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1 Purpose, Problem Descriptions, and Notation
1.1 Abstract

PAREST is a direct multiple shooting method designed to solve parameter
estimation and optimal control problems in systems of differential-algebraic
equations or ordinary differential equations [1], [2].

In parameter estimation problems (also called parameter identification prob-
lems), parameters of the dynamic model are fitted to a set of measurements
of (functions of) the state variables by minimizing a nonlinear least squares
objective.

In optimal control problems the control variables are computed which mini-
mize a performance index.

In both cases, inequality constraints may be imposed on the state and control
variables as well.

PAREST is a direct transcription method. I.e. a multiple shooting approach
is used to discretize and solve the boundary value problem. The control vari-
ables are discretized by piecewise linear functions.

Generalized Gauss-Newton methods [12] and Sequential Quadratic Program-
ming methods [9] are used to solve the resulting nonlinearly constrained least
squares problems and nonlinearly constrained optimization problems.

Version 1.0 of the software consists of a numerical core written in Fortran 77
and a main program written in C for handling input and output. The user
must provide subroutines that define the model functions (objective, differen-
tial equations, boundary conditions, nonlinear inequality constraints). This
is usually done by editing the pre-defined subroutines in the file uspec.f
(Fortran 77). Further informations on the problem (as the dimensions of the
problem, specifications of the numerical methods, lower and upper bounds for
all variables, optional scaling, the three time grids (of the multiple shooting
discretization, of the control discretization, and of the times of measurements
(only in parameter identification)) as well as initial estimates of state and
control variables, the measurement values (only in parameter estimation))
have to be supplied by editing the input file start.dat.

A supplementary program PGRAPH is provided which supports a visualiza-
tion of the numerical results using the LRZ-graphics library [3].
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1.2 Dynamic model

The dynamic model is described by a system of differential-algebraic equa-
tions of index 1 in semi-explicit form:

y = fy(t7y7v7u7p)7 fy:(fly7"'7f%y) (1)
0 = fv(t7y7v’u,p)i fv:(fil}7"',f]1<lv)
Notation
differential state variable: yt) = (n(t),...,yny(?))
algebraic state variable: v(t) = (n(t),---,onv(t))
control variable: u(t) = (ui(t),-..,unu(t))
control (or design) parameters: p = (p1,...,PnP)

(In the case of a dynamical system of only ordinary differential equations
NV is zero.)

Further problem dependent functions are:

e boundary conditions (including initial and final conditions of the state
variables) defined by

T(to’y(t0)1U(to)’U’(to)’tf’y(tf)’v(tf)’u(tf)ap) = 0, (2)
where r = (7‘1, .. -;TNRB)a

e (nonlinear) inequality constraints on the control and state variables

a < Siy)o@),ult),p) < b
: : (3)

anzp < Swnzp(t,y(t),v(t),u(t),p) < bnzs

(Constraints of this kind usually appear more often in optimal control
than in parameter estimation problems.)

e (general) functions of the state (and control) variables

h(t,y(t),v(t),u(t),p), h=(hi,....,hnH), (4)

which may be used for two different purposes:

— In parameter identification problems the state variables y(¢) and
v(t) often cannot be measured directly. But functions h of them
have been measured in an experiment. The relation between the
measured quantities and the state variables is given by the func-
tion h(t,y, v, u,p).
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— PGRAPH also generates graphical output of the functions h;.
Therefore any functions h; of the state and control variables might
be used in addition for the purpose of monitoring properties of the
computed trajectories (for example, phase diagrams as the alti-
tude/velocity diagram in optimal control problems from flight me-
chanics, or violations of algebraic index-2- or index-3-constraints
if index reduction has been applied to a problem with a system of
differential-algebraic equations of a higher index (as in the pen-
dulum problem described in Section 5.1)).

The components of the functions h(-) do only enter the optimization
program PAREST if they are required in a parameter estimation prob-
lem. Otherwise they will only be used for plotting by PGRAPH.

1.3 Parameter estimation problems

The problem in parameter identification is to estimate unknown parameters
p; of the dynamic model. (inverse problem). Measurement values z;; of an
experiment are given which have been obtained at the [ times t§ (j = 1,...,1)
where 1§ < ... < 17.

Measurement values at times ¢ are quantities depending on
e the differential state variables y(t¢),
e the algebraic state variables v(t$) or
e functions of the state variables h(t$, y(t5), v(t5), u(t), p).

The efficiency of the numerical computations can be improved if the case
of directly measured state variables is treated separately from the case that
only functions of them have been measured.

Positive real constants s;; can be used in order to weight the deviations from
the z;;-values in the nonlinear least squares objective

@:2 Z WJF Z %%%)QJF Z (h(tj,y(t;?),v(t;jz;u(t;),p)_Zij)2

Zi5~Y z45~v zijfvh

The parameters p; have to minimize ® subject to the differential-algebraic
equations (1), the boundary conditions (2), and the inequality constraints (3).

The resulting nonlinear least squares problem with nonlinear constraints can
be solved by either a generalized Gauss-Newton or a Sequential Quadratic
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Programming Method.

1.4 Optimal control problems

The problem in optimal control is to determine the control variable u(t) and
the control (or design) parameters p in order to minimize an objective of
Mayer type

Ju] = ®(ts,y(ty), v(tys), u(ts), p) — min! (6)

(with a real-valued function ®). The final time ¢; may be givend or free.

In order to obtain an approximation of the optimal control a discretization of
the control variable is applied. Hereby, a time grid {tj} consisting of NSGIT
knots

to =11 <ty <--- <tynsgrr = tf (7)

is introduced. The control is approximated by a continuous, piecewise linear
function over this time grid. The values of the control variables at these
knots u(t}) have to be determined in the optimization.

Also the inequality constraints (3) are discretized by the algorithm in a si-
miliar way. They are satisfied at the times ¢; of the control discretization
grid

a < S(t5yt),v(t;),u(t),p) < b, i=1,...,NSGIT. (8)

The resulting nonlinearly constrained minimization problem is solved by a
Sequential Quadratic Programming Method.

1.5 Multiple shooting approach

In order to increase the robustness of the numerical method, multiple shoot-
ing can optionally be applied to split up the whole time interval into several
smaller ones for numerical integration [7], [15]. Therefore, another time grid
{t7'} consisting of NMZGIT multiple shooting nodes

to =17" <ty < -+ <tNyzerr = tr 9)

can be selected. The values of the state variables y(¢7') and v(7') at the
multiple shooting nodes then become unknowns that have to be determined
by the optimization procedure.
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A “relaxation” technique is applied in order to obtain consistent initial values
for the differential-algebraic intial value problems on the subintervals of the
multiple shooting discretization [4].

It should be noted that the time grid of the multiple shooting nodes is inde-
pendent of the time grid for the discretization of the control variables.

1.6 Survey on the three time grids
Three time grids may appear (which do not depend on each other):

The measurement grid of a parameter identification problem consists of the times ¢ of
the measurements.

The control grid of a discretized optimal control problem consists of the times ¢; where
a piecewise linear approximation of the control variable u(t) is given
by the values u(t).

Also, any inequality constraint a < S(t,y(t),v(t),u(t),p) < b of an
optimal control problem will only be satisfied at the times of the control
discretization grid.

The multiple shooting grid is an optional grid consisting of the multiple shooting
nodes ¢7'. Its purpose is to split up the whole integration interval

to,ts| into a sequence of smaller ones [t ], j = 1,2, ....
! 7 j+1

Please note that the multiple shooting grid and (if NU > 0) also the
control discretization grid (in optimal control problems) always must
contain at least two grid points, namely initial time ¢, and final time ¢;.
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2 Fortran Subroutines of the Model Functions

The previously described functions define the specific problem. For the nu-
merical computation of them a set of problem dependent subroutines in For-
tran 77 has to be provided by the user. They are collected in the file uspec.f.

Important note:

Parameters of the problem dependent subroutines in the file uspec.f denoted
by “Ausgabe” or “Output” have to be set on exit of the subroutine.

All other parameters which are not explicitly denoted by “Ausgabe” or
“Output” may not be changed in a subroutine. Changing them will be
harmful!

2.1 DAGFY for the computation of f¥ (differential equations)
function f¥(¢,y(t),v(t), u(t),p) of Eq. (1)
syntax SUBROUTINE DAGFY (NY,NV,NU,NP,T,Y,V,U,P,FY)

parameters IMPLICIT NONE

INTEGER NY dimension of y(t)
INTEGER NV dimension of v(t)
INTEGER NU dimension of u(t)
INTEGER NP dimension of p
DOUBLE PRECISION T time ¢

DOUBLE PRECISION Y(NY)  value of y(t)

DOUBLE PRECISION V(NV)  value of v(t)

DOUBLE PRECISION U(NU)  value of u(t)

DOUBLE PRECISION P(NP)  value of p

DOUBLE PRECISION FY(NY) resulting value of f¥ (— Ausgabe/Output)
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2.2 DAGFV for the computation of f” (algebraic equations)
function fY(¢,y(t), v(t), u(t),p) of Eq. (1)
syntax SUBROUTINE DAGFV (NY,NV,NU,NP,T,Y,V,U,P,FV)

parameters IMPLICIT NONE

INTEGER NY dimension of y(t)
INTEGER NV dimension of v(t)
INTEGER NU dimension of u(t)
INTEGER NP dimension of p
DOUBLE PRECISION T time ¢

DOUBLE PRECISION Y(NY)  value of y(t)

DOUBLE PRECISION V(NV)  value of v(?)

DOUBLE PRECISION U(NU)  value of u(?)

DOUBLE PRECISION P(NP)  value of p

DOUBLE PRECISION FV(NY) resulting value f (— Ausgabe/Output)

2.3 DAGRB for the computation of the boundary conditions r

function r(to, y(to), v(to), ulto), tr, y(ts), u(ts), s(ts),p) of Eq. (2)

syntax SUBROUTINE DAGRB (NY,NV,NU,NP,NRB,TO,YO,VO,UO,
TF,YF,VF,UF,P,RB)

parameters IMPLICIT NONE

INTEGER NY dimension of y(t)
INTEGER NV dimension of v(t)
INTEGER NU dimension of u(t)
INTEGER NP dimension of p
INTEGER NRB dimension of r,
i.e. number of boundary conditions
DOUBLE PRECISION TO the initial time

DOUBLE PRECISION YO(NY) values of y(ty)

DOUBLE PRECISION VO(NV) values of v(to)

DOUBLE PRECISION UO(NU) values of u(tp)

DOUBLE PRECISION TF the final time ¢

DOUBLE PRECISION YF(NY) values of y(tf)

DOUBLE PRECISION VF(NV) values of v(ty)

DOUBLE PRECISION UF(NU) values of u(ty)

DOUBLE PRECISION P(NP)  values of p

DOUBLE PRECISION RB(NY) resulting value of r (— Ausgabe/Output)
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2.4 MESSH for the computation of the measurement functions A
function h(t, y(t), v(t), u(t), p) of Eq. (4)
syntax SUBROUTINE MESSH (NY,NV,NU,NP,NH,T,Y,V,U,P,H,NEEDH)

parameters IMPLICIT NONE

INTEGER NY dimension of y(t)
INTEGER NV dimension of v(t)
INTEGER NU dimension of (%)
INTEGER NP dimension of p
INTEGER NH dimension of A
DOUBLE PRECISION T time ¢

DOUBLE PRECISION Y(NY) wvalues of y(?)

DOUBLE PRECISION V(NV) values of v(?)

DOUBLE PRECISION U(NU) values of u(t)

DOUBLE PRECISION P(NP) values of p

DOUBLE PRECISION H(NH) resulting values of A
(— Ausgabe/Output)

INTEGER NEEDH(NH) array specifying which components of A
have to be set on exit of the subroutine (if
NEEDH(z) > O then H(7), the i-th com-
ponent of i, has to be set on exit).

2.5 ZSTDB for the computation of the (nonlinear) inequality constraints S
function S(t,y(t),v(t),u(t),p) of Eq. (3)
syntax SUBROUTINE ZSTDB (NY,NV,NU,NP,NZB,T,Y,V,U,P,ZB)

parameters IMPLICIT NONE

INTEGER NY dimension of y(t)
INTEGER NV dimension of v(t)
INTEGER NU dimension of (%)
INTEGER NP dimension of p
INTEGER NZB dimension of S
DOUBLE PRECISION T time ¢

DOUBLE PRECISION Y(NY) values of y(t)

DOUBLE PRECISION V(NV) values of v(t)

DOUBLE PRECISION U(NU) values of u(t)

DOUBLE PRECISION P(NP) values of p

DOUBLE PRECISION ZB(NZB) resulting values of S (— Ausgabe/Output)
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2.6 ZLFKT for the computation of the optimal control objective &

function  ®(ty,y(ts), v(ts), ulty),p) of Eq. (6)

syntax SUBROUTINE ZLFKT (NY,NU,NS,NP,TF,YF,VF,UF,P,PHI)

parameters IMPLICIT NONE

INTEGER NY
INTEGER NV
INTEGER NU
INTEGER NP
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

TF
YF (NY)
VF (NV)
UF (NU)
P(NP)
PHI

dimension of y(t)

dimension of v(t)

dimension of u(t)

dimension of p

the final time ¢;

value of y(ty)

value of v(ty)

value of u(ty)

value of p

resulting value of ® (— Ausgabe/Output)
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3 Input File of PAREST

When starting PAREST specific data of the problem (dimensions, time grids,
initial estimates, tolerances of optimization and numerical integration, selec-
tion between different integration and optimization methods, ...) are read
from an input file (in the prepared example problems the input file is called
start.dat).

Comments in the file start.dat always have to start with a # sign. If a #
sign is found in a line of the input file, then the rest of the line will be ignored
by PAREST.

The input file consists of several sections listed here. They consist of

GENERAL
dimensions, selection of integration and optimization methods, toler-
ances, ...

ENDE

NAMEN
names of the state and control variables (only to be used in the graph-
ical output produced by PGRAPH)

ENDE

MESSWERTE
measurement values (only in the case of parameter estimation prob-
lems)

ENDE

GRENZEN
optional lower and upper bounds for the state and control variables
y(t), v(t), u(t), and for the nonlinear inequality constraints S

ENDE

SKALTIERUNG
constants defining linear transformations for an (optional) internal
scaling of the state and control variables y(t), v(t), u(t) and of the
objective P

ENDE

STARTWERTE
the (estimated) values of initial and final time and (estimated) values
of the state variables at the normalized multiple shooting grid (i. e.
the normalized values of the multiple shooting nodes are within the
interval [0,1], where 0 corresponds to ty and 1 corresponds to ty)

ENDE

12
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STEUERUNG
estimated values of the control variables at the normalized control
grid points (i. e. the normalized values of the control discretization grid
points are within [0, 1], where 0 corresponds to ty and 1 corresponds

to tf)
ENDE

The sections are described in more detail in the sequel. Each section contains
statements of the syntactic form

name of variable (or dimension) = value
For example:
DIMY = 3

For more details see the programs of the prepared examples.

3.1 Section GENERAL

This section contains the description of the dimensions of the problem and of
optional parameters of the optimization method. They are set by assigning
values to the following variable names:

DIMY | dimension NY of the differential state variable y(t) (always
has to be greater or equal one!).

DIMV | dimension NV of the algebraic state variable v(t) (in the
case of only ordinary differential equations: DIMV = 0).
DIMU | dimension NU of the control variable u(¢) (may be zero as
it is usually the case in parameter identification problems).
DIMH | dimension NH of the function A(t, y(t),v(t), u(t), p)

(DIMH = 0 is possible).

NPAR | number NP of control parameters p (NPAR = 0 is possible).
NRB number of boundary conditions

7(to, Yo, Vo, U0, tf, Yr, vy, us,p) = 0 (usually NRB = 0 will not
be useful but might be appropriate for some parameter iden-
tification problems).

NZB number NZB of nonlinear inequality constraints

a; < Si(t,y(t),v(t),u(t),p) < b;.
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The selection between parameter identification and optimal control problems
is done by setting

ZIELFKT which specifies the objective:

ZIELFKT = 0 — for minimizing a nonlinear least squares
objective (— parameter identification problems)
ZIELFKT = 1 — for minimizing an objective of Mayer

type (— optimal control problems)

Free or prescribed initial and final time are set by using the statements

FEST_E(1) | for a fixed initial time %,
FREI_E(1) | for a free initial time %y,
FEST_E(2) | for a fixed final time ¢y,

FREI_E(2) | for a free final time ¢

in this section of the input file.

Three different methods can be selected for the numerical integration of the
dynamical equations (1)

1. DASSL: the initial-value problem solver for differential-algebraic equa-
tions of [13] (backward difference formulas) with the extensions of [1]
for a numerical sensitivity analysis.

2. DOPRIS8: the initial-value problem solver for ordinary differential equa-
tions of [10] (8th order extrapolation method) with the extensions of
[6] for a numerical sensitivity analysis.

3. RKF4: an initial-value problem solver for ordinary differential equa-
tions (4th order Runge/Kutta method) with the extensions of [6] for a
numerical sensitivity analysis.

INTGRT Selection of the integration method

INTGRT = 1 — DASSL,

INTGRT = 2 — DOPRIS,

INTGRT = 3 — RKF4.

RTOL for DAssL: relative tolerance of integration

for DOPRI8: accuracy of integration

for RKF4: accuracy of integration

ATOL for DAssL: absolute tolerance of integration

for DOPRIS8: accuracy for the computation of the sen-
sitivity matrices

for RKF4: not used

As a rule of thumb, the tolerances for integration should be less or equal one
tenth of the tolerances for optimization (see below), for example,
RTOL = 107% and OPTTOL = 10™° (see description below).

14
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Three iterative methods for optimization are available:

1. NLscoN (Nowak, Weimann [11], [12]):
a generalized GauB-Newton method for nonlinear least squares prob-
lems subject to nonlinear equality constraints [8]
(NLSCON can only be used for parameter identification problems and
not for optimal control problems),

2. NpsoL (Gill, Murray, Saunders, Wright [9]):
a Sequential Quadratic Programming (SQP) method for general non-
linearly constrained optimization problems [14]
(NPsoL is the only possible selection for optimal control problems.
It may also be selected for parameter identification problems but will
usually be less efficient than NLSSOL or NLSCON),

3. NussoL (Gill, Murray, Saunders, Wright [9]):
an SQP-method for nonlinear least squares problems subject to general
nonlinear equality and inequality constraints
(NLssoOL can only be used for parameter identification problems and
not for optimal control problems).

OPTFCN selects the optimization method

OPTFCN = 1 — NLSCON

OPTFCN = 2 — NPSOL

OPTFCN = 3 — NLSSOL

OPTTOL optimality tolerance for optimization

NLFTOL feasibility tolerance of the nonlinear constraints at a
solution (only used by NpsoL and NLSSOL)

PRINTLVL | print level of iterations (amount of output for each it-
eration)

for example,

PRINTLVL = 0 for no output

or, for some brief output,

PRINTLVL = 3 for NLSCON and

PRINTLVL = 5 for NpsoL and NLSsOL

NSTEPS (optional) maximum number of iteration steps of the
optimization method

(if NSTEPS is not specified, a reasonable value will be
selected internally)

Remark:

During iterations the program can also be interrupted

interactively by typing <Ctrl>-c.
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In this case, PAREST prints the message:

Execution will be terminated

Please wait ...
and the program will terminate after the current itera-
tion has been completed and save the current estimate
of the solution in the output file solution.dat.

3.2 Section NAMEN

In this section, descriptions of variables and functions can be supplied for
use as descriptions in the graphical output prepared by PGRAPH.

The syntax for setting descriptions is
variable = “description”

As variable

Y(i) | for the i-th differential state variable y;(t)
V(i) | for the i-th algebraic state variable v;(t)
U(i) | for the i-th control variable u,(t)

H(i) | for the i-th function h;(t,y(t), v(t), u(t), p)

can be used.
Example:

Y1) = "x(¢)”

3.3 Section MESSWERTE

This section is used only in the case of a parameter identification problem
in order to provide the program with the measurement values z;; appearing
in Equation (5). For each measurement value z;;, also a positive, real-valued
weight s;; can optionally be supplied.

The measurement values have to be listed in the chronological order of
the measurement times in this section of the input file.

Measurement values at time ¢ of measurement have to be provided by

T = time t of the measurement

[Y(i) = measured wvalue of y;(T) [SY() = corresponding positive
weight]]

V(i) = measured wvalue of wv;(T) [SV(i) = corresponding positive
weight]]

[H(i) = measured wvalue of h;(T) [SH(i) = corresponding positive
weight] ]

16
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The terms in brackets “[---|” may be supplied optionally but don’t have to
be supplied always.

In many applications, the weights s;; are related to the standard deviations
of the measurements and are equal to one constant value for the ¢-th variable
at any times. In this case a standard weight can be set to the i-th variable
by writing in this section before listing the measurement values

[SY(2) = walue of the standard weight of the measured i-th differential state
variable y;(t)]

[SV(z) = walue of the standard weight of the measured i-th algebraic state
variable v;(t)]

[SH(:i) = walue of the standard weight of the measured i-th function h;(t)]

T = ... (values of the first measurement).

3.4 Section GRENZEN

In this section, lower and upper bounds (i. e., box constraints) can be set for
the state and control variables, the control parameters, the initial and final
time, and for the nonlinear inequality constraints S from Equation (3).

This option only works with NpsoL and NLSSOL but not with NLSCON.

The syntax for setting bounds is
variable = value of the lower bound  wvalue of the upper bound

If an upper bound is unconstrained then a value greater or equal to +10° =
+1.E+10 has to be set.
Or, if a lower bound is unconstrained then a value less or equal to —10'° =
—1.E+10 has to be set.

As wvariable one may use:
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E(1) | for bounds of the initial time %.

E(2) | for bounds of the final time #;.

P(2) | for bounds of the i-th control parameter p;.

Y(7) | for bounds of the i-th differential state variable y;(t).

V(7) | for bounds of the i-th algebraic state variable v;(t).

Please note that the bounds on y;(t) (and on v;(t) as well)
provided in this section will be satisfied only at the multiple
shooting nodes ¢7". State variable inequality constraints of
the type a < y;(t) < b, for all t € [to, 7], have to be specified
as an inequality constraint function S.

U(3) | for bounds of the i-th control variable u;(t).

Please note that the bounds on u;(¢) provided in this sec-
tion will be satisfied at the grid points ¢] of the control dis-
cretization grid. Because of the linear approximation of the
control variables the computed piecewise linear control ap-
proximation will satisfy this bounds everywhere in [ty,/].
ZB(7) | for bounds a;, b; of the i-th inequality constraint function
Si(t,y,v,u,p) of Eq. (3).

Please note that these inequality constraints will be satis-

fied only at the control discretization grid points .

3.5 Section SKALIERUNG

A proper scaling of all dependent and independent variables and functions
may effect the efficiency and robustness of any numerical algorithm used on
computers with limited arithmetic precision.

It is therefore recommendable to scale the state variables y(¢) and v(t), the
control variables u(t) and also the objective function ® properly by applying
suitable linear transformations.

As a rule of thumb, the range of the transformed variables y;(¢), v;(t) and
;(t) should be approximately [—1,+1] (after scaling). If the original range
of the variables is not known a priori one may get a first idea by looking at
the initial trajectories.

For the purpose of scaling by linear transformation the formulas

ui(t) = (w(t)—BY)/S!, B!eR,S{cR", i=1,...,NY,
(v;(t) — BY)/S?, B'eR,S* € R+, i=1,...,NV, (10)
u(t) = (u(t)— BY)/S*, B'eIR,S*eR*, i=1,...,NU,

]|
-~
—~

<+
~—

I

are used. The constants BY, BY, B¥, S/, S?, and S have to be selected
properly in order to transform the ranges of the state variables and the
control variables onto [—1,+1] (as a rule of thumb).
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In the same manner, the objective can be transformed by

d=(®-B"/S*, B®*cR,S*cR". (11)

As a rule of thumb, the minimum value of the transformed objective should
be approximately 1000 and the range of variation of the transformed objective
® should be between zero and 1000.

The scalings by linear transformations are optionally. The constants defining
the linear transformations can be provided in this section using the syntax

variable = value of B; wvalue of factor S;

As variable one may use

P(7) for scaling of the i-th control parameter p;

Y (3) for scaling of the i-th differential state variable y;(t)
V(3) for scaling of the i-th algebraic state variable v;(t)
U for scaling of the i-th control variable w; (%)
ZIELFKT for scaling of the objective ®

The linear transformations are then applied internally. The user does not
have to deal with the transformed variables. Input, output and problem
dependent subroutines are handled in the original units of all variables and
functions.

Example: Looking at the initial trajectory of an optimal control problem
from flight mechanics one may find that that the differential state variable
y1(t) (altitude) does have a range of approximately 30 x 10° (meters) to
450 x 10® (meters). In this case, it may be useful to select BY = 240 x 10?
and SY =210 x 103.

These constants for the internal linear transformation of y;(t) are now sup-
plied to the program by the line

Y( 1) = 240.0E+3 210.0E+3
in section SKALIERUNG of the input file.

3.6 Section STARTWERTE

In this section, first the values of initial time and final time have to be
provided by

E(1)
E(2)

value of the initial time t
value of the final time t;

If either initial or final time are free and not fixed (see Section GENERAL
of the input file) then an estimated value has to be used here.
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Next the initial estimates of the control parameters p; have to be supplied
(if there are any) by

P(2) = estimate of the value of the i-th control parameter p;

Then a list of the multiple shooting nodes 7" follows where each multiple
shooting node is accompanied by a list of estimates of the values of the state
variables y;(7") and v;(t]") at the multiple shooting nodes.

The list of multiple shooting nodes must have at least two entries, namely
for the initial time and for the final time.

The (constant) values of the multiple shooting nodes can be provided in two
different ways:

e By using the absolute value ¢ where ¢, <t <ty
T = absolute value of the multiple shooting node

e or by using the corresponding normalized value 7 € [0, 1]
(where t = 7 - (t; — to) + to)

TAU = normalized value of the multiple shooting node

Example: Consider the case of a time period of [to, ¢;] = [0,5]. A multiple
shooting node ¢t = ¢J* = 2 (absolute value) can now be selected either by

T=2.0
or by the normalized value 7 = 7 = (t* — to)/(t; — to) = 0.4
TAU = 0.4

A list of estimates of the values of the state variables has to accompany each
multiple shooting node ¢7* in the form of

Y( 1) = estimated value of y1(t;)
Y(NY) = estimated value of yny(t;)
V( 1) = estimated value of vy(t;)
V(NV) = estimated value of vyy(t;)

In the case of a free final time ?; it is recommended to select multiple
shooting nodes by normalized values. Then their relative position in [to, ¢/]
will be constant for any value of ¢; while their absolute values will vary
depending on the current value of ¢.
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Remarks:

e If the functions of the right hand side of the differential-algebraic equa-
tions are only piecewise differentiable (for example, if they are piece-
wise defined), it is absolutely necessary to place a multiple shooting
node at such a matching point of the functions of the right hand side.
Otherwise uncontrollable errors may occur in the integration method
and in the computation of the gradients that will cause the method to
fail.

e Please note that the first and last multiple shooting nodes always

have to be equal to initial time and final time.

3.7 Section STEUERUNG

In this section the control discretization grid points ¢ and also estimated
values of the control variables u;(¢;) at the grid points have to be provided.

The grid points of the control discretization grid can be selected by abso-
lute or normalized values in the same manner as described for the multiple
shooting nodes in the section above.

T = absolute value of the control discretization grid point t;
or
TAU = normalized value of the control discretization grid point t;

Each grid point ¢} of the control discretization has to be accompanied by a
list of estimated values of the control variables u;(t7) at the grid point

U( 1) = estimated value of uy(t3)
U(NU) = estimated value of uny(t5)
Remarks:

e The multiple shooting grid (¢]') and the control discretization grid ()
can be selected independently.

¢ Please note that the first and last control discretization grid points
always have to be equal to initial and final time.

e If the functions of the right hand side of the differential-algebraic equa-
tions are only piecewise differentiable we recommend to place a control
grid point at such a matching point of the model functions.
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4 The Programs parest and pgraph

parest

To investigate a new parameter identification or optimal control problem
using PAREST we recommend to get a copy of all files of one of the examples
and modify them for the new problem.

First, the file uspec.f of the problem dependent subroutines (described in
Chapter 2) and the input file start.dat (described in Chapter 3) have to be
prepared.

Next, the programs parest and pgraph can be compiled and linked by simply
typing make (which makes use of the prepared Makefile).

The optimization is done by program parest. It is started by typing
parest

if the name of the input file is start.dat and the name of the output file is
solution.dat. If input and/or output files do have other names they might
be used as well. The syntax is

parest [input file [output file]]

The terms in brackets “[--:|” may be supplied optionally but don’t have to
be supplied always.

The default name of the output file is solution.dat. The output file con-
tains a brief information about the optimization and two sections, namely
STARTWERTE and STEUERUNG. These values can now be used as im-
proved estimates of the state variables at the multiple shooting nodes (Sec-
tion STARTWERTE of the input file) and of control variables at the control
discretization grid points (Section STEUERUNG of the input file) for a sub-
sequent run of PAREST if the corresponding sections of the input file are
replaced by these values.

A run of PAREST can also be terminated interactively at any time by typ-
ing <Ctrl>-c (or, of course, using the UNIX command kill on a UNIX
machine). Then the program will respond by printing

Execution will be terminated
Please wait ...

The program will terminate immediately after the current iteration has been
completed and save the current estimate of the solution in the output file
solution.dat.
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pgraph A graphical output is prepared by the post-processing program PGRAPH. It
is based on the graphical system of the LRZ [3].

The program can be used with the following options

pgraph [1] [-g] [-X] [-s] [-P number;/numbers]
[-n number of figures per page]
[-p number of approz. points for curves| [-h step size]
[-d input file] solution file; [... solution file,]
[#listy [... #listy]]

Description of options:

1 Tables of function values will be generated as output of
PGRrAPH which may be used for visualization with another
software than PGRAPH.

The tables are in files named pgraph#zzx.dat where xxx is
just the number of the i-th figure.

g A dotted rectangular coordinate grid covering the whole figure
will not be drawn.

k The location of each multiple shooting node will be marked
by a small circle o on each curve.

S The location of each control discretization grid point will be
marked by a square <.

Pi/j A figure of a parameterized curve (phase diagrams) will be
generated by using the values of the ¢-th curve on the horizon-
tal achsis and of the j-th curve on the vertical achsis.

The numbers ¢ and j correspond to the following variables and

functions
i (or j)
Yi 1,....,NY
Vi—NY NY +1,..., NY + NV
Ui NY—_NV NY + NV +1,....NY + NV + NU
Si_NY_NV_NU NY + NV+NU +1,...,
NY + NV +NU+NZB
hi_ny-nv-nvu_nNzB | NY + NV + NU+ NZB+1,...,
NY +NV+NU+NZB+ NH

ni: Up to ¢ = 4 figures may be collected on one sheet of the
grahical output file. The default value is ¢ = 1.

pn All curves will be plotted by linear interpolation of n equidis-
tant approximation points in [to,f;]. The default value is
n = 100. A larger value of n will result in smoother looking
curves, but will also increase computational time and storage
requirements for the resulting graphics file.
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h s An alternative option to -p. For plotting the curves, equidis-
tant approximation points will be used. The equidistance is
At = s of (absolute) time units. A smaller value of s will result
in smoother looking curves, but will also increase computa-
tional time and storage requirements for the resulting graphics
file.

d file Name of the input file. The default value is start.dat.

Curves corresponding to different runs of PAREST can be drawn in the same
figure by simply listing the names of the corresponding output files solution
filey,..., solution file,.

Also reference values from other source can be drawn in the same figure as the
solution of PAREST. They have to be provided in form of tables of function
values. These files have to be distinguished from solutions files of PAREST
by typing ”‘#”’ as an initial to their file names.

The format of such tables with reference values is:

number of function values number of functions
curve numbercoiumn, . curve NUMbET coiumn
valuey ... waluey
valuey ... waluey

The numbers of curves are interpreted in a way described for option -P. If
one of the columns of the table may not be drawn then the curve number
—1 has to be used.

Examples for calls of PGRAPH:

1. pgraph -k -s -p500 solution.dat
A graphical file is generated using 500 equidistant points for drawing
curves. Multiple shooting nodes and control discretization grid points
will be marked.

2. pgraph -1 -h 0.001 solution.dat
Tables of functions will be generated in addition to the graphical output
file. For the tables and for the drawing curves equidistant points are
used at any 0.001 times.

3. pgraph solution.dat ’#refsol.dat’
In addition to the curves from the outputfile solution.dat curves with
values from the file refsol.dat will be plotted.
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For example, consider a problem with the dimensions NY = DIMY = 2,
NV =DIMV =0, NU = DIMU =0, NZB =1, NH = DIMH = 1.

The first two rows of the file with 100 reference values for 5 variables or
functions in tables to be drawn in comparison with the solutions of PAREST
may read as

100 5
013-124

Now the interpretation of the columns of the tabular values which are fol-
lowing these two rows is

t ‘ y1(t) ‘ s1(t) ‘ will not be drawn ‘ Yo (2) ‘ hy (%)

As standard output, pgraph generates an output file named ZZZG67 which
is prepared for previewing by the command graphik of [3].

Examples for calls of graphik:

1. graphik -n xprev -c -z ZZZG67
For previewing the graphics at the display.

2. graphik -n ps -¢ -z ZZZG67
For converting the whole file ZZZG67 to a PostScript-file ZZZG67.ps.
By the -c option the output is in color if sent to a color printer. No
previewing of the graphics is done at the display.

Refinement of the control functions
The function tables generated by the —1 option of PGRAPH can be used to
obtain a finer approximation of the control variables wu.

For example we have a solution of an optimization problem where the control
function has been calculated at 10 equidistant points. In the next optimiza-
tion run we like to refine the control and calculate its values at 20 equidistant
points. The following run of PGRAPH generates a function table of all vari-
ables in the file pgraph#00.gdat at the desired locations:

pgraph -1 -p 20 solution.dat

Assume we have three state variables and one control function, then the
function table contains five columns. The first column holds the time, the
following three the corresponding values of the state variables and the fifth
the values of the control variable.

The following awk script extracts the values of the control function out of
the file pgraph#00.gdat and prints a new section for the control:

PAREST — Documentation 25



BEGIN { print "STEUERUNG" }

/~["#]1/ { # Each line not beginning with ’#’

print * T = ", $1
print " u@1) =", $5
}
END { print "ENDE" }

If we name the script genu.awk the new section is generated by typing
awk -f genu.awk < ’pgraph#00.gdat’ > newu.dat

Finally we have to replace the section STEUERUNG in the file
solution.dat by the new one in newu.dat. We now can invoke the op-
timization with

parest start.dat solution.dat

26

A. Heim, O. von Stryk



5 Examples

For the two examples in this chapter, the problem dependent files uspec.f
and start.dat are already prepared in the subdirectories pendulum and
minenergy of the directory of the examples.

The underlying mathematical formulation of both problems is described
briefly in the sequel.

The two problems have been selected for the purpose of demonstration. More
sophisticated problems and results obtained using PAREST can be found in
[1] and [2].

5.1 Parameter identification of a planar pendulum

Consider a pendulum of length | and mass m which is fixed at the origin of
a coordinate system and moves in the z-y plane.

y A

Y
8

¥

|/

v
We consider the formulation of the dynamics of motion as a system of
differential-algebraic equations. If A denotes the Lagrangian multiplier and
g the gravitational constant then the Lagrangian is

m

L= (# +9%) —mgy + A\z* +y* = ). (12)

Now substituting  =: u, ¥y =: v for the velocities and applying index re-

duction techniques, the equations of motions read as a system of differential-
algebraic equations of index 1

z(t) = wu(t)

y(t) = ()

w(t) = Mx(t)/m (13)
o(t) = My(t)/m—yg

A
u?(t) + v () + MBI /m —y(t)g -

o
I
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Whereas the two additional entry conditions to be satisfied at £y due to the
index reduction are

0 = $2(t0)+y2(t0)—l2
0 = alto)ulto) + y(to)o(to). 14

Now the dynamic model has the dimensions

NY =DIMY =4, NV = DIMV = 1, NU = DIMU = 0, NP = NPAR = 1,
NRB =NRB =2, NZB = NZB = 0.

We assume that the gravitational constant g is unknown and has to be iden-
tified by using the results of an experiment:

The pendulum moves for two seconds. After every 0.2 seconds the values of
x(t), y(t), and \(t) are measured (but the values of the velocities u(t), v(t)
are not). This gives 11 times t¢,...,t$; of measurements and 33 measurement
values in total.

It is assumed that the measurements are not fully precise but with measure-
ment errors of standard deviations of o, = 0y, = 0.05 and o) = 0.25. These
weights will be used as weights s;; in the nonlinear least squares objective of
Equation (5).

A multiple shooting node is selected at every time of measurement. As
initial estimates of the state variables z(t), y(¢) and A(¢) at the multiple
shooting nodes we simply use the given measurements. Initial estimates
of the velocities u(t), v(t) can be computed by local interpolation of the
measurements of z(t), y(t).

As initial estimate of the parameter g we use 20 m/s?.

The ”true” value of ¢ is 9.81 m/s?.

5.2 A minimum energy problem

This well-known problem is reported in Sec.3.11, Example 2, of Bryson, Ho
[5]. The task is to minimize

Jlu] = / w?(t) dt —> min! (15)

DN | =

subject to the differential equations and boundary conditions

z(t) = wv(t), z(0) = 0, z(1) = 0 (16)
o(t) = u(t), v(0) = 1, v(1) = -1
and subject to the state variable inequality constraint
z(t) <, 1=const e R". (17)
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First the objective has to be transformed into Mayer type by introducing a
third state variable 1
w(t) = 5uQ(t), w(0) = 0. (18)

Then the objective to be minimized is
J[u] = w(1) — min! (19)

Now the dynamic model has the dimensions

NY = DIMY = 3, NV = DIMV = 0, NU = DIMU = 1, NP = NPAR = 0,
NRB =NRB =5, NZB = NZB = 1.

A formula of the solution can be given explicitly (see [5] for details). For
[ > 1/4 the inequality constraint does not become active, for 1/6 <[ < 1/4
the inequality constraint becomes active at a touch point at ¢ = 0.5, and for
0 <1 < 1/6 the inequality constraint becomes active a along a whole subarc
of [0,1].

z(t)

0.12E+00

0.10E+00

0.75E-01

0.50E-01

0.25E-01

0.00E+00
0.00 0.25 0.50 0.75 1.00

time

Figure: Optimal z(t) for an upper bound of { =1/9 =0.1111...

The unconstrained problem (NZB = 0) can be investigated first. Next, the
state constrained problem can be investigated by setting NZB = 1 and [ prop-
erly (for example, [ = 1/6 or 1/9). The behaviour of the solution may now
be studied for a sequence of increased or decreased values of [.
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