Next:    About this document 
Up: No Title
 Previous:  Conclusions
 
 
 
References
 
- 1
 -  Bock, H.G.; K.J. Plitt.
		      A multiple shooting algorithm 
                     for direct solution of optimal
		     control problems.
		     Proc. of the IFAC 9th World Congress, Budapest, Hungary,
		     July 2-6 (1984) 242-247.
 - 2
 -  Breakwell, J.V.
         The optimization of trajectories.
        SIAM J. Appl. Math.  7 (1959) 215-247.
 - 3
 -  Bryson, A.E.; W.F. Denham; S.E. Dreyfus.
         Optimal programming problems with inequality constraints. 
        I: Necessary conditions
        for extremal solutions.
         AIAA J.  1, 11 (1963) 2544-2550.
 - 4
 -  Bryson, A.E.; Y.-C. Ho.
		      Applied Optimal Control.
		     Rev. Printing. (Hemisphere Publishing Corporation, 
                     New York, 1975).
 - 5
 -  Bulirsch, R.; F. Montrone; H.J. Pesch.
         Abort landing in the presence of a windshear as a 
         minimax optimal control problem,
         Part 1: Necessary conditions.
         J. Optim. Theory Appl.  70, 1 (1991) 1-23.
 - 6
 -  
        Bulirsch, R.; E. Nerz; H.J. Pesch; O. von Stryk.
         Combining direct and indirect methods in optimal control: Range 
        maximization of a hang glider.
        In: R. Bulirsch, A. Miele, J. Stoer, K.H. Well (eds.):
         Optimal Control and Variational Calculus, Oberwolfach, 1991,
        International Series of Numerical Mathematics 
        (Birkhäuser, Basel) this issue.
 - 7
 -  Chudej, K.
         Optimal ascent of a hypersonic space vehicle.
        In: R. Bulirsch, A. Miele, J. Stoer, K.H. Well (eds.):
         Optimal Control and Variational Calculus, Oberwolfach, 1991,
        International Series of Numerical Mathematics  
        (Birkhäuser, Basel) this issue.
 - 8
 -  Enright, P.J.; B.A. Conway.
         Discrete approximations to optimal trajectories using
        direct transcription and nonlinear programming.
        AIAA Paper 90-2963-CP (1990).
 - 9
 -  Fletcher, R.
         Practical methods of optimization.
        (2nd ed., J. Wiley & Sons, 
        Chichester/New York/Brisbane/Toronto/Singapore, 1987).
 - 10
 -  Gill, P.E.; W. Murray; M.A. Saunders; M.H. Wright.
                        User's guide for NPSOL (Version 4.0).
                       Report SOL 86-2. Department of Operations Research, 
         Stanford University, California, USA (1986).
 - 11
 -  Hargraves, C.R.; S.W. Paris.
         Direct trajectory optimization using nonlinear 
        programming and collocation.
        AIAA J. Guidance  10, 4 (1987) 338-342.
 - 12
 -  Hestenes, M.R.
         Calculus of variations and optimal control theory.
        (J. Wiley & Sons, New York, London, Sydney, 1966).
 - 13
 -  Jacobson, D.H.; M.M. Lele; J.L. Speyer.
         New necessary conditions of optimality for control problems 
        with state-variable inequality constraints.
        Journal of Mathematical Analysis and Applications  35 
        (1971) 255-284.
 - 14
 -  Kraft, D.
         On converting optimal control problems 
        into nonlinear programming codes.
        In: K. Schittkowski (ed.): 
         Computational Mathematical Programming,
        NATO ASI Series  15 (Springer, 1985) 261-280.
 - 15
 -  Maurer, H.
          Optimale Steuerprozesse mit Zustandsbeschränkungen.
         Habilitationsschrift, 
         University of Würzburg, Würzburg, Germany (1976).
 - 16
 -  Stoer, J.; R. Bulirsch.
         Introduction to Numerical Analysis.
        2nd rev. ed. (Springer Verlag, 1983).
 - 17
 -  von Stryk, O.
         Ein direktes Verfahren zur Bahnoptimierung von Luft- und
             Raumfahrzeugen unter Berücksichtigung von Beschränkungen.
 
        (a) Diploma Thesis, Department of Mathematics, Munich University of Technology
          (May 1989).
 
        (b) Lecture at the Institute for Flight Systems Dynamics,
        German Aerospace Research Corporation (DLR), Oberpfaffenhofen,
        Germany (June 16th, 1989).
 
        (c) ZAMM  71, 6 (1991) T705-T706.
 - 18
 -  von Stryk, O.; R. Bulirsch.
         Direct and indirect methods for trajectory optimization.
        Annals of Operations Research  37 (1992) 357-373.
 
 Author's address
Dipl. Math. Oskar von Stryk,
Mathematisches Institut,
 
Technische Universität München,
P.O.Box 20 24 20,
D-W-8000 München 2,
Germany
 
 stryk@mathematik.tu-muenchen.de
 
Oskar von Stryk 
Fri Apr  5 21:38:03 MET DST 1996