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Abstract. Numerical simulation has already become an indispensable tool in the
chemical engineering industry. In this paper, the extension of an already existing
simulation package to the efficient and reliable solution of optimal control problems
for optimal plant operation is discussed.

1 Introduction

Industrial gases such as Oxygen, Nitrogen and Argon are needed for many
modern industrial processes, e. g., for the production and refinement of steel,
for the production of mineral oil, or for the production of fertilizers. Usually,
the required amount of gases has to be produced in the guaranteed purity
on the spot by air separation plants. The Linde AG designs, constructs and
operates air separation plants worldwide.

The optimization of design and operation of air separation plants is a must
for increasing efficiency and productivity. Here, the importance of numerical
simulation as a key technology in the design and operation of chemical engi-
neering plants is increasing. The Linde AG has developed the state-of-the-art
process simulation tool OPTISIM® [5] which is used both for the steady-state
simulation and optimization, and for the dynamical simulation of plants [7,8].
The newly addressed optimization of operation of air separation plants re-
sults in optimal control problems. Numerical optimal control methods have
originally been developed for trajectory optimization of aircrafts and space
vehicles from the late sixties on [2,23].

In this paper, we discuss how the optimal control problems for chemical
production plants can be solved efficiently.

2 Numerical Simulation of Air Separation Plants

The key tool for modeling a chemical production plant is the flowsheet [7,25],
an abstract, graph-oriented scheme of a planned or existing chemical plant
(Fig. 1). It contains in its nodes the relevant single process steps which are
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Fig. 1. Flow diagram for the Linde air separation process [30].

modeled independently. In a node, the incoming streams of material and
data are transformed into new output streams. Practical experience in this
field during the last decade has proven modern equation oriented simulation
techniques used in the process simulation tools OPTISIM® [5], DIVA [16],
gPROMS [1], and SpeedUp [22] superior to the classical, sequential modular
approach [7,25]. Here, a large-scale system of equations describing all process
units must be solved simultaneously, e. g., from 10 000 up to 100000 equations
for a petrochemical plant.

Dynamical modeling of a chemical engineering process results in a large-
scale set of linearly implicit differential-algebraic equations (DAESs) of the

form ((.) = d(.)/d¢t)

Al(y,Z,PauysigHQ) Az(y;Z;PW;Sign(I) y — f(y,Z,p,u,signq)
0 0 % 9(y,z,p,u,signg) ) °
(1)

Here, the state variable x = (y,z) consists of the variable y : IR — R"™
and the variable z : R — IR™*, hence n, = ny + n,. The functions f :
an+np+nu+nq - Rny7 g: an+np+nu+nq — an7 Al . an+np+nu+nq —
R™ ™ Ay : R"=Hmetetna _ R X" gre piecewise continuously differen-
tiable. The matrix A; is regular. For numerical simulation, the design parame-
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ters p € IR™® are given constants, the control variables u : IR — IR™™ are given
functions of time ¢, and the state variable must satisfy consistent initial condi-
tions z(t9) = zo € IR"*. Discontinuities in the model equations are described
as zeros of the switching functions ¢ = q(y, z, p,u) : R™* " *m _ IR [7].

The indez of the DAE is important for the numerical solution [4]. Cur-
rently, there are no numerical integration methods for solving general systems
of index greater than two directly and reliably. In chemical engineering, the
resulting DAEs can be of arbitrary index in general. For the case of air sep-
aration plants, we will only consider index-2 systems.

Further problems in the numerical solution of the DAEs result from dis-
continuities in the model equations. These are due to tabular data, piecewise
constant control variables, an operation dependent change of model equa-
tions or delays due to dead times of transport in pipelines. A consistent
initialization is needed at the initial time of integration to and after each
discontinuity [7,17].

3 Optimization and Optimal Control

Typical objectives for plant optimization are maximization of profit, maxi-
mization of production, minimization of energy consumption, or minimization
of feed consumption. In the dynamical case, the objective function

Tlu,p] = $(a(ty),pts) + / L@, ut).p)dt, 6 LeR,  (2)

to

has to be minimized (or maximized) over the time of operation [ty, 5] subject
to the system of DAEs (1) with given consistent initial conditions z(t9) = o,
and subject to further linear and nonlinear inequality constraints

h(z(t),p,u(t)) < 0, to<t<ty, heR™. 3)

Equations (1) — (3) define an optimal control problem. Its solution must
satisfy the Maximum Principle [20]. As the adjoint (costate) differential equa-
tions cannot be computed without enormous efforts in our case, a direct tran-
scription method [2,28] is investigated for computing an approximation of the
optimal (open-loop) control u* : [tg,t;] = R™ and p* € R™ numerically.

By a parameterization of the control variable @(p), p € IR"?, the optimal
control problem becomes a nonlinear programming problem (NLP) for the
parameters p = (B, p). Two different transcription strategies are possible:

(i) the iterative simulation and optimization (direct shooting) (e.g., [13]):
In every iteration step of the optimization method, the dynamic equa-
tions (1) are solved by a numerical integration method (variable order,
variable stepsize) such as backward difference formulas (BDF), Runge-
Kutta or extrapolation methods for the current guess of parameters p.
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(i) the simultaneous simulation and optimization (direct collocation):
The dynamic equations (1) are only fulfilled at a priori selected points.
Using collocation as an implicit integration scheme, the pointwise to be
fulfilled DAEs lead to a system of nonlinear equality constraints for the
resulting NLP for the parameters, e. g., [27].

While (i) satisfies the DAEs in each iteration step, (ii) only satisfies them at a
successful termination of the optimization procedure if a sequential quadratic
programming (SQP) method is used [9,10]. If the approach (ii) is applied, then
the number of variables of the resulting NLP is of the order of (n;+mn,,) times
the number of collocation points. For the chemical production plant models of
interest, this number can easily be larger than hundreds of thousand which
is beyond the capabilities of current SQP methods [2]. Therefore, we will
investigate approach (i) in more detail.

4 Direct Shooting Approach

Without loss of generality, the objective is assumed to be of Mayer form in
the sequel, i.e., L = 0 in Equation (2).

By a parameterlzatlon @(p), the optimal control problem is transcribed
into a NLP for the % arameters p = (p,p) € IR™. Due to the modeling ap-
proach in OPTISIM™ [5], the DAE system (1) is of the form: 4; = I, A; = 0.
Thus the parameterized dynamic optimization problem is to

minimize  $(p) := J[&p] = P(y(ty), 2(ty),p, ty) (4)
subject to  §(t) = f(y(t),2(t),p,u(p, 1)), y(to) = yo € R™,  (5)
0 = g(y(®), z(t),p, a(B, 1)), z(to) = 20 € R™,  (6)
0 > h(y(t), 2(), p, u(p, 1)), to <t <ty. (7)

For the sake of simplicity of notation, the switching functions ¢ are not ex-
plicitly written here but considered in the implemented algorithm. Using a
time grid to < th < ... < tf“ = 7, the infinite dimensional path inequality
constraints (7) are transcribed into ny - ny, inequality constraints (cf. [29])

0> h(yth),zt!),p,ad,t!) i=1,...,n. ®)

The NLP for the parameters p = (B, p) given by Egs. (4), (5), (6), and (8)
is defined by piecewise continuously differentiable functions. Therefore, math-
ematical optimization methods exploiting gradient information will compu-
tationally perform much better than any direct search method [9].

An analysis of the gradients of ¢ and of the discretized constraints h yields

06 o _ 000ults) | D90:ty) 06, 080ilinty)
op oy Op 0z 0Op 8p ou op ¥
Oh| _Ohoy(t) Ohx) O, 0hou(s,#)
aplir — Oy Op 0z Op op? " Ou Op

I;.
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The last n,, diagonal elements of I, € R™**™ are one, all other elements are
zero. The matrix I equals I — I,,. Here, I denotes the unit matrix in R™*"2,
For a current guess of p the initial value problem (IVP) (5), (6) can
be solved numerically. Then y and z denote the numerical solution of the
DAE-IVP. Several methods for approximating the Jacobians dy(t?)/0p and
0z(t1)/8p have been developed: finite difference methods (e. g., [12]), solution
of the adjoint equations (e.g., [11]), or solution of the sensitivity equations
(e.g., [3,15,19]). Here, the latter results in the linear matrix DAE system

= fy -+ fz -8+ prp + fuﬁﬁfﬁ, (9)
0=g9y-r+9; 5+ gplp + gulsls, (10)
0z(t)

where r(t) = ag_g) c R™ X (np+ns) , s(t) = == € R % (nptns) (11)

denote the sensitivity matrices (f, := 9f/0y, f. :=0f/0z, ...).

Finite difference approximations of r and s are not only computation-
ally expensive for large systems of index-2 DAEs but also troublesome be-
cause of the discontinuities. Adjoint equations are not available for the model
equations here. Therefore, a simultaneous numerical integration of the model
equations (5), (6) and of the sensitivity equations (9), (10) is investigated.
An analogous approach has been used in [13,26] for the efficient computation
of reliable gradients of optimization problems in systems of index-1 DAEs.

5 Sensitivity Equations

Given a fixed set of parameters p, the model equations in OPTISIM® are
integrated using a BDF method [5]. BDF are fully implicit linear multi-step
methods suitable for solving index-1 DAEs numerically [4]. With small mod-
ifications they can also be applied to the direct integration of semi-explicit
index-2 DAEs.

In the n" integration step of a BDF method, the interpolating polynomial
of the k—1 previously computed points (Yrn—k+1,2n—k+1)s- - 5 (Yn, 2n) and the
next point (Yn41, 2n+1) is formally constructed. The new point (Y41, 2n+1)
is determined by the condition, that the interpolating polynomial has to
fulfil the DAE at tn41. By extrapolation of the interpolating polynomial of
(Yn—k>2Zn—k);s - - > (Yn, 2n) for tny1, estimates Jny1, Znt1, ¥, are obtained.
A fixed leading coefficient BDF leads to the system of nonlinear equations

. ~. (875 .
0= f(yn-i-la Zn41,D, U(p, tn+1)) - yn—i—l + Tt 1 (yn+1 - yn—i-l); (12)
n

0= g(yn+lazn+lap7ﬂ(ﬁ7 tTH-l))' (]‘3)

The coeflicient oy € IR depends on the order k of the method. The step-size
i8 Np+1 = tpt1 — tn- The nonlinear equations (12) and (13) are solved using
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a modified Newton algorithm

[0] [0]

Ynt1 = Unt1 5 Zpi1 = Zny1
(%I-F fy fz) (Ay[m]) — f - in—i—l + 7’:‘_’:_1( [n,nﬂl - ﬂn+1) (14)
9y gz Azlm] g
ygﬂ_l] = ygi]l + cAy[m] , z,[ﬁ_'{l] = zL"_ﬁ]l + cAy[m], 0<c<1.

In each step of the Newton iteration, the linear system (14) is solved by an
iterative method using sparse matrix techniques for the large, sparse and
unstructured system matrix [7]

(20 1)
9y 9z

Total differentiation of (12) and (13) with respect to the parameters
p = (P, p) yields the linear system

. ~ (677 ~
0= fyT'n+1 + fz3n+1 + prp + fUU5II3 —-r+ —’17 ) (T’n+1 - Tn-l,-l)
n+

0=gyrnt1+9:5n41 + Iplp + gutiplp

or 0=D (’“"“) + (_(; t o)+ fplp + f“aﬂﬁ) . (15)
Sn+1 gpIp + guaf,I,;

If the sensitivity matrices are computed after each integration step for the
state variable trajectories, the numerical solution of Equation (15) is compu-
tationally cheap, since the matrix D (resp., an approximation of it) is already
available in decomposed form in the modified Newton iteration.

Direct application of the BDF scheme to the sensitivity equations (9)
and (10) results in the same linear system (15). Thus the method described
above is equivalent to the integration of the sensitivity equations with the
same sequence of step-sizes and orders as used for the original DAE.

6 Consistent Initial Values

From the theory of DAEs it is known that, in general, arbitrary initial values
y(to), z(to) will not lead to continuous solutions. Therefore, this problem has
to be addressed each time a DAE-IVP is integrated numerically. Also, the
(differential) index of the DAE has to be taken into account.

Under certain restrictions, steady-state conditions can be used [17], as
implemented in OPTISIM®. For practical reasons, a slightly modified system

Il
*m

(y(tO)a Z(to),p,
(y(tO)az(tO)apaﬁ(ﬁa tO)) (17)

I3
b
S
—~~

—

D
S—r

0
0

I
»
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of nonlinear equations is solved, which originates from Egs. (5) and (6). Then
steady-state state variables have to be assumed in [to — €,to + €], € > 0.

Differentiation of Egs. (16) and (17) yields a linear system of equations
for the sensitivities of the initial values

0= (fy fz) (T(tO)) + (prp + fuaﬁIﬁ>
gy 9:) \s(to) Gplp + Guiplp
where all functions are evaluated at t = ;.
Consistent initialization must also be performed when discontinuities are
detected during the integration. Discontinuities in the model equations, which

are indicated by the sign change of one of the switching functions ¢, are
treated by an efficient switching function algorithm in OPTISIM® [7].

7 Results

The algorithm has been implemented in OPTISIM® and checked for several
index-1 and index-2 test problems [18]. Here, we investigate a load-change
process of an existing air separation plant.

Air separation plants mainly consist of three parts: Feed air preparation,
cooling and rectification. Rectification is done in several distillation columns.
A standard configuration as considered here is a high pressure column, where
the feed air is crudely separated into two fractions containing more (or less)
oxygen, a low pressure column, where highly pure nitrogen and oxygen are
produced, and an argon column, where crude argon is obtained (Fig. 1). All
process steps are tightly coupled through material and energy streams.

The task is to decrease the load of the plant from 100 % air input to
60 %. The load change takes about one hour, the time of operation is from
to = 0[s] to ty = 6000 [s]. It is of outmost importance for stable operation and
product quality that several purity restrictions are not violated during the
load change. The air separation plant is modeled by a semi-explicit index-2
DAE system consisting of about n, = 900 differential and n, = 2600 al-
gebraic equations. The purity restrictions result in lower and upper bounds
Zimin < Zi(t) < Zimax for six state variables, i.e., n, = 12 in Equation (3).
They are listed in Table 1. Five constraints refer to product quality. The sixth
constraint is a stable operation constraint: Nitrogen must not enter the argon
column in concentrations greater than about 0.0001 [mol/mol], otherwise the
rectification process will break down. The measurement of the nitrogen con-
tent is very expensive in practice, therefore the oxygen fraction is controlled.
Due to the construction of the plant the constraint on nitrogen is satisfied, if
the oxygen content is larger than 90 %.

The n, = 5 control variables describe opening or closing of valves of the
air separation plant. Instead of a full parameterization of the control history,
e.g., by piecewise polynomial functions, we investigate a parameterization
and optimization of some currently used control schemes. Four of the controls
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Fig. 2. Purities for starting values of parameter set before optimization.

name min | max description
02 LOX |0.997| 1.0 oxygen fraction in liquid oxygen product
02 GOX 1(0.997] 1.0 oxygen fraction in gaseous oxygen product
02 DLIN | 0.0 |5.0-107%| oxygen fraction in liquid nitrogen product
02 GAN | 0.0 [5.0-10~%|oxygen fraction in gaseous nitrogen product
Ar Prod [0.965 1.0 argon fraction in argon product
02 feed ArC| 0.90 1.0 oxygen fraction in feed of argon column

Table 1. Lower and upper bounds of purity constraints.

are parameterized by two parameters each, one control is parameterized by
one parameter, i.e., n; = 9. The state variable inequality constraints are
discretized with a time grid of n, = 10 equidistant points yielding n;-n;, = 120
nonlinear inequality constraints of the NLP. The objective is to maximize an
integral term describing product gain. However, the operators are in the first
place interested in finding a feasible control for this highly complex plant.

For an initial set of parameters p, the time histories of the relevant purities
are displayed in Fig.2 before optimization. They lead to a breakdown of the
air separation process, as several variables violate their (lower) bounds. These
parameters are used as starting values for the optimization.

The NLP of the discretized optimal control problem is solved using a com-
mercially available SQP method. The tolerance for integration of the index-2
DAE system and the corresponding sensitivity equations is 1073, Optimiza-
tion tolerance and feasibility tolerance are 10~2. The state histories of the
purities of Table 1 for the optimized parameterized controls are displayed in
Fig. 3. They are now feasible within their lower and upper bounds which is
most important. (Please note that the graphs in Figs. 2 and 3 are in normal-
ized scale between the lower and upper bounds given in Table 1.)

Hence, the developed and implemented optimization method enables the
computation of parameterized controls for realistic, large-scale dynamical
air separation plant models. The optimized, parameterized controls satisfy
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Fig. 3. Purities for the computed optimal parameterized control.

very important, highly nonlinear constraints for stable operation and prod-
uct quality, and improve the choosen performance index.
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