion CallsState equations 568635 230952Impli
it Boundary Const. 43430 8497Nonlinear Ineq. Const. 249928 125099Run Time 18 min. 12 min.These runs were 
ondu
ted on a Spar
 Ultra 2 with a 166 MHz pro
essor. The advantageof DIRCOL 2.0 over DIRCOL 1.2 in solving a parti
ular problem was, in fa
t, mu
h greaterthan the statisti
s above indi
ated. This is be
ause several subproblems would often have tobe solved with DIRCOL 1.2 before the 
omplete problem 
ould be solved. For example, asubproblem would be solved without enfor
ing positivity of the 
onta
t 
onstraints, then the
omplete problem 
ould be solved by initializing it on the solution of the subproblem. DIRCOL2.0 would usually not require this 2-stage solution pro
ess as its domain of 
onvergen
e is larger,thus saving mu
h time.6 Optimal Walking ExperimentsTwo main 
ategorizations 
an be made in that we explore �rst walking without any form of liftpropulsion. We then add to our biped the possibility of introdu
ing an instantaneous impulsivefor
e at the moment of lifto� to help the body move forward. In both settings, the additionale�e
t of using ankle torques is investigated so that we 
ompare all together 4 distin
t 
ases.Lifto� impulses and ankle torques both help 
ompensate for the absen
e of a foot in our bipedmodel.6.1 Optimal Forward Velo
ities vs. EnergyWhen energy is 
onsidered in terms of (
al/kg/m), as in Se
tion 4 then the equationEm = 32v + 0:005 v (6)has been shown experimentally to roughly model the relationship witnessed in humans be-tween required energy Em and the average forward walking velo
ity v [10℄. This hyperboli
relationship has an energy minimizing walking velo
ity of 80 m/min. Figure 3 displays therelationship that we en
ounter in our experiments whi
h, while reasonably hyperboli
, has amu
h lower energy minimizing velo
ity of approximately 12 m/min. A possible 
onje
ture forthe disparity with optimal human walking is the la
k of the foot e�e
t whi
h provides essen-tially an extension of the leg when the ba
k heel lifts o� of the ground propelling the bodyforward and redu
ing the e�e
ts of 
ollision.Figure 3 also 
ompares optimal walking with and without impulsive lifto� for
es. Thedashdot and dotted lines in indi
ate the energy relationship for walking with an impulsivelifto� for
e. A signi�
ant energy savings is obtained over walking without su
h a lifto� for
e(solid and dashed lines), though there is no noti
eable 
hange to the optimal walking speed.The e�e
t of ankle torques, whi
h is also displayed, is small.10
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ity. With ankle torques (solid); no ankle torques (dashed); withankle torques and lifto� for
e (dashdot); with lifto� for
e (dotted).6.2 Optimal Forward Velo
ities vs. Step LengthCorresponding to our 12 m/min globally optimal walk is also a mu
h smaller step size of 0:1mthan the 0:75m witnessed in humans. Figure 4 also displays how the optimal size of the stepin
reases with in
reasing average forward velo
ity; note that all 
ases yield a roughly linearrelationship. The overall trend we observed is very similar to the standard observation that[10℄ optimal step length for human is dire
tly proportional to the average forward velo
ity.11
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Figure 5: Optimal traje
tories of hip horizontal position and velo
ityfor walking with lifto� for
es. Walk Speed: 12 m/min. No ankletorques (dashed); with ankle torques (solid). Walk Speed: 50 m/min.No ankle torques (dotted); with ankle torques (dashdot).
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Figure 6: Optimal traje
tories of hip and knee verti
al positions forwalking with lifto� for
es. Walk Speed: 12 m/min. No ankle torques(dashed); with ankle torques (solid). Walk Speed: 50 m/min. Noankle torques (dotted); with ankle torques (dashdot).Sin
e the biped has no foot, how step length should be 
ompared to that of a human is not
lear.6.3 Forward Velo
ities and CollisionsWe display in Figure 5 the hip horizontal displa
ement and hip forward velo
ity for a 
om-plete, periodi
, double step with an impulsive lifto� for
e. In order that the various walkingtraje
tories may be more easily 
ompared, we plot on the horizontal axis the normalized time12



for a step (normalized so that the �nal time for every step is 1). The sti
k walking �gures onthe top portion of the �gure indi
ate for the two plots beneath it whi
h part of the walkingstep the plotted points 
orrespond to. The plots begin with the swing leg leaving the ground,and ends with the same leg about to leave the ground on
e again.The solid (with ankle torques) and dashed (without ankles) lines indi
ate optimal walkingsolutions. The dashdot (with ankles) and dotted (without ankles) have an additional parameter�xed whi
h is that of the average forward velo
ity set at a mu
h faster 50 m/min. The �rstverti
al line indi
ates the moment of 
ollision, the se
ond line is the time when the se
ond stepbegins with the other leg lifting o� the ground, and the last line is on
e again a 
ollision of theswing leg with the ground.From the velo
ity plot at the bottom of Figure 5 we see the biped loses a 
onsiderableamount of forward velo
ity at the moment of 
ollision, in parti
ular for the faster walkingspeed. The faster walking speed serves to exaggerate the overall e�e
ts as it is also moreapparent that the biped needs to slow down quite a bit near the middle of the swing phaserather being able to maintain a more 
onstant forward velo
ity. With the in
lusion of a lifto�for
e, our experiments have shown that we are able to obtain more 
onsistent forward motionand the large variation evident in the velo
ity plot is substantially redu
ed over the 
ase whenlifto� for
es are not in
luded. We spe
ulate that without the expli
it modeling of the foot, thebiped 
annot eÆ
iently operate at higher speeds.We may observe the verti
al movement of the hip and knee in Figure 6. The height of thehip and knees stays roughly at the same level during the slower 12m/min globally optimal walkwhile during faster walks, the well-known sinusoidal motion e�e
t of the hip is more apparent[10℄.6.4 Walking with and without Lifto� For
esFigures 7 and 8 display the optimal applied torques for the model with and without impulsivelifto� for
es from the same set of experiments as the previous se
tion. In
luding an impulsivelifto� for
e is an easy way of modeling the same e�e
ts as having a foot. The solid and dashedlines indi
ate the torques for the optimal walking motion for the model with and without anklea
tuation respe
tively. There is a notable di�eren
e between the 12 m/min (globally optimal)and the 50 m/min walk. It is evident that the torques for the faster walk rea
h the magnitude
onstraints pla
ed upon them several times. The torque saturations 
an be greatly redu
edwith the introdu
tion of an impulsive lifto� for
e. These torques (and their rates) are of mu
hsmaller magnitude showing the bene�
ial e�e
t this additional 
ontrol parameter has.For a given velo
ity, it is diÆ
ult to distinguish the di�eren
e between in
luding and notin
luding ankle a
tuation. The di�eren
e only be
omes visible at the higher forward velo
itywhen during the se
ond phase a slightly smoother and smaller torque a
tuation is required forthe hip and knee. An interesting e�e
t witnessed in our experiments is that the knee 
omesmore into use with ankle a
tuation. As a result, the torque inputs and asso
iated 
ost ininje
ted energy will be more equally distributed through the di�erent joints of the biped.7 Con
lusionOur investigation into the generation of minimum energy symmetri
, periodi
 gaits gatherstogether several di�erent resear
h areas in the modeling and 
ontrol of 
omplex, nonlinearsystems. Our ability to solve this problem has relied upon the use of re
ursive, symboli
multibody algorithms 
oupled with powerful numeri
al optimal 
ontrol software. Some of themore interesting 
on
lusions that 
an be made from our experiments are:13
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Figure 7: Optimal applied torques for walking without lifto� for
es.Walk Speed: 12 m/min. No ankle torques (dashed); with ankletorques (solid). Walk Speed: 50 m/min. No ankle torques (dotted);with ankle torques (dashdot).
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Figure 8: Optimal applied torques for walking with lifto� for
es.Walk Speed: 12 m/min. No ankle torques (dashed); with ankletorques (solid). Walk Speed: 50 m/min. No ankle torques (dotted);with ankle torques (dashdot).� Minimum energy walk for biped model (without expli
it modeling of the feet) has a mu
hslower walk than optimal human walk.� The optimal model walk has shorter steps than optimal human walk, however the notionof step length is problemati
al sin
e the model has no feet.14



� Impulsive lifto� for
es help prevent torque saturation, smooth the walking motion, andredu
e the energy 
onsumed.� Ankle a
tuation smooths the walking step and distributes the input torques more equallyamong the hip, the knee, and the ankle.� Using polar 
oordinates as in Se
tion 3.5 to 
onvert leg vs hip geometri
 
onstraints tobox 
onstraints was 
riti
al to numeri
al su

ess.1 Appendix: Conta
t and Collision AlgorithmsWe give now a brief summary of the Conta
t and Collision Algorithms. If the tip 
onta
t
onstraint (free foot tou
hing the ground) is given holonomi
ally as 
(�) = 0, then by takingtime derivatives we also obtain J
 _� = 0 (7)J
�� + _J
 _� = 0 : (8)where J
 = �
=��. Multiplying (1) by J
 and substituting for J
�� using (8), one obtains anoperator expression for f
.f
 = (J
M�1JT
 )�1[�J
M�1(u� C � G)� _J
 _�℄= ��(J
��f + _J
 _�) ;= ��Q _V
 : (9)��1 = (J
M�1JT
 ) is a square matrix of dimension equal to the number of 
onstraints, andit is a quantity related to the Khatib operational spa
e inertia. ��f are the free generalizeda

elerations without the in
uen
e of the 
onta
t for
e in the dynami
s. The �nal expressionfor f
 is expressed in terms of the 
onstrained 
omponents of the spatial a

eleration _V
, whereQ _V
 = d=dt(QV
) = d=dt(J
 _�). The quantity V
 likewise is 
omposed of the 
onstrained
omponents of the linear and angular velo
ities for the various links in the multibody system.The true angle a

elerations are the sum of ��f and a 
orre
tion term ��Æ whi
h results fromthe 
onta
t for
es propagating throughout the body. These 
orre
tion a

elerations 
an be
al
ulated from f
 by the relationship ��Æ =M�1JT
 f
 : (10)A very similar algorithm exists for 
al
ulating the 
hange in velo
ities due to an inelasti

ollision with the ground. The 
hange in the generalized velo
ities will depend on the leg tipvelo
ities at the moment of 
onta
t with the ground, QV
. One solves for the impulse for
efimp, fimp = ��QV
 : (11)One may solve for _�Æ in _�Æ = M�1JT
 fimp to obtain the generalized velo
ities after 
ollision_�+ = _�� + _�Æ. The Conta
t and Collision Algorithms are dis
ussed at greater length in[1℄, while re
ursive algorithms for the expli
it 
al
ulation of the previously de�ned quantitiesin general tree-stru
tured multibody systems are presented in [6℄.15



2 Appendix: Redu
ed Dynami
s AlgorithmWith the introdu
tion of holonomi
 
onstraints, su
h as the 
onta
t of legs with the ground,it is possible to 
onstru
t a set of redu
ed un
onstrained dynami
s of dimension equal tothe number of degrees of freedom, N , minus the number of 
onstraints, m. In this se
tion, weoutline our approa
h to 
al
ulating the independent generalized a

elerations of the redu
ed setof dynami
s. The novelty of this approa
h is that it does not require the expli
it 
onstru
tionof the redu
ed dynami
s. It will be shown how one may extra
t the solution of the redu
eddynami
s from the solution of the Conta
t Algorithm and the solution of the forward dynami
sof the entire system. One main advantage of using a redu
ed un
onstrained dynami
al modelis that optimization programs whi
h require integration of the dynami
s will en
ounter lessnumeri
al diÆ
ulties.In order to satisfy the 
onstraint 
ondition (7), the generalized velo
ities _� must belong tothe null spa
e of the 
onstraint Ja
obian, N (J
) � RN�m. If the 
olumns of X represents abasis for N (J
), then there exists a representation of _� with respe
t to X denoted here by �,_� = X�. Substituting �� = X _� + _X� into the dynami
al equations and multiplying on the leftby XT will give us the redu
ed dynami
s,M� _� + C� + G� = u� ; (12)whereM� = XTMX , C� = XTM _X� +XTC, G� = XTG, and u� = XTu.If � represents the generalized 
oordinates of the system, then it is possible to 
hooseN�mindependent 
oordinates �1 and m dependent 
oordinates �2 su
h that J
;1 _�1+J
;2 _�2 = 0 maybe used as an alternative expression for (7). This approa
h was made in [12℄, and it leads toan obvious 
hoi
e for X , _� = X� = X0 _�1 = � I�J�1
;2 J
;1 � _�1 : (13)An advantage of making this 
hoi
e for the basisX is that, as will be shown in theRedu
edDynami
s Algorithm, the redu
ed a

elerations are simply represented as _� = ��1. Our goalhere is to show that the solution of the 
onta
t algorithm may be used to obtain a solution ofthe redu
ed forward dynami
s problem. Then an optimization routine performing numeri
alintegration need only integrate on the independent 
oordinates ��1. We �rst give a lemmabefore the algorithm is presented.Lemma 1 Let X be a basis for the null spa
e of the 
onstraint Ja
obian, N (J
), and assumethat at time t = 0, the state (�; _�) satis�es the 
onstraint 
onditions 
(�(0)) = 0, J
 _�(0) = 0.Then the following statements are equivalent:(a) _� and �� satisfy J
�� + _J
 _� = 0.(b) There exists an N �m dimensional ve
tor � whi
h satis�es _� = X�.(
) X _� = �� � _X� is 
onsistent and has a unique solution _�.Proof: (
)) (a) Sin
e X is a basis for N (J
), then J
X� = 0 and d=dt(J
X�) = 0. So,J
�� + _J
 _� = J
X _� + (J
 _X + _J
X)� = 0 :(a) ) (b) Integrating (a) implies J
 _� = 0 sin
e J
 _�(0) = 0 at time t = 0. J
 _� = 0 furtherimplies that there exists a representation � for _� with respe
t to X , _� = X�. (b) ) (
)Di�erentiating _� = X� and observing that X is full rank gives the desired result.Redu
ed Dynami
s Algorithm 16
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Figure 9: Inverse Kinemati
s Problem for 2-link Leg the bottom (x; y) is the foot �xed on the ground, whilethe top (0; 0) is the hip1. Beginning with an independent set of 
oordinates � = �1, solve via inverse kinemati
s for�2 from �1. Similarly solve for _�2 from _�1 using the algebrai
 relation _�2 = �J�1
;2J
;1 _�1.2. Given a set of torque inputs u, one may solve for �� with the 
onta
t algorithm. Simplealgebrai
 manipulation shows that this solution satis�es (a) of Lemma 1.3. Using Equation (13), it follows that _� = ��1, and it satis�es the redu
ed dynami
s (12).This algorithm thus yields the redu
ed forward dynami
s mapping u! (�; _�).3 Appendix: Redu
ed Dynami
s for the BipedA key 
omponent of our dynami
al modeling of the biped is the use of the Redu
ed Dynami
sAlgorithm presented in Se
tion 2 of the Appendix. We have already mentioned that be
auseof the 
onta
t 
onstraints in phase one and in phase two of walking, we are fa
ed with adi�erential-algebrai
 system. Two 
ourses of a
tions are possible when it is ne
essary to in-tegrate the dynami
s, one being the use of spe
ially tailored integration routines whi
h oftenrequire the partial derivatives of the various 
onta
t 
onstraints. The preferable approa
h,however, is to use a redu
ed un
onstrained set of dynami
s whi
h evolve on the 
onstraintmanifold. Then it is possible to use standard integration pro
edures.Re
all that one of the primary diÆ
ulties of the Redu
ed Dynami
s Algorithms is that theinverse kinemati
s must be used to solve for the dependent states. For the biped, the �rsttask is to solve for the angle whi
h determines the position of ea
h leg. This is easy sin
e ourproblem is equivalent to solving for the joint angles of a 2-link manipulator when its endpointsare known.The following well-known solution 
omes from Spong and Vidyasagar [13℄. In Figure 9 isdisplayed the inverse kinemati
s problem. Let �1 and �2 be the desired joint angles, a1 and a2the lengths of the upper and lower legs respe
tively, and �1 and �2 two intermediate angles.We assume that one end of the 2-link arm has been transferred to the origin while the otherend has 
oordinates (x; y). From the Law of Cosines,D = 
os(�2) = x2 + y2 � a21 � a222a1a2 : (14)17



Also, sin(�2) = �p1�D2. In our 
ase, sin
e the knees only bend in one dire
tion, the minussign is always used so that �2 = tan�1 �p1�D2D : (15)Now �1 may be obtained easily from two intermediate angles �1 and �2. Let the angle �1 =tan�1(y=x) while �2 = tan�1 � a2 sin �2a1+a2 
os �2�. The �nal expression for �1 is�1 = tan�1(y=x)� tan�1� a2 sin �2a1 + a2 
os �2� : (16)The dependent position states then are x7 = �1 � x1 and x9 = �2.Now we turn to 
omputing the velo
ities along the manipulator. The velo
ities are knownat both ends of the 2-link manipulator, so the Collision Algorithm 
an be used to give the jointvelo
ities uniquely. This is done by initializing the algorithm for a 2-link manipulator with theknown spatial velo
ity at the joint 
onne
ting the upper leg and the torso. The joint angleshave been previously 
al
ulated and the joint velo
ities are arbitrary as there will only be onesolution. The updated velo
ities will then 
orrespond to the values of the states x8 and x10.Referen
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