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Abstract

Microeconomic models, e.g., concern models, usually suffer from too simple dynamic equations and
from too unrealistic economic data. We investigate a new iterative design method, including numerical
simulation, numerical solution of optimal control problems by direct optimization methods and modeling.
The capability of the method is demonstrated by the refinement of a quite simple first concern model.
In the end, very complex micro- and macroecononomic phenomenona known from reality, have been
obtained for various numerical calculations.

Introduction and first concern model

Mathematical models of microeconomic processes are very important for many purposes. These models
can, e.g., help to explain macroeconomic phenomenona or help to improve the mangement of a concern.
Especially concern models are well known in literature, see, e.g., FEICHTINGER and HARTL (1986),
HILTEN et al. (1993), KAMIEN and SCHWARTZ (1981), KORT (1989), KORT et al. (1991) and LESOURNE
and LEBAN (1978). The proposed concern models generally can be (and should be!) improved by an
additional refinement. Usual insufficiencies are:

e Quite simple dynamic equations to enable an analytic calculation of the optimal open-loop
or feedback controls or/and the optimal limit cycles.

e Inexact economic data and inexact data of the concern due to the difficulties to get and to
use these data for numerical calculations.

e Fuzzy definition of the business policy due to different possible management approaches.

In the sequel we will illustrate the iterative refinement of a concern model via numerical simulation,
numerical solution of optimal control problems by direct optimization methods and modeling. For the
first model we use, see LESOURNE and LEBAN (1978), FEICHTINGER and HARTL (1986) and WILL (1992):

X = 1-nP-D, (1)
YV = I-6(X+Y)-(1-7)P+D, (2)
J = e D (3)

with P=pF—wL—p,Y -6 (X+Y)and F = (X +Y)* L. The dot denotes the derivative w. r. t.
the independent variable ¢ € [tg,t;]. Initial time ¢y and terminal time ¢; are fixed. The state variables
X,Y and J denote equity capital and loan capital of the concern and the accumulation of the discounted
dividends, respectively. With the output F, the profit P is the difference between sales proceeds p F'
and labour costs w L, loan capital costs pr Y, and depreciation § (X 4+ Y). 7 denotes the tax rate and r
denotes the notational interest on equity capital. The performance index J(ty) is to be maximized with
the control functions D, I, and L, which denote dividend, investment, and number of employees. The
state constraints 0 <Y and Y < k X (borrowing limit) and the control constraints 0 < D, 0 < I < Iyax,
and 0 < L have to be fulfilled for all ¢ € [tg,tf]. For analytical and numerical calculations with this first



concern model, see LESOURNE and LEBAN (1978), FEICHTINGER and HARTL (1986), WILL (1992) and
KosLIK et al. (1993).

Refinement of the first concern model

New direct optimization methods, e.g., the direct collocation method DIRCOL, see VON STRYK (1993),
VON STRYK and BULIRSCH (1992), enable an comfortable, fast and reliable numerical solution of optimal
control problems. In detail, major advantages of the direct collocation method are:

e Even non differentiable model functions, e.g., ¢ and p; in the new model, can be handled,
since no explicit numerical integration of the differential equations is done, see Fig. 1.

e The large domain of convergence enables the computation of the optimal solution even with
a poor initial guess.

e Although the calculation of the adjoint differential equations is not necessary, the direct
collocation method DIRCOL yields accurate estimates for the adjoint variables. These
estimates facilitate the use of an highly accurate indirect optimization method, e.g., the
multiple shooting method.

14% L 1 1 1 1 1 1 -
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and py pign for the equity capital
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Various refinements of the first concern model (1) — (3) lead to the new concern model:

S = S, (4)
L = L, (5)
Y = Y., (6)
X +I+(1—7) (P=p, X) (7)
Xp = —T4+0=7) X0 pm , (8)
X, = (1-7)p X, (9)
d = —dn(l+1) (10)
with
F=a(X+Y)% L,
and

P:é(p(F—SC)—aS—wL)—ka—é(X+Y).

Equations (4) and (5) represent the level of stocks S € [Smin, Smax] and number of employees L > 0 (new
controls Se € [S¢ min, Se,max] and Le € [Le min, Le,max]). The loan capital Y € [0,k X] can be controlled
via the new control Y, € [Ye min, Ye,max] replacing the former I, see (2) and (6). The owner of the equity
capital X > 0 in the concern holds a remaining part X,, > 0 of his capital in alternative capital assets,
e.g., fixed-interest stocks. With the help of the investment I € [Inin, Imax], the capital flow between X
and X, can be directed, see (7) and (8). The demand for a risk premium by the owner of the equity
capital X > 0 in the concern is modeled in Eq. (9). For numerical calculations with real economic data



or realistically modeled economic cycles, see BREITNER et al. (1993) and KOSLIK et al. (1993), it is
necessary, to calculate an exact discounting function d(t¢) for a variable inflation i(¢). The derivation of
the Eq. (10) and the initial condition d(tg) = 1 for d(¢) can be found in KOSLIK et al. (1993). For the
investigation of realistically modeled economic cycles it is comfortable, to add the equation

2T
o (11)

for the position k, in an economic cycle with the initial condition k,(t9) = k,o. The duration k; of
the economic cycle can be chosen even discontinuous. With the help of k,, the economic functions can
be modeled as trigonometric functions, e.g., i(t) := i, + 4, sink,(¢). All the economic parameters and
function, e.g., 7 and § have been determined carefully. The owner of the capital (X + X,,) and the
management of the concern try to maximize the total profit,

Z:X(tf)-FXm(tf)-{—(l—T)pm —  max !

d(ty)

with respect to the control functions S., L.,Y. and I.

The derivation of the Eqs. (4) —(11), the related initial conditions and the state and control constraints for
the design of a realistic concern model requires some iterations of simulation, optimization and modeling.
Optimal solutions for various economic settings have to be calculated numerically for all preliminary
models. These solutions must be compared to well known real phenomenona in micro- and macroeconomy,
see, e.g., HEINEN (1985). A further refinement of the model — equations, boundary conditions, constraints
or model functions — is required, as long as unrealistic solutions are obtained. The final, complex and
very realistic concern model can be found in KosLIK et al. (1993).

Numerical results

Various numerical calculations with the realistic concern model have shown its validity. The optimal
solutions gain insight into the optimal management of a concern on the one hand and can help to
understand macroeconomic phenomenona on the other hand. The numerical results include optimal
solutions and optimal limit cycles

o for the real data of the inflation 7, the interest rate for loan capital p, and the current yield
pm, see Fig. 1 and Fig. 2;

for realistic economic cycles including non-constant cycle duration k; € [3 years, 9 years];

different planing horizons ¢ (1 year, 3, 5 and 10 years);

for the best possible duration k;" () of the economic cycle related to the initial conditions
(best case analysis), see Fig. 3;

for the worst possible duration k;,(t) of the economic cycle related to the initial conditions
(worst case analysis).
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Many of the calculated optimal solutions and optimal limit cycles can be found in KOSLIK et al. (1993).

Our future research in this area is devoted to the numerical calculation of optimal solutions with in-
direct optimization methods, e.g., the multiple shooting method, too. Furthermore, the application of
differential game theory, see, e.g., BREITNER et al. (1993), is planed for the handling of unknown, future
economic data.
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