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Chapter 1

Introduction

1.1 Motivation: Simulation-based Motion Optimization for
Legged Robots and Humans

Computer-based modeling, simulation, and optimization enables the study of complex engineer-
ing applications and natural phenomena that would be too expensive or dangerous, too complex
or even impossible to study by direct experimentation. Besides an important role in engineer-
ing design, simulation-based optimization can also be applied to achieve optimal operation of
existing systems, e.g., robots. Understanding human walking and running and developing hu-
manoid robots with close-to-human performance and efficiency in locomotion is one of the great
challenges in robotics and human biodynamics research.

The mathematical modeling of the motion dynamics of robots and humans leads to large systems
of differential equations. Algorithms for efficient and flexible computation of the motion dynam-
ics for simulation and optimization must be employed. The parameters of the motion dynamics
models have crucial influence on the quality of the results of the simulation, and therefore their
determination and validation are important. Numerical integration of the systems of differential
equations yields the time-dependent state trajectories of the motion system.

However, not only simulation techniques are involved when investigating motions of legs or
arms. A motion from an initial to a final position of a foot or hand can usually be realized in
infinitely many ways by a robot or a human. Redundancy in the actuated motion system offers
the opportunity of choosing the ”best” out of a large number of alternative actuation strategies
for a leg or arm that all lead to the same final goal position. The redundancy and degrees of free-
dom in the actuation strategies is much higher in human biodynamics where several muscles are
involved in moving a single joint than in robot dynamics where usually only one rotary electrical
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motor actuates one rotational joint. Optimization models and methods are needed to determine
optimal motion trajectories subject to the motion dynamics models. Whereas engineers may se-
lect suitable objectives for a robot motion like minimum time or minimum energy, it is not clear
which objective is used mainly unconsciously for a human motion.

Besides the differential equations modeling the system dynamics, several additional conditions
(like boundary constraints, nonlinear inequality constraints) must be taken into account to prop-
erly state optimization problems for motion dynamics. The task in the resulting optimal control
problems is to determine the time-dependent control trajectories (e.g., motor torques or mus-
cle activations) that lead to state trajectories (e.g., joint angles and joint angle velocities) of the
system, which represent a physically valid motion by fulfilling the motion dynamics model and
satisfying all constraints, and which are optimal in the sense of a given objective function (like
time needed or energy consumed for execution of a motion). Optimal control problems for analy-
sis, prediction, and optimization involving computational models are helpful whenever a detailed
model of the system is available, when the system investigated is not yet present physically or
when the system can not be easily controlled to perform any arbitrary desired task.

Formulating and solving optimal control problems of detailed biomechanical models involves
high computational cost. For numerical biodynamical investigations of motions of larger parts
of the human body, computational times of weeks or even months have been observed. One
common way to reduce the computational burden to a practical amount is to assume special
properties of the muscle control strategies and to consider the inverse problem to determine the
muscle forces which are required to obtain specific joint torques that lead to a motion measured
in experiments. This inverse dynamics approach however has the drawback that it can not be
used for general objective functions for muscle actuation, that it is cumbersome to include the
activation dynamics, i.e. the dynamics of the chemical reactions that make the muscle exert its
force, in this approach and that it can not directly be used to predict human motion. Also, small
measurement errors may result in large errors in the calculated forces when analyzing human
motion.

While for mechanical multibody dynamics systems like robots or motor vehicles, forward dy-
namics simulation approaches are well established nowadays, the extension to the motion dy-
namics of biomechanical systems is still a wide open field. Forward dynamics simulation and
optimization approaches in human biodynamics in principle allow a general objective function
for muscle actuation, consideration of the activation dynamics, to predict motions based on vali-
dated models, and to compensate for measurement errors. However, today’s approaches severely
suffer from too high computational cost which rule them out for practical use. Numerical meth-
ods for robots already allow prediction of motion. For biodynamical applications of human
motion, computational times currently are far too high for use on standard computers, which
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however would give rise to completely new application scenarios of human body dynamics sim-
ulation in medicine and biology.

In this thesis the efficient modeling of locomotion dynamics of robots with four and two legs and
of humans, the proper modeling of optimal control problems for optimal motion trajectories as
well as efficient optimization techniques for solving numerically the resulting forward dynamics
simulation and optimization problems will be investigated.

1.2 Application Scenarios of Legged Robot and Human Mo-
tion

The following applications shall give examples of where optimal control problems in the context
of this thesis arise. Informal descriptions will be given. More detailed and formal problem
statements are the content of Chapter 5.

Optimization of Gaits of Legged Robots

Legged robots can walk in many different ways. Depend-

Figure 1.1: Sony AIBO ERS-210;
taken from [107].

ing on the number of feet, already the sequence of feet
touching the ground bears several options. Once this se-
quence has been selected, usually an infinite number of
endeffector (i.e. foot) trajectories leads to the same step-
ping sequence. The problem of optimizing gaits for legged
robots is then to find joint angle controls that lead to a
”best” walking motion of, e.g., highest speed available or
lowest energy consumption while ensuring postural stabil-
ity of the robot and leading to a physically valid motion.

Simulation based optimization of gait patterns are useful
for the design and operation of robots like Sony’s AIBO,
cf. Figure 1.1. However, the computational results strongly
depend on the quality of the simulation model of the robot’s
locomotion dynamics and careful adaption of the computed gaits to the real robot may be nec-
essary. This can be avoided by hardware-in-the-loop optimization, where the real robot is used
to evaluate the objective function. However, for the real robot no derivative information, which
is needed for most optimization approaches, is available directly. Furthermore, hardware-in-the-
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loop optimization of course is not possible if the hardware is physically not present yet. Therefore
in pre-build optimization, model based optimal control is the method to be chosen.

Analysis and Prediction of Human Motion

In biomechanical systems, redundancies occur in two different ways: First, one overall motion
of legs and/or arms from an initial to a final position generally may be performed by an infinite
number of joint angle trajectories; second, as human joints are actuated by redundant muscle
groups, a specific kinematic joint angle trajectory may be realized by an infinite number of dif-
ferent activations of the muscles involved. The central problem statement addressed in this thesis
is as follows: Based on a simulation model of human motion dynamics find the activations of
each muscle involved so that the resulting calcium ion concentrations caused by the activation of
each muscle lead to forces which cause joint torques that finally result in a motion of all joints
which

1. is equal or as ”close” as possible to the kinematic and/or kinetic data of a human body mo-
tion (given, e.g., as joint angle trajectories) measured in experiments (analysis problem),
or

2. best fulfills some motion goal like maximum jump height or width or fastest possible
walking or running (prediction problem).

While in the first case only the redundancy of
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Figure 1.2: Side view of schematic motion sam-
ples of a human kicking motion.

the muscles actuating each single joint must be
considered, the second case incorporates also
the additional level of redundancy with respect
to the overall motion. ”Close” in the first case
may be measured by an objective function, e.g.
the integral over the time of motion of the dif-
ference of measured (in terms of joint angles,
see Figure 1.2 for a series of leg poses for a
kicking motion) and calculated joint angle tra-
jectories. The goal achievement in the second
case can be measured as well by a suitable ob-
jective function like time or energy required.
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Identification of Objective Functions for Human Motion

The objective function involved in solving the redundancies of the muscles plays an important
role both in analysis and prediction of human motion. Although there are several heuristic ob-
jective functions to be found in literature, the objective function that applies for one specific
test person at a specific training level and even for a specific motion task is supposed to differ.
Therefore identification of the objective function underlying certain human motions, which can
not be measured directly, from motion data that can be measured directly, is an important issue.
Identification methods need repeated evaluation of the system, i.e. in this case repeated solution
of the underlying optimal control techniques, which requires efficient solution of the optimal
control problems to be applicable in reasonable computational time.

1.3 Current State of Research

Accurate and efficient numerical investigation of the forward dynamics simulation and optimiza-
tion problem in case of the dynamic behavior of large parts of or even the complete human body,
consisting of coupled submodels for skeleton, wobbling masses, muscles and tendons and the
control mechanisms of the redundant muscle groups involved in a motion, is yet not satisfyingly
solved. Kinetic modeling of the muscle-skeleton-apparatus leads to very large systems of dif-
ferential equations. Usually a large number of controls results from the many redundant muscle
groups involved. Moreover, several different hypotheses on suitable objectives and constraints
exist for determining the controls of each single muscle involved by simulation and optimization.

Therefore, forward dynamics simulation of a human motion leads to high dimensional, nonlinear
optimal control problems. Current approaches even for problems with reduced models of the
whole human body require computation times of days or weeks on workstations, cf. [7]. For-
ward dynamics simulation based on a validated dynamics model and model parameters has the
important potential of predicting certain motions. While forward dynamics simulation is state of
the art in vehicle and robot dynamics, e.g. [42, 44, 90, 91], it is still at an early stage in the area
of human motion.

On the other hand, inverse dynamics simulation investigates given kinematic position and veloc-
ity trajectories of a human motion (e.g. by measurement). Together with appropriate modeling
approaches it allows a comparatively fast numerical calculation of the controls of each muscle
group if very restrictive assumptions on the underlying model like special objective functions for
control of the muscles involved are made. Inverse dynamics simulation for a measured human
motion gives an interpretation of the acting forces and torques on the level of the single muscles
involved.
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Dynamics modeling

Modeling of the dynamics of human motion involves mainly the following three components of
motion generation: (i) skeleton and wobbling masses as a mechanical multibody system (MBS),
(ii) muscles and tendons as the (redundant) actuators of the system with inherent dynamic be-
havior, (iii) control concepts for the activation of the muscle groups involved in generating the
motion.

Multibody dynamics modeling of skeleton and wobbling masses

Several methods and programs for modeling and simulation of the dynamics of general multi-
body systems of various structures exist which are in principle also applicable to the dynamic
modeling of the human motion apparatus, for modeling walking or grasping motion of parts of
or the whole human body, e.g. ADAMS, DADS or SIMPACK [90, 91].

The assumptions underlying these general-purpose methods do usually not allow to exploit spe-
cial structure in MBS. E.g. a standard MBS dynamics formulation with constraints is the de-
scriptor form resulting in a possibly large system of differential algebraic equations (DAEs) of
index 3 [90]. By exploitation of special properties of the MBS, e.g. a smaller system of ordinary
differential equations (ODEs) with a minimum number of state variables may be obtained which
can numerically be solved more robustly and efficiently. Furthermore, only few general purpose
tools for MBS modeling and simulation are prepared for the numerical solution of an optimal
control problem of the redundant muscle groups involved in a motion.

On the other hand, for four-legged and bipedal walking robots efficient methods for modeling of
the robot dynamics have been established in recent years. Dynamic motion behavior of walking
robots is characterized by a high number of degrees of freedom and many actuated joints and
a tree structured MBS with switching contact situations. Recursive methods like [22, 59] are
especially well suited for MBS with a large number of degrees of freedom. For tree structured
MBS with constraints and inverse kinematics models (like four-legged or bipedal walking robots)
modeling of the constraints by DAEs may be transformed using a reduced dynamics approach to
a numerically more efficient and robust solvable system of fewer ODEs [42]. It is therefore worth
to investigate the extension from modeling the dynamics of humanoid robots [52, 53, 54, 55] to
human body dynamics.

Dynamics modeling of muscles and tendons

For modeling of the dynamic motion and force behavior of muscles as contracting actuators
with serial and parallel elasticities and active contractile elements a number of well investigated



1.3. CURRENT STATE OF RESEARCH 7

models have been developed. They describe the muscle forces in relation to muscle length,
muscle velocity and muscle activation as the many models based on the fundamental approaches
of Hill and Huxley, cf. [80, 82]. Almost all models from literature assume that the muscle forces
act at a point. For non-punctual areas of force application the muscles are divided into several
muscles with single points of actuation. Several approaches exist for modeling the muscle paths
as the straight line method (modeling the muscle path to connect the points of application in a
straight line), the centroid line method (modeling the muscle path to connect the centers of mass
of the muscle cross sectional areas) or the obstacle set method (modeling the muscle path to
move freely sliding along the bones). A survey of these approaches may be found, for example,
in [26, 82].

Control of redundant muscle groups

Investigation of the real control mechanisms of muscles, that apply to reflexes or controlled mo-
tion by the central nervous system, is still a wide open subject of research in neurophysiology.
Up to now, only few validated approaches for mathematical models exist. In biomechanics, how-
ever, it is a widely accepted hypothesis, that the control of the redundant muscles involved in a
motion usually follows some optimality criteria. For different types of motion and different test
persons different optimality criteria J have been suggested, e.g. uniform distribution of the
weighted forces F = (F1, ..., Fnm)T needed for a certain joint motion to the muscles involved
in some k-norm, where k = 1, 2, 3, 4 or ∞, see e.g. [80, 88]. The constant weights are positive
characteristics N = (N1, ..., Nnm)T of the muscle capabilities like cross sectional areas or maxi-
mum muscle strength. For k = ∞ minimization is performed with respect to the maximum load
of the muscles:

J =
nm∑

i=1

(
Fi

Ni

)k

= ‖F ./N‖k
k , k ∈ {1, 2, 3, 4} resp. J =

∥∥∥∥
Fi

Ni

∥∥∥∥
∞

= max
i

(F ./N ).

(1.1)
Here, F ./N denotes the element-wise quotient of the vectors F and N like in MATLAB nota-
tion. Another approach is to minimize the energy consumed by all muscles, consisting of resting
heat, activation heat, maintenance heat, shortening heat, and the mechanical work performed
[120].

Simulation of dynamic motion

Investigations on human motions has a long tradition; an extensive survey may be found e.g. in
[58]. First investigations on dynamic human motion using optimization techniques have been
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done in the early 1970ies [16]. However, muscles have not been included to the models; using
a criterion of minimum power, the hip and knee torques that lead to an optimal trajectory of
the respective joints, have been calculated. In [43] in the mid 1970ies a complete model of the
human leg with two joints and five muscle groups was used to investigate a kicking motion.

Simulation of time-dependent behavior of a human motion that is modeled according to the pre-
viously mentioned aspects not only means the numerical integration of an ODE or DAE system
of large size, but also the solution of a static or dynamic optimization problem for the controls of
the redundant muscle groups involved. If a sequence of static frames (snapshots) of a motion is
considered, this results in a sequence of static optimization problems. Their solution however is
only for very slow motions a reasonable approximation to the solution of the dynamic optimiza-
tion (i.e. optimal control) problem over the continuous time span of the whole motion, see, e.g.
[6, 40].

Inverse dynamics approach

Inverse dynamics simulation for a given, usually measured, motion obtains the activations for
the muscle groups involved under the assumption of certain criteria for solving the redundancy
problem. Thus, practically only given motions can be analyzed; predictions of motions that
are goal-oriented as optimal reaching of a certain position, jumping as high or far as possible,
running as fast or energy-efficient as possible etc. can not or can only very limitedly be obtained,
e.g. [19].

Approaches to extend inverse dynamics simulation to the optimization of human motion are
based on very special assumptions (like min/max criteria) to the optimality criterion for solving
the redundancy problems of the muscles and use a low dimensional parameterization of the
free parameter space for being able to numerically solve the resulting optimization problem
efficiently, see. e.g. [87, 88]. For slow motions dynamic properties of the wobbling masses
do not effect the quality of the solution, and only for slow motions special min/max criteria for
solving the redundancy problems of the human motion apparatus on the level of muscles and
tendons are justified. Distribution of the total forces that act at one joint and of the torques to
the muscles then is done according to different parameters of the muscles. But if faster motions
shall be investigated, other optimality criteria must be used.

From a biomechanical point of view it is desired not only to investigate fast motion but also to use
and evaluate different optimality criteria. Up to now there are no methods to solve these problems
with inverse dynamics simulation satisfyingly. First approaches to the efficient treatment of loops
that occur due to parallel muscles, may be found in [76]; inverse dynamics also is not solved for
general optimality criteria there. In an approach of two stages first the joint torques and then the
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muscle forces are calculated.

Activation dynamics can not be directly included into inverse dynamics models. First approaches
to combine inverse dynamics analysis with muscle activations are given in [36].

The inverse dynamics approach is also used for the Anybody project [2], which allows setting
up high dimensional models and is used for several applications like automotive, rehabilitation,
aerospace, and sports.

Forward dynamics approach

With forward dynamics simulation, on the other hand, both analysis of given motion and cal-
culation and optimization of free motion are possible in principle. Starting from the muscle
activations (which are to be determined) forward dynamics simulation calculates the resulting
motion. Analysis of motion of parts of or even the whole human body is possible with it and
leads to a high dimensional nonlinear optimal control problem. Advantageous with the analysis
of human motion by forward dynamics simulation and optimization is the fact, that differences
of measured and calculated motion may be included in the optimality criterion by an additional
term consisting e.g. of the integral of the square of the deviation. Thus, measurement errors may
be compensated for, while with inverse dynamics simulation small measurement errors in the
given kinematic trajectories may lead to large errors in the calculated muscle forces.

Numerical optimization using forward dynamics simulation currently most often is treated by
application of methods of transforming the optimal control problem by parameterization of the
controls (direct shooting) [115] to a finite-dimensional, constrained, nonlinear optimization prob-
lem, which is solved by methods of sequential quadratic programming (SQP) type. These ap-
proaches are usually not tailored to the problem structure. For the numerical calculation of
gradients of the objective function and constraints with respect to the optimization parameters
of the control parameterization the sensitivity matrix of the solution of the (ODE or DAE) state
differential equations with respect to the optimization parameters has to be calculated [63]. For
human motion dynamics this is often done by external numerical differentiation (END) with dif-
ference approximation [78, 84, 98]. END is not only computationally very expensive because
the differential equations have to be integrated at least as often as the number of grid points in a
piecewise polynomial discretization of the controls and, thus, leads to extremely high computa-
tion times for motions with a large number of muscle groups. But also additional errors caused
by uncoordinated variable step size integration may cancel many if not all valid digits of the
gradient approximation. Therefore, so-called internal numerical differentiation (IND) methods
are preferable [63] which efficiently and reasonably accurate compute the sensitivity matrix with
an extended numerical integration method and using the ODE Jacobian as additional input.
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For example the calculation times for vertical jumping motions of a planar leg model with 9
muscle groups [21, 99] on a workstation have been reported to be within days [95]. For a spatial
model of the whole human body with 54 muscle groups even computation times on workstations
in the region of months have been reported [7]. In [9] computation times using a normal computer
are compared with those using MIMD (multiple instruction multiple data) parallel and vector
parallel computers. The method from [84] is applied to a 14 DOF model with 46 muscle tendon
groups. Computation times range from one to three months on a normal computer (SGI Iris
4D25), 77 h on a vector parallel computer and 88 h on a MIMD parallel computer. Approaches
to reduce computation time of forward dynamics approaches using pre-defined profiles of muscle
activations are given in [109].

Identification of objectives for muscle control

Identification of the objective functions that are supposed to be minimized for the involvement
of the redundant muscles is a key topic since only with justified objective functions reasonable
results can be computed. In [94], load sharing patterns are obtained directly from the muscle
forces by an inverse approach. In [110], indirect approaches are described. General identification
methods of objective functions on the solution of the optimal control problem are based on
sensitivity analysis [64, 68, 69, 71, 72] and its extension to constraints on controls and states [70,
73, 74]. Methods exist both for sensitivity analysis of the discretized optimal control problem
[12] and the optimal control problem itself [14].

Application scenarios investigated in the literature

Due to the high computational effort for treating the whole human body, currently only parts of
the human body and its interaction with the world are considered, e.g. [7, 31, 43, 77, 79, 122].
In [10, 29, 61, 78] cycling motion is investigated, in [29] to find an optimal cycling machine.
In [61] to solve the optimal control problem, the differential equations are not, like commonly
done, treated by direct shooting but with a direct collocation approach. A model of a single leg is
used for handling a vertical jumping motion in [99]. In [8] a walking motion is optimized. Here,
a three dimensional model with 10 segments, 23 DOF (including a 6 DOF free floating base) and
54 muscle-tendon-units is used. In [39] approaches for foot and muscle modeling for generating
stable walking motion have been investigated. Skeletal dynamics, muscle paths, muscle tendon
actuators and the relationship between muscle activation and muscle contraction have been ex-
amined in [82]. An extended approach to muscle path modeling may be found in [25]. From data
of the ”Visible Human Male” project [1] and in vivo measurements a dynamical model has been
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established [26] whose kinematic structure was published in [27]. The necessity of taking into
account the special properties of wobbling masses was stated in [38, 67]. Approaches to coupling
of wobbling masses to the rigid body model of the skeleton may be found in [37, 67, 92]. Proper-
ties of 26 muscle groups of shoulder, elbow, and hand joint are presented in [24]. In [83] a three
dimensional model of the knee may be found. Geometric data was gained from dead bodies. The
contact areas of thigh and tibia are modeled to be deformable, those between thigh and patella
to be rigid. 12 elastic elements describe ligaments and capsules; in total 13 muscle-tendon-units
are modeled. An optimization is performed not for a complete motion, but for single points of
time. Investigation of control concepts, which are supposed to be applied in bipedal walking in
nature, have been made in [48].

1.4 Aims and Outline

This thesis deals with model-based optimal control of walking motions of legged robots and
of biomechanical systems using forward dynamics simulation and optimization. The aim is to
develop a methodology for the forward dynamics problem in biomechanics that will achieve a
speed-up of computational time of two orders of magnitude compared to common methods. This
will allow for solving the problem repeatedly in methods to identify the objective functions that
occur in human motions.

The outline of the thesis is as follows. Chapter 2 is about dynamics modeling of legged robots
and the extensions for modeling of humans. Starting from general multibody systems and motor
and gear models, it is investigated how the biomechanical actuation with muscles can be taken
into account.

Dynamics algorithms to deal with the system of differential equations are explained in Chapter 3.
The Articulated Body Algorithm and its extension to contact and collision situations are chosen
because it is tailored to tree-structured systems and well-suited for an efficient object-oriented
implementation.

The different kinds of actuators have influence also to Chapter 4, which deals with simulation
based optimal control techniques for walking robots and humans. While for walking robots the
only kind of redundancy lies in the fact that certain motions goals, like the foot tip position,
orientation and velocity at final time, may be reached by usually an infinite number of joint
angle trajectories, biomechanical systems bear another level of redundancy: Due to the fact that
one joint is usually driven by more than one muscle (often even more than two antagonistic
muscles) and that there are muscles, that have effect directly to more than one joint, one specific
joint angle trajectory may be realized by an infinite number of muscle activations and muscle



12 CHAPTER 1. INTRODUCTION

forces. Optimal control problems are used to overcome both levels of redundancy. First, general
purpose optimal control techniques based on direct collocation are used, while in the second part
of Chapter 4 adaption of the techniques to the special structure of the underlying models are
investigated. The last section of Chapter 4 gives insight into the identification methods.

Numerical and experimental results are given in Chapter 5. For both a quadruped and a biped
robot walking motions have been optimized. A human kicking motion has been investigated both
in terms of analysis and prediction of the motion and a jumping motion was analyzed. The last
part of Chapter 5 gives first results for identification of objective functions for a human kicking
motion.

The last chapter gives a summary and outlook to conclude this thesis.
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Chapter 2

Modeling the Motion Dynamics of Walking
Robots and Humans

Biped or quadruped walking robots and the biomechanical motion apparatus in humans or four-
legged mammals share some kinematic and kinematical characteristics. However, the differences
increase with the level of details that are included into the models of biomechanical systems.
The basic properties of both kinds of systems and especially the extensions of models of walking
robots to the modeling of biomechanical systems are discussed in this chapter.

2.1 Walking Robots

2.1.1 Multibody Systems

Walking robots and their large scale motions may be treated as tree structured systems of rigid
bodies, which are actuated by at most one, usually rotational, motor per joint. In contrast to finite
element methods, multibody dynamics simulation does not take into account elastic deformations
in the (almost rigid) links. However, this most often is not considered necessary because elasticity
is an undesired side effect in standard robotic mechanisms composed of rigid joints and links and
is avoided by construction and design as much as possible. Nevertheless, springs may be used to
model elasticity in the joints, which for typical robots is about one order of magnitude larger than
the undesired elasticities in the rigid links. This is useful not only for biomechanical systems but
also for flexible robots, cf. Section 5.1.3.

Walking robots show a special kinematic structure. Usually they can be modeled as tree struc-
tured, i.e., the legs and, if needed, arms all start from a common trunk, cf. Figure 2.1. The trunk
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is modeled as a joint (which is a virtual joint which physically is not existent) with six degrees
of freedom (DOF) to allow the robot for any position and orientation in the space. Each link
is followed by one or more (usually driven) joints, which again are followed by one or more
links. Thus, no kinematic loops are introduced. This structure gives rise to special dynamics
algorithms that can exploit the structure, see Chapter 3. Attention must be paid to the contacts
with the ground which at first sight introduce kinematic loops. Those however can be avoided by
separate treatment (Section 3.1.2).

y

z

Figure 2.1: Tree structure of a humanoid robot consisting of rigid links and 21 rotational joints:
the head, the legs and the arms are attached to a common upper body. Contact with the ground
must be treated separately, so that different contact situations (left: single limb support phase,
right: double limb support phase) can be treated.

Nevertheless the kinematic structure of the system is changing periodically due to the different
contact situations with the ground. For a biped robot phases with two feet, with only one foot or,
if the robot performs a real running motion, even no foot in contact with the ground are found.
Details on different gait patterns for four- and two-legged robots are stated in Subsection 2.1.3.

Walking motions of robots usually are fast, dynamic motions. Thus, simulation models not only
must include the kinematic properties of the system like link lengths or joint orientation but also
the kinetic (dynamic) properties like masses, centers of mass, inertia tensors and contact with the
ground.

One difficult objective for obtaining models detailed enough for use in motion optimization is the
acquisition of their kinetic data. While kinematic data may more or less easily be measured by
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careful investigation of the robot with a ruler, for obtaining masses, centers of mass and inertia
tensors the robot has to be disassembled for direct measurements, or experiments have to be
deducted to identify the parameters numerically from the complete robot, e.g. with the methods
described in [45]. While the former is risky with expensive industrially produced robots, the latter
requires extensive and eroding experiments and often cannot be done due to missing sensors on
the robot. The required data for the results in Section 5.1 were delivered by the manufacturer
(for Sony AIBO; parameters for the simple ground reaction model were estimated iteratively by
experiments) respectively gained from construction schemes (for the biped robot developed in
our group).

Actuation of humanoid robots is comparatively simple: One joint commonly is driven by (at
most) one motor and there usually are no motors that drive more than one joint. An example of
a robot that follows a more complex actuation structure is shown in Section 5.1.3.

General multibody systems are usually high dimensional nonlinear systems. Both for integration
and optimization it is necessary to compute the forward dynamics, i.e. to calculate the joint angle
accelerations from the joint angles, joint angle velocities, and the joint torques.

The general MBS differential equation for a rigid, multibody system experiencing contact forces,
is given by

M(q)q̈ = Bτ − C (q, q̇)− G (q) + Jc(q)T fc, (2.1)

0 = c(q). (2.2)

Here, with the number N of joints in the system, the number m of actively controlled joints,
M ∈ RN×N is the square, positive-definite mass-inertia matrix, C ∈ RN contains the Coriolis
and centrifugal forces, G ∈ RN the gravitational forces, and τ (t) ∈ Rm are the control input
functions which are mapped with the constant matrix B ∈ RN×m to the actively controlled
joints. The ground contact constraints c ∈ Rnc represent holonomic constraints on the system
from which the constraint Jacobian may be obtained, Jc = ∂c

∂q ∈ Rnc×N , while fc ∈ Rnc is
the ground constraint force. q, q̇, and q̈ are the generalized position, velocity and acceleration
vectors respectively.

Computation of q̈ requires to solve the linear system, for which in the most general form the
computational cost is of order O(N3). The mass matrix however is not dense and thus, sophis-
ticated methods can be applied, see Section 3.1. It should be noted that for robotic systems u

usually describes the torques in the actuated joints which are equal to the control in the optimal
control problem if no detailed motor model is used, see Section 2.1.2. For biomechanic systems
u denotes the controls (i.e. the muscle activations, Section 2.2.3.4) and τ = (τ1, τ2, . . .) are the
torques for the dynamics calculations, see Section 2.2.3.
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2.1.2 Motor and Gear Models

Detailed models of the actuators that drive the robots can substantially improve the computation
results. The most basic way to model a motor and gear is to simply model it as a torque-exerting
unit. The maximum torque, maximum velocity and maximum acceleration should me limited to
avoid motions that cannot be fulfilled by the real robot.

More sophisticated modeling not only includes velocity-torque characteristics and gear efficiency
but also may take into account the inertia of the interior parts of the motor and gear [42]. Torque-
velocity characteristics are given by a rotational speed of the motor r0 without load at a specific
nominal voltage un and a characteristic slope dm of the torque-rpm relationship. Thus, the max-
imum rotational velocity of the motor rm at a certain load τm with a certain supplied voltage us

is given by
rm(τm) =

us

un
r0 − dmτm.

The relationships of the motor-gear combination (with rotational velocity rr, torque τg) hold
analogously when taking into account the gear ratio g and the gear efficiency e. Note that the
unloaded speed changes linearly with motor gear while the slope shows quadratic relationship:

rr(τr) =
use

ung
r0 − dm

e

r2
τr.

In addition to those relationships, the kinetic parameters of the motor and gear parts may be
considered. Note that even comparatively light parts before the gear move with speed multiplied
by the gear ratio compared to parts after the gear so that they can contribute considerably to the
overall dynamic effects.

This considerations are useful not only for constraints on the optimization problems but also for
design of robots where, knowing some motion trajectories and the corresponding torque-rpm-
trajectories, appropriate motor-gear combinations may be chosen. This can be done by choosing
the motor, gear and power supply such that in the torque-rpm diagram the needed trajectory
always is below the limits given by the relationships above. For an example see Figure 2.2.

2.1.3 Gait Patterns

Walking motions of both humanoid and quadruped robots are mimicking walking motions of
humans or four-legged mammals like dogs or horses, which usually are periodic motions. There-
fore, for walking motions consisting of several periodic steps, only one step has to be investi-
gated. Different gait patterns may be characterized by 2n−1 parameters for n-legged locomotion
[5]:
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Figure 2.2: Torque-rpm diagrams of several motor gear combinations and a motion trajectory.
Motor-gear combinations are capable for the desired motion if the torque-rpm trajectory of the
desired motion lies completely below the characteristic line of the motor-gear combination; taken
from [42].

• the duty factor, i.e., the fraction of the total stride cycle during which each foot has contact
with the ground, and

• the relative phases of each of the legs, i.e., the fraction of a stride cycle that the respective
foot lags behind the motion of the reference foot.

Parameters for different gait patterns of four-legged and biped locomotion may be found in Tables
2.1 and 2.2. Some walking patterns lead to symmetric walking motions, i.e., the second half-
stride is equal to the first one with only the legs and some rotational orientations switched. For
four-legged gaits, this is the case with walk, trot and rack, for biped gaits with walk, jog and run,
and can be exploited if joint angle trajectories are to be optimized; then only one half-stride with



18 CHAPTER 2. MODELING THE MOTION DYNAMICS OF WALKING ROBOTS AND HUMANS

Table 2.1: Parameters for gait patterns of quadruped locomotion
gait pattern walk trot rack canter traverse gallop rotary gallop
duty factor > 0.5 0.3− 0.5 0.3− 0.5 0.3− 0.5 < 0.4 < 0.4

L R L R L R L R L R L R
rel. phase fore 0 0.5 0 0.5 0 0.5 0 0.8 0 0.8 0 0.8
rel. phase hind 0.75 0.25 0.5 0 0 0.5 0.8 0.5 0.6 0.5 0.5 0.6

Table 2.2: Parameters for gait patterns of biped locomotion.
gait pattern walk hop jog run
duty factor > 0.5 < 0.5 < 0.5 << 0.5

L R L R L R L R
rel. phase 0 0.5 0 < 0.5 0 0.5 0 0.5

appropriate boundary conditions in the optimization problem formulation to ensure symmetry
must be optimized.

Optimization of general walking motions, i.e. finding joint angle trajectories with no certain
gait pattern prescribed, leads to a mixed-integer optimal control problem, because every phase
of the walking motion has its own kinematic structure due to the different contact situations and
thus the underlying mechanical model properties change. This is the reason why usually the
desired gait pattern is chosen in advance, see Sections 5.1.1 and 5.1.2. If parameters of a central
pattern generator (CPG) are to be optimized like in Section 5.1.3, the gait pattern is a result of
the parameters and does not need to be and usually even can not be determined in advance.

In nature smooth transition from one gait pattern to another may be observed, while for conven-
tional legged robots this is a very complex task which is not treated in this work.

2.1.4 Postural Stability

Stability is a critical issue especially for biped locomotion. While four-legged robots may walk
at reasonable speed with always at least two feet in contact with the ground, e.g. with a trot gait,
biped robots even for the slowest possible walking (except pure gliding on the ground) must
lift off one foot and thus only one foot remains in contact with the ground. Therefore a lot of
humanoid robots have large, flat feet which ensure a large support area during single limb support
phase.

However, the issue of stability can not be solved only by constructional approaches. Also control
approaches for offline trajectory computation or online control techniques must be involved.

For both kinds of approaches, postural stability must be judged and measured in some way. For
this task several stability criteria and indexes have been introduced during the last decades. The
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two important indexes of projected center of mass for static motion and zero moment point for
dynamic motion will be discussed in this subsection.

2.1.4.1 Projected center of mass

For the definition of a statically stable walking motion the convex hull of the ground contact
points of the feet of the robot is considered. While the projection of the center of mass of the
robot along the direction of the gravitational force onto the ground is inside the convex hull of
the support area, the robot will not fall. This condition is called static stability. If it is fulfilled
during a walking motion the motion is called statically stable.

2.1.4.2 Zero Moment Point (ZMP)

Ensuring the dynamic stability of walking robots, especially those of biped robots, is one of the
major challenges in the field of robotics.

For the following consideration all entities are, where reasonable and not mentioned otherwise,
given w.r.t. an inertial coordinate system, where the robot walks forward into x-direction, the
z-axis points upwards. Ground contact is made in (x, y)-plane.

Stability of a biped robot is influenced (among others) by the force distribution of the ground
reaction forces w.r.t. the convex hull of the support area. Two kinds of forces apply: normal and
tangential forces.

Normal forces. The normal forces fni
act normal to the support area, i.e.

fni
=




0

0

fni,z



 .

The Zero Moment Point is the point P where the resulting normal force F n =
∑

fni
applies:

rZMP :=
−→
OP :=

∑
rnifni , z∑
fni , z

.

Here, rni is the point of application of the force fni
. Because all fni,z > 0, P lies inside or on

the boarder of the convex hull of the points where ground reaction forces apply. In this point P

no momentum is exerted due to the normal forces.
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Tangential forces. The tangential forces f ti apply in the contact plane, i.e.

f ti =




fti,x

fti,y

0



 .

In the point P the applied tangential force can be described by the resulting force F t =
∑

f ti

and the resulting momentum N t =
∑

di × f ti , where di is the point of application of the force
f ti , w.r.t. the ZMP.
The tangential forces exert a momentum around P , which, however, will not lead to a falling of
the robot:

N t =
∑

di × f ti =




∗
∗
0



×




∗
∗
0



 =




0

0

∗



 .

ZMP as stability indicator. If the robot falls, the ZMP lies on the boundary of the convex
hull of the support area. Goal of a ZMP based stability control thus must be to keep the ZMP
strictly inside the convex hull of the support area. The name ”Zero Moment Point” is not justified
literally because at the ZMP still a moment occurs; however, the components that might lead to
a falling of the robot are equal to zero. In literature several slightly different definition of the
zero moment point are found [116], which all basically mean the same. Besides ZMP there are
several other dynamic stability indicators that may be used for stability control.

Computation of the ZMP. The ZMP can be evaluated by measurement of the contact forces
fni,z with force sensors at the feet of the robot.

Another option is to directly compute the ZMP from the joint angles, velocities and accelerations
of the robot. This is especially useful if no contact force sensors but joint angle, velocity and
acceleration sensors are available on the robot.

The moment NE, that is exerted by the reaction forces and reaction moments w.r.t. any arbitrary
point rE on the robot, is calculated by the Euler equation:

NE = L̇c + mR(rc − rE)× (r̈c − g)

Here

• Lc =c Iω denotes the angular momentum around the center of mass,

• rc = (rc,x, rc,y, rc,z)T the position vector of the center of mass of the robot,
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• g the vector of gravitation, and

• mR the total mass of the robot.

Now NE,x = NE,y = 0 is implied, which leads to



0

0

NE,z



 =




L̇c,x

L̇c,y

L̇c,z



 + mR




rc,x − rE,x

rc,y − rE,y

rc,z − rE,z



×




r̈c,x

r̈c,y

r̈c,z + g





and after multiplication of the cross product



0

0

NE,z



 =




L̇c,x

L̇c,y

L̇c,z



 + mR




(rc,y − rE,y)(r̈c,z + g)− r̈c,y(rc,z − rE,z)

(rc,z − rE,z)r̈c,x − (r̈c,z + g)(rc,x − rE,x)

∗




.

Solving the first component for rE,y and of the second component for rE,x finally gives:

rE,x =
−L̇c,y + mR rc,x(r̈c,z + g)−mR(rc,z − rE,z)r̈c,x

mR(r̈c,z + g)

rE,y =
L̇c,x + mR rc,y(r̈c,z + g)−mR(rc,z − rE,z)r̈c,y

mR(r̈c,z + g)
.

2.2 Humans

2.2.1 Bones

The human body consists of 206 bones in total. For locomotion, the most important ones are
those 64 of the lower extremities. In the content of this work, the physiological functions of the
muscles (formation of blood cells and storage of calcium) can be neglected. The mechanical
properties are the important ones. Basically, bones have three mechanical functions [80], where
the first and second one are of importance to motion studies:

• support of the body against external forces like gravity,

• lever system to transfer forces like muscle forces, and

• protection of internal organs like the brain.
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The bones are modeled to be rigid, i.e. they do not show any deformation under external forces.
Because forward dynamics analysis of large-scale motions cannot be done using FEM tech-
niques, the bones are modeled in the sense of MBS. This implies, that geometry of the bones
cannot be directly considered, see Figure 2.3. A simple hinge joint is modeled to be at both ends
of the bones.

Figure 2.3: MRT image of the human knee joint and its representation in the MBS model. Notice
the problem of finding the right axis of rotation and the muscle paths.

One problem that arises from the simplified modeling is that the axis of rotation may not be fixed
for bones with certain shapes. While for hinge joints like the hip a fixed axis of rotation may be
a reasonable approximation, this is not obvious for more complicated joints like the knee or the
shoulder.

The models used for this work have fixed axes but there certainly is space for closer investigations
of this issue. Moving axis e.g. could be modeled by extending the model by additional axis (i.e.
by standard components) or establishing a new component that takes into account the additional
offset, orientation change and forces and torques that occur due to the moving axis.

2.2.2 Wobbling Masses

The human body does not consist of rigid material only. All material that can not be actively
controlled and that is not rigid is classified as ”wobbling mass”. What kind of tissue is regarded
as wobbling mass depends on the problem that is actually investigated. For a jumping motion for
example the complete waist may be regarded as wobbling mass although there are muscles in it;
the muscles then would be modeled to belong to the wobbling masses as they are not needed for
force exertion in that specific scenario.

There are approaches to model wobbling masses by rigid masses that are attached to the body
by spring-damper elements [37, 67, 92]. This introduces additional degrees of freedom to the
system. The number of controls remains unchanged because the wobbling masses are not driven.
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One interesting issue about wobbling masses is that they may change their characteristic behav-
ior, i.e., the properties of the springs and dampers. One example for this is the different stiffness
of the waist when muscles are strained resp. are not strained.

For the examples given in Section 5, wobbling masses are not taken into account yet.

2.2.3 Muscles, Tendon and Ligament

Muscles are the force-exerting elements of the human body. Muscles are classified into three
kinds: skeletal, cardiac and smooth. Only skeletal muscles can be controlled consciously and
only they are considered for this work. Muscles actively can only exert forces into the direction
of shortening. This is the reason why muscles act antagonistically on each joint: There are
usually at least two muscles for one joint, one for each direction. Furthermore, there are muscles
that span more than one joint, i.e. muscles that have effect to more than one joint. The human
body comprises more than 600 skeletal muscles.

In the following subsections, a short review of the most important properties shall be given. The
outline follows basically the one from [97].

2.2.3.1 Sliding Filament Theory

Figure 2.4: Muscles are connected by tendon (b) to the bone (a) and consist of several fibers (c).

Each muscle consists of several parallel muscle fibers, see Figure 2.4. The fibers consist of a row
of force exerting units, the sarcomeres (Figure 2.5). Each sarcomere can shorten to a minimum
length. Thus, the longer the fibers are the higher is the absolute maximum shortening of the
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Figure 2.5: Every muscle fiber consists of several sarcomeres.

muscle and the maximum contraction velocity. The more fibers the muscle has in parallel, the
higher is the maximum force the muscle may exert.

The most basic level of force generation lies in the sarcomeres. One widely used but not yet
fully proved hypothesis is the sliding filament theory. The sarcomeres are supposed to consist of
myosin filaments and actin filaments. The myosin filaments can slide along the actin filaments.
This motion can be due to external forces, e.g. forces from antagonist muscle, or by active motion
of several small heads that tilt and thus make the complete filament slide, see Figure 2.7.

The molecular properties can be investigated using models of the Huxley type [56, 57]. These
models are very detailed and thus far to complex for use in efficient forward dynamics simulation
and optimization. The models of choice are Hill type models [49] based on phenomenological
approximation of the properties of the muscle which however have strong motivation from the
sliding filament theory.

2.2.3.2 Force-length-relation

The passive force a muscle exerts when it is lengthened above its rest length by external in-
fluences increases exponentially. The total force of an activated muscle at different length, the
maximum isometric force, has been measured in [34]. If the passive forces are subtracted from
the maximum isometric forces the active force is received, see Figure 2.8.

The sliding filament theory with the moving myosin heads supplies strong explanation for the
shape of this relationship. Force is generated by heads in the myosin filament gripping into
the actin filament. The higher the overlapping area of actin and myosin filaments is during the
lengthening of a muscle, the more heads may get grip and thus the higher is the active force, see
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sarcomere myosin filament

actin filament

Figure 2.6: Sarcomere in different contraction states (relaxed (top), contracted (middle) and
maximally contracted (bottom)).

Figure 2.9. If, on the other hand, the muscle is highly shortened, the myosin heads obstruct each
other and thus the resulting active force decreases.

This phenomenological relationship between muscle length and muscle force is modeled by the
following equations, where lM is the length of the muscle, lM0 its rest length, c1 and c2 are
parameters for the effect of decrease of forces when expanding resp. shortening the muscle
[28, 86], and fTL is the force-length factor (also called tension-length factor) of muscle force.
Figure 2.10 gives an example of this numerical relation.

fTL

(
lM

)
=






e
− 1

c1
(1− lM

1.1lM0
)3

, lM ≤ 1.1lM0

e
− 1

c2
( lM

1.1lM0
−1)3

, lM > 1.1lM0

(2.3)

2.2.3.3 Force-velocity-relation

The maximum force a muscle may exert at a certain speed depends on its velocity vM [23, 62,
111, 118]. It is equal to the muscle maximum isometric force at zero velocity and equal to zero at
the maximum contraction velocity. While shortening, the number of myosin heads that actually
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Figure 2.7: The myosin heads may tilt and thus lead to the force exertion.

Figure 2.8: The total active force (AF) is received by subtracting the passive force (PF) from the
maximum isometric forces (IF).

grip into the actin filament determines the force. When shortening faster, heads have to move
back to get grip again, the number of heads that have simultaneously grip is lower and thus the
resulting force is lower. When lengthened above the rest length, the force that can be generated
is even higher than the isometric force due to effect of the tissue around the muscle.

The overall relation not only depends on the maximum velocity vM
max but also on parameters

c3, c4 that indicate how fast the force converges to zero with contractive velocity resp. how fast
the force converges to the maximum force with excentric velocity. For fast muscles c3 ∈ [0.25, 1],
while for slow muscles, c3 ∈ [0.1, 0.25]. c4 is given by c4 = −0.33

2
c3

1+c3
[119]. The overall force-
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Figure 2.9: The amount of overlapping area of actin and myosin filaments defines the muscle
force. If the muscle is shortened below a certain extend, the myosin heads obstruct each other.

Figure 2.10: Numerical tension-length relation for example parameter values (c1 = 0.017, c2 =
0.015)

velocity relation is given by:

fFV

(
vM

)
=






1− vM

vM
max

1+ vM

vM
maxc3

, vM ≤ 0

1−1.33 vM

vM
maxc4

1− vM

vM
maxc4

, vM > 0.

(2.4)

Figure 2.11 shows two examples of the force-velocity relation for a fast and a slow muscle.
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Figure 2.11: Force-velocity relation for a slow muscle (c3 = 0.1, c4 = 0.02; left) and for a fast
muscle (c3 = 1.0, c4 = 0.1; right).

2.2.3.4 Activation Dynamics

Chemical reaction that lead to force generation take place in the muscle. The myosin heads only
move in the presence of Ca2+ ions. Those ions are set free in the muscle according to the muscle
activation but this process cannot be performed instantaneously. The calcium ion concentration
γ lacks behind the muscle activation u both when activation is increased and decreased, which
is known as activation dynamics. Activation dynamics is taken into account by the following
ordinary differential equation, where b2, b3 are muscle specific parameters:

γ̇ = b2(b3u− γ). (2.5)

How the calcium ion concentration relates to the force exerted is given by the following algebraic
equation, where b1 is a muscle specific parameter and fAD is the activation dynamics force factor:

fAD (γ(u)) =
(b1γ(u))3

1 + (b1γ(u))3
. (2.6)

Figure 2.12 shows an example for the relationships above.

2.2.3.5 Parallel Elastic and Damping Elements

Besides the actively generated muscle force, passive properties of the muscle must be considered.
The common Hill type model uses an elastic element in series with the contractile element.
Parallel to the actively force generating muscle elements, a parallel elastic element (PEE) and a
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Figure 2.12: Muscle activation dynamics (solid line is u, dotted line is γ, dashed line is fAD)

parallel damping element (DE) are considered and modeled by the following equations, where
the ki are muscle specific parameters:

F PEE(lM) = k1(e
k2(lM−k3) − 1) + k4(e

k5(lM−k6) − 1), (2.7)

FDE(vM) = k0v
M . (2.8)

2.2.3.6 Total Muscle Force

With the previous equations the overall force of the muscle tendon unit FMTE is given by

FMTE(γ, lM , vM) = F iso
maxfAD(γ)fTL(lM)fFV (vM) (2.9)

and the overall muscle force FM is

FM(γ, lM , vM) = FMTE(γ, lM , vM) + F PEE(lM) + FDE(vM). (2.10)

See Figure 2.13 for a schematic overview of the data flow.

2.2.3.7 Muscle Paths

Muscles are not tightly attached to the bones. Thus the direction of force exertion relatively to
the bones they are attached to changes with the joint angle, and the muscle lengths and velocities
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Figure 2.13: Data flow for calculation of the overall force of a muscle tendon unit.

needed for the relations above may be expressed by joint angles and joint angular velocity:

lM = l(q1, q2, ...), (2.11)

vM = v(q1, q2, ..., q̇1, q̇2, ...). (2.12)

To calculate the torques that result from the linear muscle forces, the muscle paths, i.e., the
points and directions of application (or the resulting lever arm directly), have to be modeled. The
resulting lever arm depends on the joint angles only (the first index i indicates the number of the
muscle or muscle group, the second index j the number of the joint, the muscle has effects on;
not all combinations of i, j are needed):

di,j = di,j(q1, q2, . . .).

The torque in joint j that results from the applied muscle forces is (with appropriate index sets
Ij that indicate which muscles have effect on joint j):

τj,a =
∑

i∈Ij

di,jF
M
i (γi, l

M
i , vM

i ), j = 1, . . . , nq. (2.13)

2.2.3.8 Fatigue

Muscle fatigue occurs when a muscle performs (similar) actions over a long period of time.
There exist muscle models that take into account fatigue. The model of Liu [66] for example
models fatigue and leads to the percentage of the muscle that can be activated as outcome. Thus,
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this model can easily be included into the considerations of this work. It has not been done yet,
however, because data acquisition needed for validation was not possible in the context of this
work.

2.2.3.9 Passive Torques

In addition to the active torques, passive torques that depend on lM, vM, γ (bold letters indicate
the vector of all occurring lengths, velocities, calcium ion concentrations), and the joint angles
have to be considered [50, 121]. These model passive effects of tendons, ligament and the
connective tissue (especially at the boundaries of the feasible joint angle intervals)

τj,p = τj,p(lM, vM, γ, q). (2.14)
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Chapter 3

Multibody Dynamics Algorithms and
Object Orientated Computation

To obtain physically valid motion from simulation and optimization, the motion dynamics of the
respective robot or human has to be considered. The motion dynamics mathematically can be
described by differential equations involving the joint angles, joint velocities and joint accelera-
tions. The numerical solution or optimization of systems described by those systems needs the
computation of the joint angle accelerations depending on the joint angles and joint velocities,
i.e., the forward dynamics. One common idea is to compute the dynamics recursively in sweeps
from the base to the tips of the tree structured systems and vice versa, e.g. the Composite Rigid
Body Algorithm CRBA [117], the Recursive Newton-Euler Algorithm RNE [17] or the Artic-
ulated Body Algorithm ABA [89]. These algorithms generally lower the computational effort.
Which method is best suited for the actual application mainly depends on the size of the system,
i.e., the number of (driven) joints [108].

The Articulated Body Algorithm is of linear order O(N) but has a high coefficient in the effort-
DOF relation. It is efficient for systems of 7 or more DOF [108]. Both the number of joints
of walking robots and of human biomechanical systems is comparatively high, so that the ABA
here is best suited.
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3.1 Articulated Body Algorithm ABA

3.1.1 Forward Dynamics Algorithm

The main idea of ABA is to factorize the mass matrix in a way that allows easy calculation of
its inverse. The matrices needed for this have special stacked structure which after the analytical
investigations allows for fast computation of the forward dynamics using a recursive algorithm
in several sweeps.

In more detail, the factorization of the mass matrix as follows is achieved [41]

M = [I + KΦH]T D[I + KΦH]. (3.1)

Here, D is a block-diagonal matrix and [I + KΦH] is left block-triangular. The physical inter-
pretation of the entities in this and the following equation may be found in [51, 60]. The inverse
of the mass matrix is then given by [41]

M−1 = [I −KΨH]D−1[I −KΨH]T . (3.2)

This leads to the symbolic forward dynamics of tree structured systems without contact. In
[41, 89] the special stacked structure of the occurring matrices is exploited to gain a recursive
formulation of the forward dynamics:

1. sweep 1 (outboard)

(a) compute velocities, gravitational acceleration and bias acceleration

2. sweep 2 (inboard)

(a) compute articulated inertia, spatial forces and intermediate terms

3. sweep 3 (outboard)

(a) compute intermediate terms and joint acceleration.

3.1.2 Contact Algorithm

Forward dynamics in the case of one or more contacts differs from the case of free motion. This
section will shortly summarize the basic idea and the results for extending the ABA to contact
situations. A more detailed derivation of the equations may be found in [41].
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The basic idea is to calculate and virtually apply additional forces that result in additional joint
angle accelerations which finally lead to a preservation of the algebraic contact constraint 2.2.
Therefore, the equations of motion of the system without contacts

M(q)q̈f = Bτ − C (q, q̇)− G (q) (3.3)

and with contacts

M(q)q̈ = Bτ + Jc(q)T fc − C (q, q̇)− G (q) (3.4)

are investigated. Note that the joint angles and joint angle velocities do not change due to the
contact case, only joint angle accelerations are assumed to be influenced by the presence of
contact. Not only the algebraic contact constraint 2.2 have to be fulfilled, but also its first two
time derivatives:

Jcq̇ = 0, (3.5)

Jcq̈ + J̇cq̇ = 0. (3.6)

Combining equations 3.4, 3.3 and 3.6 leads to

−Jc(q)M(q)−1Jc(q)T fc = Jc(q)q̈f + J̇c(q)q̇

This equation may be solved for fc. Using the operator notation of ABA, there even exists a
way to compute fc without explicitly calculating J̇c(q), see [41] for more details. The contact
algorithm then is:

1. calculate unconstrained joint angle accelerations using forward dynamics for system with-
out contacts,

2. calculate unconstrained spatial accelerations at points of contact using inverse dynamics
without contacts,

3. calculate the contact forces,

4. calculate the joint angle acceleration update,

5. add the joint angle acceleration update to the unconstrained joint angle accelerations to get
the final joint angle accelerations.

This algorithm also may be handled by recursive computations in sweeps from base to tip and
vice versa.
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3.1.3 Collision Algorithm

Before a system gets into contact with the ground, usually collisions occur. They lead to jumps
in the joint angle velocities and a loss of energy of the system.

The calculation of the velocities after a collision follows similar ideas like for the contact algo-
rithm from Section 3.1.2. The main idea here is to calculate and apply an instantaneous impulsive
force that occurs due to the collision. Details on the derivation of the algorithm may be found in
[41].

This leads to the following collision algorithm:

1. calculate the velocity-jump that occurs at collision,

2. calculate the change of impulse that occurs due to the collision,

3. calculate the resulting change in joint angle velocities,

4. add those changes to the joint angle velocities before collision to get joint velocities after
collision.

Again, this algorithm may be expressed by recursive sweeps and thus be integrated into the ABA
framework.

3.2 Reduced Dynamics Algorithm

For optimization of multibody systems experiencing contact the differential algebraic system of
Equations 2.1 and 2.2 must be considered. The numerical difficulties associated with the system
of differential algebraic equations of high index, resulting from the general modeling approach
of multibody dynamics and algebraic equations for contact, can be avoided. This is done by a
reduced dynamics method from [41], treating as variables of the optimization problem explicitly
only the independent states qI , which are global orientation and position and states related to
branches in contact with the ground, and using inverse kinematics to determine the dependent
joint angles qD and the relation Jc,I q̇I + Jc,Dq̇D (where Jc,{I,D} are the constraint Jacobians for
the independent resp. dependent joints) to determine the dependent joint angle velocities of the
other branches of the tree structured multibody system:

qI := global orientation, position; free branch(es) states
qD := contact branch(es) states
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qI may be computed from all states q using a constant mapping Z, i.e. qI = Zq. The solution q̃

of the collision dynamics

¨̃q = M (q̃)−1 (
Bu− C

(
q̃, ˙̃q

)
− G (q̃) + JT

c fc

)
,

then may be proven to give the solution of the initial system of differential algebraic equations
[41]. q̈I may then be calculated from q̃ by q̈I = Z ¨̃q and be treated as the only states representing
the system. The dependent states qD are obtained by inverse kinematics, which for each branch of
the MBS has to be determined. This is not possible analytically for all configurations, however,
simple criteria exist to ensure analytical solvability [17].

Besides avoiding DAE and allowing to treat ODE only instead, the size of the model is reduced
by the degrees of freedom of the contact branches.

3.3 Object Oriented Approach

In [51] a unifying object-oriented methodology to consolidate multibody dynamics computations
in robot control has been presented. The very general and multi-purpose approach was reduced
to some of the basic ideas and was extended for application in biomechanical systems as well.
An implementation of this modified algorithms has been established for use in the context of
this work. The main focus was to get high computational efficiency, easy set up and modifica-
tion of (sub-)models and easy extension for additional components especially for biomechanical
applications like special muscle models, wobbling masses or joint models.

Each part of the robot or the biomechanical system is modeled by a special class that is derived
from one base class DynamicForward. This gives several component classes like Base,
Joint, Displacement (a link with mass), etc. For building tree structured systems, besides
simple alignment of components, branchings Branching and terminations Terminator are
necessary. A termination may also be an external force ExtForce or a contact Contact.

DynamicsForward gives the framework for the different sweeps. The different component
classes fill the sweeps with the respective computations and contain the component parameters
like inertia and mass for a rigid body or the axis of rotation for a joint. Furthermore they have two
data ports called protocol that take the incoming and give the outgoing variables for the recursive
computation. One protocol is shared by the preceding and succeeding components for the shared
data, i.e., the outgoing variables of the predecessor are the incoming ones for the successor.

The user only has to define the components of the model, set the parameters and define the
topology of the system. The latter is done by adding the components of the model in the order
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in which they appear in the system starting from the base. Each branch must be determined by
Terminator, ExtForce or Contact. After that, the next parallel branch that started at the
same branching can be added.

From this topology of the components an internal pointer structure Sequence is established
which handles the internal data flow.

For example to model a 5-axes robot the following code could be used:

BaseDynamic base;

JointRevoluteDynamic joint1;

LinkDynamic disp1;

JointRevoluteDynamic joint2;

BranchingDynamic branch;

LinkDynamic disp2l;

JointRevoluteDynamic joint3l;

LinkDynamic disp3l;

JointRevoluteDynamic joint4l;

LinkDynamic disp4l;

BranchTermDynamic term_l;

LinkDynamic disp2r;

JointRevoluteDynamic joint3r;

LinkDynamic disp3r;

BranchTermDynamic term_r;

// ... set the parameters for the components

ModelImplDyn model;

model.add(&base);

model.add(&joint1);

model.add(&disp1);

model.add(&joint2);

model.add(&branch);

model.add(&disp2l);

model.add(&joint3l);

model.add(&disp3l);

model.add(&joint4l);

model.add(&disp4l);
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model.add(&term_l);

model.add(&disp2r);

model.add(&joint3r);

model.add(&disp3r);

model.add(&term_r);

SequenceDyn s;

s.setSequence(model);

s.doFwdDynamics();

This would lead to the model structure and the internal data shown in Figure 3.1

protocol

joint1

joint2

disp1

disp2r

base

protocol

protocol

protocol branch

protocol

joint3r

protocol

disp3r

protocol

term_r

disp2l

protocol

joint3l

protocol

disp3l

protocol

joint4l

protocol

disp4l

protocol

term_l

1

2

3r
3l

4l

Figure 3.1: Example for structure of object oriented dynamics modeling of a 5-axes robot.

Note that multiple-branchings may be described in different ways. However, the resulting in-
ternal data representation and the calculated sweeps are identical even for the different branch
descriptions.
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Chapter 4

Optimal Control Methods for Problems of
Motion Dynamics

4.1 General Optimal Control Problem

To make efficient use of the different redundancies in the robotic or biomechanical systems,
model-based optimization approaches can be used to find the best among all possible actuation
solutions for different motion tasks. A measure of optimality is described by a certain objective
function J which in a general form may be stated as

J = ϕ(x(tf ), p, tf ) +

∫ tf

0

L(x(t), u(t), p, t)dt,

i.e. it may consist of a scalar (Mayer term) and of an integral term (Lagrange term) involving the
state vector x, the control vector u, free but constant over time parameters p and the final time
tf .

Differential equations of both first (activation dynamics in biomechanical systems) and second
order (multibody system differential equations for robots and biomechanical systems) may oc-
cur. The differential equations of second order may be transformed into a system of differential
equations of first order but double size by introducing new variables for the first derivatives ẋ of
the state for every second order state x:

ẍ = f(x, ẋ, u, t) is transformed into y =

(
y1

y2

)
=

(
x

ẋ

)
, ẏ =

(
y2

f(y2, y1, u, t)

)
.

This transformation is necessary to apply standard methods to the optimal control problem. An
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adapted discretization method for systems of mixed differential equations of first and second
order is described in Section 4.3.

Thus, the optimal control problems in the context of this work may be stated in the following
form of a general constrained optimal control problem for state differential equations of first
order:

minu J Minimize the objective function J consisting
of Mayer (scalar) and Lagrange (integral) term

subject to
ẋ(t) = f(x(t), u(t), p, t) system of ordinary differential equations
r(x(0), x(tf ), p, tf ) = 0 boundary constraints
g(x(t), u(t), p, t) ≥ 0, 0 ≤ t ≤ tf nonlinear state and control constraints.

Two basically different classes of methods exist for solving this optimal control problem. Indirect
methods formulate optimality conditions to the problem and solve these conditions [115]. This
leads to multipoint boundary value problems. These methods give high precision solutions but
need a good initial estimate for the solution and high effort is needed to formulate the necessary
conditions.

Direct methods on the other hand discretize the optimal control problem and solve the discretized
problem. Direct shooting methods [115] discretize the controls only and solve the differential
equations of the dynamic system several times to gain sensitivity information that is needed for
solving the optimization problem. This leads to high computation times. Direct collocation
methods [11, 115] discretize both the states and the controls and then optimize the resulting non-
linear problem. This leads to an implicit and simultaneous solution of the differential equations.
Direct methods can be applied directly without formulating any additional conditions to the op-
timal control problem and do not need initial estimates as good as needed for indirect methods.
The results are less precise than from indirect methods but can be used as good initial estimates
for indirect methods.

4.2 Direct Collocation

4.2.1 Discretization

There are many different approaches for solving optimal control problems. Here, we consider
the computation of optimal trajectories x∗, u∗ subject to a large and highly nonlinear dynamical
system. For this class of problems, so-called direct (transcription) methods have been developed
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in recent years showing remarkable performance [11, 115]. Instead of using one of the direct
shooting approaches mentioned in Section 1.3 which require feasibility with respect to the ODE
constraints in each iteration of the optimization method, a simultaneous approach for solving the
ODE integration and optimization problems inherent in the optimal control problem is selected.
In direct collocation the implicit integration for a sequence of steps from initial to final time is
included as a set of explicit nonlinear equality constraints in the optimization problem. Without
the restriction to feasibility to the ODE constraints in each iteration as in direct shooting, only the
final solution of direct collocation iteration must satisfy them. Without the restriction of feasible
iterates and with much easier computable gradients the solution may be obtained much faster.

The direct collocation method DIRCOL [112, 114] is based on the discretization of both the
states and the controls, i.e. x(t) and u(t) are approximated by x̃(t) and ũ(t) on a grid 0 = t1 <

t1 < . . . < tnt = tf (cf. Figure 4.1):

x̃(t) =
∑

l

αlx̂l(t), x̃ ∈ S4
∆ (cubic), ũ(t) =

∑

j

βjûj(t), ũ ∈ S2
∆ (linear),

where x̂l, ûj are basis functions (e.g. monomials or Hermite basis functions). αl, βj are the
coefficients of the piecewise polynomial approximation of the states resp. controls and are one
option of the variables in the resulting nonlinear constrained optimization problem (NLP). Thus,
the resulting large-scale NLP becomes:

y = (α1, α2, . . . , β1, β2, . . . , tnt)
T , min

y
φ(y) s.t. a(y) = 0, b(y) ≥ 0,

where the equality and inequality constraints a and b are the following:

˙̃x(t&)− f(x̃(t&), ũ(t&), t&) = 0, t& = tk, tk+1/2, tk+1 collocation constraints at the grid
points and the midpoints of all
intervals [ti, ti+1]

r( ˙̃x(t1), ˙̃x(tnt , p, tnt)) = 0 boundary values
gi(x̃(tk), ũ(tk), p, tk) ≥ 0, i = 1, . . . , ng, k = 1, . . . , nt inequality constraints.

By solving the NLP, the differential equations of motion are solved simultaneously with the opti-
mization problem. This leads to a considerable improvement of efficiency compared to standard
methods if all structure and sparsity in the NLP is utilized using a sparse sequential quadratic pro-
gramming method SNOPT of [32]. The time grid is refined based on local error estimates result-
ing in a sequence of NLPs with increasing dimensions which are solved successively. DIRCOL
brings its own computation of finite differences instead of using the implementation of SNOPT.
Adjoint variables, which may be useful for sensitivity analysis of the computed trajectories are
computed as well.
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The controls are discretized by piecewise linear polynomials, i.e., the following functions ûi(t)

give a basis for the controls:

ûi(t) =






t−ti−1

ti−ti−1
for t ∈ [ti−1, ti),

ti+1−t
ti+1−ti

for t ∈ [ti, ti+1],

0 otherwise.

The states are discretized by piecewise cubic polynomials. Monomials with local support form
a basis for the states:

x̂l,i =






(
t−ti−1

ti−ti−1

)l

for t ∈ [ti, ti+1]

0 otherwise

The approximation of the controls ũ(t) and of the states x̃(t) is thus given by

ũ(t) =
nt∑

i=0

αiûi(t) (4.1)

x̃(t) =
nt∑

i=0

3∑

l=0

βl,ix̂l,i(t) (4.2)

The vectors of coefficients of the control vector and the state vector αi and βl,i represent the
discretized optimal control problem.

The coefficients αi are given by the values ui of the controls at the grid points. Continuity of the
approximation is given by the definition of the basis functions.

Taking a closer look at those constraints on the grid yields to a special choice of the coefficients
βl,i. For sake of simplicity, h := ti+1 − ti constant is assumed. Then with the values ui resp. xi

of the controls resp. states at the grid points the following coefficients lead to the fulfillment of
the collocation constraints at the grid points and thus only the collocation constraints at the mid
points ti+1/2 have to be imposed to the nonlinear problem:

β0,i = xi,

β1,i = hf(xi, ui, ih),

β2,i = −3xi − 2hf(xi, ui, ih) + 3xi+1 − hf(xi+1, ui+1, (i + 1)h),

β3,i = 2xi + hf(xi, ui, ih)− 2xi+1 + hf(xi+1, ui+1, (i + 1)h).

(4.3)

To define the coefficients, only the vectors xi has to be stored. Note that by this choice also
the number of variables for the nonlinear optimization problem is reduced and continuity of x̃ is
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Figure 4.1: Discretization of the controls by piecewise linear polynomials and of the states by
piecewise cubic polynomials; collocation constraints at the grid and at the mid points.

ensured simultaneously.

In summary, the optimization variables for the discretized problem that leads to a nonlinear,
constrained optimization problem are the values of the controls at the grid points and the values
of the states at the grid points.

A special case of nonlinear constraints are box constraints, where the controls or states are
bounded by a fixed lower or upper bound. In the discretized problem, those constraints may
directly be imposed to the optimization variables. In the case of explicit boundary constraints
for states or controls, the respective state or control at the initial or final grid point does not have
to be constrained but is simply removed from the set of optimization variables and the boundary
value is used directly instead, which reduces the problem size.

4.2.2 Sequential Quadratic Programming

The discretization leads to a nonlinearly constrained optimization problem with optimization
variables y that represent the coefficients of the piecewise polynomials of the controls and states.
By the special choice of the discretization of the previous subsection this can be done by simply
the values of the controls and states at the grid points:

y = (x1, . . . ,xnt , u1, . . . ,unt).

For explicit boundary conditions imposed to controls or states, the respective variable may be set
to a fixed value and excluded from y.
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The optimization problem then reads as

min
y

J̃ (y), s.t.a(y) = 0, b(y) ≥ 0,

where J̃ is the discretized objective function, a comprises the collocation constraints and the
discretized equality and implicit boundary constraints, and b consists of the discretized inequality
constraints.

This optimization problem can be solved using a sequential quadratic programming method
(SQP), in the case of DIRCOL, SNOPT [32] is used. Details shall not be explained here, be-
cause in the context of this thesis, no modification to the SQP method had to be made.

4.3 Adaption to Systems of Second Order

4.3.1 Preliminaries

In [15, 81, 113], direct collocation approaches with special treatment of differential equations
of motion of second order are given. The approach from [81] was used for the nx,2 differential
equations of second order and states of second order in the problems described above to avoid the
transformation into differential equations of first order and the resulting increase of the problem
size. This section shortly summarizes the approach and basically follows the structure from [81].

Divided Differences. Let f ∈ C[a, b] a continuous function on the interval [a, b]. Then the
recursive definition on the grid Ω

f [ti] := f(ti), 0 ≤ i ≤ n (4.4)

f [ti, . . . , ti+j] :=
f [ti + 1, . . . , ti+j]− f [ti, . . . , ti+j−1]

ti+j − ti
, 0 ≤ j ≤ n, (4.5)

defines the so called divided differences f [.] of the function f .

B-Splines. Let k ∈ N, t ∈ [a, b], the grid Ω and the functions gk(t; s) be given. Then the
functions

Mi,k := gk[ti, . . . , ti+k; t], (4.6)

Mi,j := 0, for j = 0 or − j ∈ N (4.7)
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are called B-Splines of order k and defined to be continuous from the right side at the grid points.

Ni,k := (ti+k − ti)Mi,k

are called normalized B-Splines of order k. They can be evaluated with the following formula
[20], which is especially well suited for higher order B-Splines, because evaluation of higher
order powers is avoided:

Mi,k =
t− ti

tk+i − ti
Mi,k−1 +

ti+k − t

tk+i − ti
Mi+1,k−1.

For k = 1 the following holds:

Mi,1 =
(ti+1 − t)0

+)− (ti − t)0
+

ti+1 − ti
(4.8)

=

{
(ti+1 − ti)−1 > 0 if t ∈ (ti, ti+1)

0 otherwise
, (4.9)

i.e., supp(Mi,k) = (ti, ti+k). The Mi,k resp. Ni,k form a basis of the vector space Sm(t0, . . . , tn)

of splines of maximum degree m over the grid points t0, . . . , tn, i.e. for a s ∈ Sm(t0, . . . , tn) the
following holds:

s(t) =
∑

i

αi+m−1Ni,k(t).

In the case of equidistant grid points, the boundary intervals may be treated by including m− 1

virtual grid points at each boundary. Thus, each s ∈ Sm(t0, . . . , tn) has the following form:

s(t) =
n−1∑

i=−m+1

αi+m−1Ni,k(t).

4.3.2 Discretization of the Problem

For evaluating the approach of discretizing the states of second order directly, cubic splines
(m = 4) are chosen to avoid problems with oscillations. An equidistant grid is used to keep
implementation comparatively easy due to the simple way to handle boundary intervals. The
basis functions are the same for each interval. With δ := ti+1 − ti, µj(t) := (t − tj)/δ, and
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Ij := (tj, tj+1], the functions Ni,4 may be computed:

Ni,4(t) =






b0(t; ti) := µi(t)3/6, t ∈ Ii,

b1(t; ti+1) := (1 + 3µi+1(t) + 3µi+1(t)2 − 3µi+1(t)3)/6 t ∈ Ii+1,

b2(t; ti+2) := (4− 6µi+2(t)2 + 3µi+2(t)3)/6 t ∈ Ii+2,

b3(t; ti+3) := (1− 3µi+3(t) + 3µi+3(t)2 − µi+3(t)3)/6 t ∈ Ii+3,

(4.10)

Furthermore, bj(t; ti) := 0 for t /∈ Ii, j = 0, 1, 2, 3. s(t) now may be stated as

s(t) =
n+2∑

i=0

αi

3∑

j=0

bj(t; ti+j).

On the additional virtual intervals, there is no contribution of the basis functions. Thus, resorting
of the sum leads to:

s(t) =
n−1∑

i=0

3∑

j=0

αi+jbj(t; ti).

supp (bj(t; ti)) = Ii, and thus the first sum may be eliminated:

s(t) =
3∑

j=0

αi+jbj(t; ti), if t ∈ Ii.

At the grid points, this gives

s(ti) =
1

6
αi +

2

3
αi+1 +

1

6
αi+2. (4.11)

The derivatives of the bj are given by

ḃ0(t; ti) := µi(t)2/(2δ), t ∈ Ii,

ḃ1(t; ti+1) := (1 + 2µi+1(t)− 3µi+1(t)2)/(2δ), t ∈ Ii+1,

ḃ2(t; ti+2) := (−4µi+2(t) + 3µi+2(t)2)/(2δ), t ∈ Ii+2,

ḃ3(t; ti+3) := (−1 + 2µi+3(t)− µi+3(t)2)/(2δ), t ∈ Ii+3,

and
b̈0(t; ti) := µi(t)/δ2, t ∈ Ii,

b̈1(t; ti+1) := (1− 3µi+1(t))/δ2, t ∈ Ii+1,

b̈2(t; ti+2) := (−2 + 3µi+2(t))/δ2, t ∈ Ii+2,

b̈3(t; ti+3) := (1− µi+3(t))/δ2, t ∈ Ii+3.
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Thus,

ṡ(t) =
3∑

j=0
αi+j ḃj(t; ti), if t ∈ Ii,

s̈(t) =
3∑

j=0
αi+j b̈j(t; ti), if t ∈ Ii,

and on the grid points
ṡ(t) = 1

2δαi + −1
2δ αi+2,

s̈(t) = 1
δ2 αi + −2

δ2 αi+1 + 1
δ2 αi+2.

(4.12)

4.3.3 Application to the Optimal Control Problem

The states related to the differential equations of second order shall now be approximated by
spline functions S4(t0, . . . , tn). For this purpose, the approximating functions are defined as
follows:

x̃k(t) :=
n−1∑
i=0

3∑
j=0

αi+j,kbj(t; ti),

˙̃xk(t) :=
n−1∑
i=0

3∑
j=0

αi+j,kḃj(t; ti),

¨̃xk(t) :=
n−1∑
i=0

3∑
j=0

αi+j b̈j(t; ti).

k = 1, . . . , nx,2. Thus, discretization of the nx,2 states of second order of the optimal control
problem leads to the vector of nx,2(n+3) parameters for the nonlinear optimization problem. xk

is represented by
αk = (αk,0, αk,1, . . . ,αk,n+2)

T

In the case of differential equations of mixed first and second order, both parameters α for the
states of second order and parameters xl for the states of first order and um for the controls must
be taken into account. In the case where the controls may be computed from the states, the um

may be eliminated. Because this is not the case for forward dynamics biomechanics formulation,
this shall not be investigated more closely.

For boundary conditions, nonlinear inequality or nonlinear equality constraints and the colloca-
tion constraints, Equations 4.11 and 4.12 may be used to efficiently evaluate the approximation.
Note that box constraints, that may be directly implied to the coefficients xl in the case of first
order states now have to be considered as nonlinear inequality constraints.
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4.4 Identification of Objective Functions for Muscle Control

4.4.1 Problem Statement

To calculate free goal oriented motion (like kicking as fast as possible or jumping as high as
possible) suitable objective functions are needed. They are determined by the goal to reach.

The objective function of muscle involvement on the other hand is chosen (unconsciously) by the
human executing the motion. If a measured motion shall be analyzed, i.e. if for a given human
motion the muscle activations that lead to that specific motion shall be determined, a objective
function for muscle involvement must be chosen. Several heuristic objective functions may be
found in literature, see Section 1.3. It is however still an open question which of those objective
functions really applies for certain human motions. State of the art for justification of those
objective functions is to compare computed data with measurements. This gives an idea that the
objective functions are somehow reasonable but do not clarify the real objective functions.

We here present an approach to numerically identify the objective function applied to a human
motion. We start with nh hypotheses Ji of possible objective functions. The overall objective
function J shall be statable as a weighted sum of the hypothesis:

J =
nh∑

1

ωiJi,

where ωi are the weights. Without loss of generality, 0 ≤ ωi ≤ 1∀i. The problem of identifying
the objective functions thus is transformed into the problem of finding the weights ωi.

The goal is to identify the parameters just from the motion data, i.e., the joint angles and joint
angle velocities, in a way that the measured motion agrees best possible with the motion that
may be calculated under the assumption of the respective objective function.

This leads to the following minimization problem:

min
ω

I := min
ω

nj∑

i=1

∫ tf

0

(xi(ω; t)− ϕi(t))
2 dt, s.t. 0 ≤ ω ≤ 1, where (4.13)

ω is the vector of weight parameters ωi

xi(ω; ·) is the calculated motion data of the i-th joint with parameters ω in the objective
ϕi is the measured motion data for the i-th joint
nj is the number of joints taken into account for the investigation.
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4.4.2 Sensitivity Analysis of the Discretized Optimal Control Problem

To obtain an efficient identification method, derivative information is needed. The approach
of computing the sensitivities from the optimization problem that results from discretizing the
optimal control problem is described in [12]. In [14], it was investigated as one of two possible
ways to identify the basic behavior of car drivers. It is based on calculating the sensitivities for
the optimization problem gained from discretizing the optimal control problem. Starting from
the general optimal control problem from Section 4.2.2, i.e.

miny∈Rny J̃ (y, ω)

subject to

a(y, ω) = 0,

b(y, ω) ≥ 0,

with the vector of variables y containing the coefficients of the piecewise polynomials of the
discretization, a representing the discretized collocation, boundary and nonlinear equality con-
straints and b representing the discretized nonlinear inequality and box constraints.

For a solution y# of the optimization problem, the active constraints can be collected in a vector
function ā:

ā(y#, ω) = 0.

Thus, the Lagrange function has the following form:

L(y#, µ#, (ω)) = J̃ (y#, ω)− µ#T ā(y#, ω),

where µ# are the corresponding Lagrangian multipliers.

If J̃ ,b, ā are differentiable twice, some optimality condition of second order and the gradients
of the active constraints are linearly independent (which shall not be investigated here, see [12]
for details), then the solution (y#, ω#) of the optimization problem is locally differentiable w.r.t.
ω and for i = 1, . . . , nω the sensitivities can be computed from

(
∂y
∂ω (ω)
∂µ
∂ω (ω)

)
= −

(
∇yyL(y#, µ#, (ω)) ∇yā(y#, ω)T

∇yā(y#, ω) 0

)−1 (
∇yωL(y#, µ#, ω)

∇ωĀ(y#, ω)

)
.

The solution vector ∂y
∂ω can be used to compute the sensitivities the same way the states are
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computed. Recognizing the structure of the solution vector

∂y

∂ω
:= (dix0, . . . ,dixnt ,diu0, . . . ,diunt), i = 1, . . . , nω,

the sensitivities ∂ix := ∂x/∂ωi, ∂iu := ∂u/∂pi, i = 1, . . . , nω are given by

∂ix̃(t) =






3∑
s=0

dics
j

(
t−tj
hj

)s

, tj ≤ t < tj+1, j = 0, . . . , nt − 2,

3∑
s=0

dics
N−1

(
t−tN−1

hN−1

)s

, tN−1 ≤ t ≤ tN ,

and

∂iũ(t) =

{
diuj + t−tj

hj
(diuj+1 − diuj), tj ≤ t < tj+1, j = 0, . . . , nt − 2,

diuN−1 + t−tN−1

hN−1
(diuN − diuN−1), tN−1 ≤ t ≤ tN

where for the definition of the dics
j the variables dixj are used instead of xj in Equations 4.3.

4.4.3 Identification Methods

The problem statement in Section 4.4.1 leads to an optimization problem. Two different ap-
proaches for solving this problem are given in the following two subsections.

4.4.3.1 Derivative-free Approach

One approach to optimization when derivatives are not available or difficult or costly to compute
is black box optimization. Black box optimizers solve the optimization problem with evaluations
of the objective function only. However, they have the drawback that usually more evaluations of
the objective function are needed than with approaches making benefit of derivative information.

So in our case, where derivatives are available in principle, black box optimizers should be used
only to get a first idea of how to handle the problem. For the real application, more sophisticated
methods that use derivatives should be used.

Details on the black box method that has been used for first results of Section 5.3 may be found
in [46, 47].
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4.4.3.2 Approach using Derivatives

Several approaches to gain benefit from evaluating not only the objective function I but also the
derivatives with respect to the parameters dI/dω exist. The derivatives involve the sensitivities
of the (discretized) optimal control:

∂I(ω)

∂ωi
=

∂

∂ωi

nj∑

i=1

∫ tf

0

(xi(ω; t)− ϕi(t))
2 dt

=

nj∑

i=1

∫ tf

0

∂

∂ωi

(
(xi(ω; t)− ϕi(t))

2) dt

= 2

nj∑

i=1

∫ tf

0

(xi(ω; t)− ϕi(t))
∂xi(ω; t)

∂ωi
dt

= 2

∫ tf

0

(x(ω; t)−ϕ(t))T ∂ix dt

The special structure of the identification optimization problem, i.e., the sum (or sum of integrals)
of squares of differences that are to be minimized, is exploited by special methods. One widely
used approach is the Levenberg-Marquardt approach. Details on this method may be found in
[75].
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Chapter 5

Problems, Models and Results

5.1 Walking Robots

Walking motions have been optimized both for a quadruped and a biped robot. The optimal
control problems for the different robots share some characteristics. Whenever possible, only
a half stride of the walking motion should be optimized. This introduces additional boundary
constraints but ensures that the resulting walking motion is exactly symmetric and reduces the
problem size by one half. The details on how the boundaries have to be chosen are given in the
respective sections.

Stiff contact between the feet and the ground are assumed as an initial setup of the model. The
collision algorithm from Section 3.1.3 has been used to handle the landing of the foot or feet, the
contact algorithm (Section 3.1.2) in combination with the reduced dynamics algorithm (Section
3.2) was used during the stance phases. The parameters of the contact model were iteratively
adjusted.

Finding an optimal and stable walking trajectory was an iterative process even while using a
computational model. The optimized trajectories were implemented to the real robot and the
model (e.g. parameters of the motors, ground contact model) and optimal control problem (e.g.
constraints on motor parameters) were modified according to the observed experimental results.
The projected center of mass (see Section 2.1.4) was used to ensure stability of the optimized
walking motions. No control besides joint angle PID control from the servo motors was used
to gain stability in the experiments which allowed judgment of the quality of the stability of the
optimized motions.

The motions were optimized for time or energy. The resulting joint angle trajectories were used
for control of the real robot. The motor currents were not used as control because even more
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detailed motor models would have been necessary for this.

The following three subsections summarize work that has been presented at the International
Conference on Climbing and Walking Robots CLAWAR 2003 ([107], Section 5.1.1, joint work
with M. Hardt and O. von Stryk), the IEEE International Conference on Humanoid Robots ([13],
Section 5.1.2, joint work with M. Buss, M. Hardt, J. Kiener, M. Sobotka, O. von Stryk, and D.
Wollherr), and CLAWAR 2006 ([93], Section 5.1.3, joint work with A. Seyfarth, R. Tausch, F.
Iida, A. Karguth and O. von Stryk) and been included into the respective conference proceedings.
Modeling and optimization in those publications was the main topic of the author of this thesis.

In the following chapters, the x-axes is chosen to point into the walking direction of the robot,
the z-axes points upwards and the y-axes is chosen to gain a right-handed coordinate system.

5.1.1 Gait Optimization for a Quadruped Robot

5.1.1.1 Model of Sony’s Four-legged Robot AIBO ERS-210(A)

Originally designed as a toy and entertainment robot, Sony’s AIBO ERS-210(A) (see Figure 5.1)
was also involved into the worldwide RoboCup competitions for teams of autonomous soccer
playing robots [3] between 2001 and 2004. For this application fast and stable gaits are manda-
tory. The robot contains an onboard CPU, which in autonomous soccer competitions mainly
must be used for image processing using the integrated CCD-camera and image understanding
(localization of the robot itself, of team mates, opponents, goals and the ball). For RoboCup, a
software architecture based on Sony’s real-time operating system AperiOS and Sony’s OPEN-
R-library has been developed [18], which gives a comfortable way of implementing off-line
computed joint trajectories in the robot and receiving the resulting sensor data for joint angles
during execution.
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Figure 5.1: The four-legged Sony robot (left) and the kinematical structure of one leg (right);
taken from [107].

In the context of this work, the model of Sony’s four-legged robot consists of a 9-link tree-
structured multibody system (MBS) with a central torso attached to a relatively heavy head at
a fixed position and four two-link legs. Each leg contains a 2 DOF universal joint in the hip
and a 1 DOF rotational joint in the knee. A minimum set of coordinates consists of 18 position
and 18 velocity states (q(t), q̇(t)) which include a three-parameter Euler angle vector for the
orientation, a three-dimensional global position vector, and their time derivatives for the torso,
and additionally three angles and their velocities for each leg. The 12 control variables u(t)

correspond to the applied torques in the legs. The required kinematical and kinetic data for each
link (length, mass, center of mass, moments of inertia) have been provided by Sony.

5.1.1.2 Motor Characteristics Model

Motor restrictions are of essential importance when calculating optimal gait trajectories. As no
further details are available for this robot, motor characteristics have to be estimated. As a first
step, maximum angular velocities qi,max and maximum torques ui,max of each of the joints have
been estimated by an iterative comparison of calculated trajectories and sensor data for each
joint: Estimates of the maximum angular velocities and maximum torques used as constraints
in the optimal control problem for computing reference trajectories for a dynamic gait have
been reduced successively until the observed error between calculated joint angle trajectories
and measured joint angle trajectories becomes small. In the experiments set-point trajectory
tracking control in each joint was used as provided by the manufacturer of the robot.
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This procedure ensures that the calculated trajectories can be implemented on the real robot.
However, the restrictions obtained in this manner are likely to be too restrictive. A more detailed
model of the joint actuators will most likely lead to better gait trajectories in simulation and
experiment.

Note that the optimal control problem in this notation contains the differential algebraic equation
of multibody system differential equations and contact algebraic equations. However, when solv-
ing the optimal control problem, this system of differential algebraic equations can be replaced
by the reduced dynamics equations like described in Section 3.2. The special treatment of states
related to differential equations of second order, see Section 4.3, by which the problem size could
have been further decreased, had not yet been established when the investigations were taken.

Useful objective functions are, for example, time tf , energy
∫ ∑m

i=1 u2
i , or combinations of

both [42]. Boundary conditions contain conditions for

• symmetry resp. anti-symmetry of states,

• foot placement, i.e. conditions that force the feet to be placed on desired positions (which
may depend on parameters and therefore may also be subject to the optimization),

• contact forces at the end of a stance phase, that allow the foot to lift off.

Nonlinear inequality constraints are:

• Hips of legs in contact with the ground must stay within a maximum radius of the leg,
so that the inverse kinematics solution required for reduced dynamics has a well-defined
solution.

• The swing feet must move above a certain curve above ground, for example a sine curve.
This property increases stability by avoiding contact with the ground resulting from de-
flexions of bodies and joints, which could lead to stumbling of the robot.

• Slipping is avoided by limiting the horizontal contact forces relative to the vertical contact
forces.

• Vertical contact forces must be positive, i.e. the robot may only push to ground but may
not pull from ground.

• Further constraints to be considered in the problem formulation are detailed motor charac-
teristics. By now the box constraints for minimal and maximal values of angular velocities
and torques only give a rough estimate of the real actuator data.

Note that stability is not enforced explicitly but may be checked by one of the criteria given in
Section 2.1.4 and [42]. More details on each of the constraints may be found in Section 5.1.2,
where the constraints are stated for a humanoid robot.
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5.1.1.3 Results

Figure 5.2: Four scenes from an animation of a computed trot gait; taken from [107].

Numerical Results. In this section, the numerical results for generating an optimal trajectory
for a trot gait are given. Note that although the states of the optimal control problem include
velocities and orientation of the main body, those states are not used for implementation. For the
calculations, of course, these states are necessary. The interesting part of the solution is the set
of twelve trajectories, one for each of the robot’s leg joints. The solution may be visualized not
only by plotting the trajectories (as in Figure 5.3, where the calculated trajectories are plotted in
comparison to the sensor data received when implementing the trajectory), but also by animating
the robot for each of the calculated states. In Figure 5.2 four single images of a computed trot
are shown, each for a different contact situation.
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Figure 5.3: The experimentally measured joint angle trajectories (dotted lines; joint angle [rad]
versus time [s]) for the first hip joints and the knee joints match the computed reference tra-
jectories (solid lines) quite well after considering improved estimates for maximum torque and
velocity constraints. For the second hip joints, the constraints have not yet been adapted resulting
in the depicted difference. The joint trajectories are shown for about two and half strides of the
trot gait; taken from [107].

Figure 5.4: Decentralized PID-control scheme for the three joints of one leg; taken from [107].
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Experimental Results. To implement the computed joint position trajectories on the robot, a
decentralized trajectory tracking control scheme is used which utilizes the available servo motor
control (e.g., PD or PID) of each actuated joint of the robot. Involving the data from joint angle
sensors, the difference qe between actual joint angle qa and reference joint angle qr of each joint
can be measured. An additional error compensation angle qd is calculated, e.g., in case of a
PID controller, by qd(t) = kpqe(t) + ki

∫
qe(t)dt + kd

∂qe

∂t (t) involving the three PID-controller
constants kp, ki, kd. This angle is added to the actual angle to get a new wanted angle qr = qa−qd,

as shown in Figure 5.4 for all joints of one leg.

The first experiments for a trot were not quite successful because the robot’s feet slipped on
ground and the measured angle trajectories did not match the calculated ones, despite a well
working PID-controller scheme. The second problem was solved by adjusting maximum veloc-
ities and torques in the optimal control problem as described in Section 3. Sensor data now very
well match the calculated trajectories for each of the twelve actuated joints (cf. Figure 5.3). Slip-
ping was avoided by adding an additional constraint on the horizontal contact forces, cf. Section
3. No further control scheme for ensuring stability of the system is used or available. There-
fore, the calculated reference trajectories and the system itself have to be robust against errors
in the model concerning deflexions of bodies and joints. For the trajectories this is considered
by involving the constraints on the swing height. A major practical problem for this approach
results from the construction of the robot’s feet and the not actuated small tip body, which makes
it difficult to guarantee well-defined contact situations. This problem may be circumvented by
a slight hardware modification: if ”shoes” are attached, unchanged joint angle trajectories lead
to good experimental results. Proper shoes also have a good effect on slipping, which may be
reduced by choosing appropriate materials for the shoes, thus allowing faster motions. Without
proper shoes and using the conservative velocity and torque restrictions in dynamic optimization,
a maximum speed of 18 cm/s is achieved in simulation and experiment for the trot gait.
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5.1.2 Gait Optimization for a Biped Robot

5.1.2.1 Kinematic Model of Humanoid Robot Prototype

A humanoid robot prototype has been constructed in co-operation with the control system group
at TU Berlin [13]. For this robot, optimal walking trajectories have been calculated. Figure 5.5
displays a schematic sketch of the humanoid prototype. The humanoid robot consists of 17
actuated joints:

• two legs each with 6 actuated joints,

– hip with 3 DOF rotating around x-, z- and y-axes,

– knee with 1 DOF rotating around y-axis,

– ankle with 2 DOF rotating around y- and x-axes,

• waist with 1 actuated joint rotating around z-axis, and

• two shoulders each with 2 actuated joints rotating around y- and x-axes.

The head was fixed to the body, though it was planned to equip the head with 2 actuated joints
(pan-tilt) and a CCD-camera.

The humanoid dynamic model consists of:

• 6 DOF describing a virtual 3D rotation and translation joint between the reference free-
floating body (torso) and an inertial reference frame and

• 17 DOF for the existing internal joints.

A total of 23 position and 23 velocity states (q(t), q̇(t)) resulting in 46 first order differential
equations describe the system configuration.

q =





q1−3

q4−6

q7−12

q13−46




=





Euler angles for system orientation
System linear translation vector

System angular and linear velocity vector
Legs, waist and shoulder angles and angle velocities





u =

[
u1−12

u13−17

]
=

[
Legs applied torques

Waist and shoulders joint applied torque

]
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Figure 5.5: Humanoid kinematic structure; taken from [13].

For the trajectory optimization, the waist and both shoulder joints are held fixed, so the above
state and control vectors simplify to q ∈ R36 and u ∈ R12 which can further be reduced by
involving the reduced dynamics approach from Section 3.2. For the single limb support phase,
only the states of the free floating base and the swing leg have to be considered, i.e. 24 states
are used in the optimal control problem. For the double limb support phase, no states related
to the robot’s leg have to be considered which results in a reduction of the number of states
to 12. The problem size further could be reduced by the special discretization for differential
equations of second order (Section 4.3), which however had not yet been implemented when
those investigations were taken.

The humanoid robot is 80 cm tall and has a weight of about 12 kg without batteries and main-
board. Its kinematic structure complied with the regulations for the RoboCup Humanoid League
in 2003 [3]. Other kinematic design decisions take into account dynamical aspects. For example,
the hip flexion/extension joint performing most of the work in the hip was placed as the last of
the three hip joints. Thus, the needless work of swinging the other two hip joints is saved. On the
other hand, the flexion ankle joint is placed higher than the abduction joint so that at collision of
the heel with the ground the impulsive force will disperse better throughout the body rather than
influence primarily only the ankle joints.
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5.1.2.2 Inverse Kinematics

For the evaluation of the reduced dynamics (Section 3.2), the solution of the inverse kinematics
problem is required for a leg which may also be considered as a 6-link manipulator. It is well-
known that an inverse kinematics solution does not always exist for a 6-link manipulator, yet for
this humanoid kinematic structure a unique solution may be found. The problem is solved by
first modeling the three successive planar rotations (last hip joint, knee joint, first ankle joint) as a
single rotation. Then the inverse kinematics problem reduces to the identification of four angles
given the hip and ground contact positions. Taking compositions of homogenous transformations
with symbolic programming tools produces equations from which the four joint angles may be
solved. The remaining joint angles are determined from the inverse kinematics solution of a pla-
nar 3-link manipulator [100]. The correct solution out of the finite number of possible solutions
is determined from considering the direction of knee rotation and relative lateral displacement of
the foot with respect to the hip. The calculation of the 6 joint angle velocities given the hip linear
and angular velocities is a linear problem for which standard methods may be used.

5.1.2.3 Dynamic Parameters

For dynamical calculations the humanoid model must include dynamic parameters which are
estimated based on its kinematic structure and mass measurements. When striving for precise
optimization results, it is important that these estimated values are as exact as possible. The
real humanoid is divided into geometrical primitives (cylinder, ellipsoid, or box) which were
individually measured and weighed. One leg, for example, is divided into more than 20 units.
Assuming a uniform mass density in an object, the link inertias may be approximated with the
help of the parallel and perpendicular axis theorem.

5.1.2.4 Constraints for Bipedal Walking Model

An important aspect of formulating a gait optimization problem is establishing the many con-
straints on the problem. For a biped, the gait cycle consists of several phases describing different
contact situations and being separated by events. The order of contact events is straightforward
and depends primarily upon the speed of locomotion. A summary of the physical modeling
constraints for a half-stride consisting of a single limb support phase (SLS) and a double limb
support phase (DLS) of a periodic gait cycle in 3-dimensions is [13]:

1. Magnitude constraints on states and controls:

Lq ≤ q ≤ Uq, Lu ≤ u ≤ Uu,
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where L(.) and U(.) are constant vectors with length equal to the length of their argument
containing upper and lower bounds of their argument.

2. Boundary conditions at end of half-stride:

• symmetry resp. anti-symmetry of states q and contact forces fc:
Rotational states, controls and contact forces are symmetric about inertial y-axis and anti-
symmetric about x- and z-axes, while linear states and contact forces are symmetric about
inertial x- and z-axes and anti-symmetric about y-axis. qe

(.) and q0
(.) denote the value of state

q(.) at final resp. initial time:




qe
1

qe
2

qe
3

qe
4

qe
5

qe
6




=





−1
1 0

−1
1

0 −1
1









q0
1

q0
2

q0
3

q0
4

q0
5

q0
6




+





0
0
0

step
0
0




and





qe
7

qe
8

qe
9

qe
10

qe
11

qe
12




=





−1
1 0

−1
1

0 −1
1









q0
7
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Periodic constraints are also placed between the contact forces experienced by the stance foot
at the beginning of the SLS and from the foot about to become the sole stance foot at the end
of the DLS. These constraints satisfy the same symmetric and anti-symmetric relationship as
above. The periodicity constraints for the leg’s 6-DOF are implicitly enforced through the
6-dimensional foot contact constraints, contact location and their periodicity constraints.

• lift-off force:
The leg to lift off at the end of the half-stride is able to lift off from the ground iff the vertical
component of the contact force is zero at the foot’s center of pressure. This point is in general
unknown so that one must additionally restrict the rotational contact forces about the ground
planar axes to be zero at some reference point underneath the foot at the end of the DLS. Fric-
tion constraints simultaneously require that the remaining components of the 6-dimensional
contact force vector be zero,

f c,i = 06×1 where leg i is breaking its contact with the ground.

3. Constraints during whole half-stride:
The following constraints must hold for all times during SLS resp. DLS.

• stability:
ZMP lies in the convex hull of contact points, i.e. the distance from ZMP to the convex hull
HULL of the contact points is negative (for both SLS and DLS):

dist(ZMP, HULL) ≤ 0.
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• swing foot orientation:
The swing foot rotational position must not divert too far from its starting and ending config-
uration, i.e. norm of vector FO containing the Euler angles of foot orientation received from
a forward kinematics algorithm FK must be smaller than a user given value Uorient (for SLS
and the swing foot only):

FO = FK(q,u) and ‖FO‖ ≤ Uorient

• leg reach:
Working with a reduced dynamics model has the advantage of dealing with an ODE dynam-
ical model rather than with a DAE model. The disadvantage is that extra constraints must
be added to ensure that there exists a solution for the dependent states in the model. In this
case, the hip(s) connected to the leg(s) in contact with ground must remain within a maximal
distance from the contact point(s) i.e.

Phip = FK(q) and dist(Pcntct,Phip) ≤ lhip−leg

where Pcntct are the coordinates of the contact point(s) and FK is a forward kinematics algo-
rithm that computes the position of the hip Phip from the states. This condition must hold for
all legs in contact with the ground, that is for one leg in SLS and for two legs in DLS, so that
the inverse kinematics solution for the leg has a well-defined solution.

• swing height:
The swing foot must move above a pre-defined tolerance zone above the ground due to ro-
bustness concerns, i.e. the z position coordinate of the foot tip qtip (calculated by forward
kinematics FK) must be greater than e.g. a sine curve of pre-specified amplitude:

qtip,z = FK(q) and qtip,z ≥ Az sin
πt

t1
with t1 = duration of SLS.

• avoidance of slipping:
Ground contact forces lie within the friction cone and unilateral contact constraints are not
violated [30, 85]. In the case of stationary flat foot contact, the ground linear contact forces
for foot j, F j = [Fj,x Fj,y Fj,z]T and rotational contact forces T j = [Tj,x Tj,y Tj,z]T must
satisfy √

F 2
x + F 2

y ≤ µtFz and |Tz| ≤ µdFz

with friction coefficients µt, µd. Otherwise a slipping contact state is entered.
To prevent a foot lying flat on the ground from entering a rotational contact state, the center of
pressure must be constrained to lie underneath the foot surface which may also be expressed
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in terms of the rotational contact force vector T j ,

|Tx| ≤ 0.5Fzly and |Ty| ≤ 0.5Fzlx ,

where lx and ly are the length and width of the foot respectively.

• positive contact forces:
All legs in contact with ground may only push to ground but may not pull from ground, so
the z-component of contact force of each leg in contact with ground must be positive:

Fz ≥ 0.

4. Conditions at change of phase from SLS to DLS:
Here t− resp. t+ denotes time just before and just after a phase change.

• continuity of position, angle, and objective function states:

qi(t+) = qi(t−),

for all components qi of q related to positions or angles (see Section 5.1.2.1).

• discontinuity of velocity states:
The jump in the generalized system velocities due to an inelastic collision with the ground
are calculated using the collision dynamics algorithm from Section 3.1.3:

CDA : q̇(t+) = CDA (q(t−), q̇(t−))

• foot placement and foot orientation:
As both feet are in contact with ground in the double limb support phase and are stationary,
foot placement and orientation must be considered at the beginning and end of the SLS. A
forward kinematics algorithm FK determines the foot position fp and orientation fo. Foot
position must agree with the unknown fixed parameters fpd in the optimization formulation
while foot orientation must be in-line with the inertial reference system in which case its
relative rotation matrix is the identity matrix I3:

(fp, fo) = FK (q(t−))) , fp = fpd and fo = I3

5.1.2.5 Optimization of Stability and Performance Indices

Algebraic control strategies for legged systems cannot yet be constructed to handle the high di-
mension and many modeling constraints present in the locomotion problem. Heuristic control
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methods, on the other hand, tend to have poor performance with respect to power efficiency
and stability. The remaining proven approach is the use of sophisticated numerical optimization
schemes which can incorporate the numerous modeling constraints to generate optimal trajecto-
ries. The resulting trajectories may later be tracked or used to approximate a feedback controller
in the portion of state space of interest. The following three performance indices currently are
used in the humanoid gait generation investigations.

Postural Stability Performance: Distance in the ground plane between foot i’s stability criterion
(cf. Section 2.1.4) ipf and a central reference point under the foot ipr

J s1[q, q̇, u] =

∫ tf

0

∑

i

(
(ipf,x − ipr,x)

2 + (ipf,y − ipr,y)
2
)

dt. (5.1)

Energy Performance: In legged systems where a high torque is generated by a large current in
the motor, the primary form of energy loss is called the Joule thermal loss [65]. The integral of
this value over a gait period is

J e1[u] =
1

s

∫ tf

0

N∑

i=1

Ri

(
ui

GiKi

)2

dt (5.2)

where Ri, Gi, Ki, and ui are the armature resistance, gear ratio, torque factor, and applied torque
for link i respectively, while s is the step length or total distance traveled over one stride.

Efficiency Performance: The specific resistance as used in [35] measures the output power in
relation to the mass moved and the velocity attained and is a dimensionless quantity. It represents
a normalized form of the required kinetic energy

J e2[q̇, u] =

∫ tf

0

∑N
i=1 |uiq̇i|
mgv

, (5.3)

where mg is the weight of the system, q̇i is the joint i angle velocity and v is the average forward
velocity.

The availability of a fully validated dynamic model combined with optimization tools permits
one to make conclusive investigations into which stability or efficiency measures are most effec-
tive, though no one measure is sufficient for gait generation. The stability performance 5.1 cannot
be used alone to verify or design a dynamically stable control strategy and must be combined
with additional dynamic system measures. Efficiency is secondary in importance to stability in
legged systems, but it can also have a strong influence in the successful design of an autonomous
biped. A challenge for systems with limited power supply is to combine energy conserving
motion with the robust stability properties discussed previously.
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5.1.2.6 Computation of Humanoid Reference Trajectories

Inverse kinematics algorithms that were developed for the humanoid prototype in order to com-
pute the reduced dynamics (see Section 3.2) also facilitated the generation of heuristic joint
angle and angle velocity reference trajectories satisfying the physical modeling constraints (Sec-
tion 5.1.2.4). The reference trajectories served as start trajectories for the complex 3-dimensional
humanoid gait optimization.

Several stages of gait optimizations were performed with varying complexity until all physical
and stability constraints were included in the 3-D optimizations. An energy performance index
was chosen (Equation 5.2) subject to the statically stable and dynamic postural stability nonlinear
constraints (Section 2.1.4). First investigations using a dynamic model considering only the 12
joint DOF in the legs were made using statically stable gaits, walking on flat feet, with one
swing phase composing 80–85% of the gait period and a double contact phase composing the
remainder of the gait period. This conservative gait was chosen to facilitate first experiments
with the humanoid robot prototype. Thus a 25-dimensional ODE (including the objective) has
been optimized subject to numerous explicit and implicit nonlinear boundary constraints and
nonlinear inequality constraints (Section 5.1.2.4). An optimization using 44 time grid points
required 1584 NLP variables (Section 5.1.2.5) with 1079 nonlinear equality constraints and 220
nonlinear inequality constraints. The necessary run-time after two automatic grid refinements
using a reasonable starting solution was 1418 seconds on a Pentium III, 1150 MHz. The GCoM
and individual foot FRI trajectories from the optimal gait are displayed in Figure 5.6. Note that
the system remains statically stable and that the FRI points remain centered about the middle of
their respective foot contact surfaces.

5.1.2.7 Experimental Results

In the following, results of two experiments are described: In the first experiment, the trajectories
generated according to Section 5.1.2.6 are scaled in duration and applied to the humanoid without
further modification as reference trajectories to local joint PD position controllers. The second
experiment shows walking performance with completely unmodified trajectories.

Trajectory Following Using Slow Trajectories

The precalculated trajectories obtained by the algorithms discussed in Section 5.1.2.6 are scaled
in time by a factor of 20 for debugging purposes. Those prolonged trajectories are applied to the
humanoid as reference trajectories to joint level PD position controllers. Figure 5.7 shows the
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measured data of the left knee. Since the knee joint supports a significant part of the robot total
weight, the load in the other joints is similar or less than the knee load.

From Figure 5.7(a) one can see, that the error of the commanded joint trajectory (dashed) and the
measured position (solid) is quite small and does not exceed 0.025 rad for a complete stride. This
validates the performance of the PD joint position control with a sampling rate of 250 Hz. The
corresponding motor current (solid) and PWM ratio (dashed) are shown in Figure 5.7(b). This
plot similarly displays that the knee joint of the robot operates well below its limits with currents
of 3 A (below the maximum H-bridge amplifier current of 4 A) and the PWM ratio always less
than 50%. Another insight from this result is that the commanded PWM ratio is roughly propor-
tional to the current in the motors, which indicates that in principle torque command control is
realizable with the given hardware architecture. The quality of the (unfiltered) current measure-
ment is promising for future application of to be developed external disturbance force estimation
algorithms.

Despite small errors in trajectory following in joint space, the robot gait was slightly tottering.
One cause may be attributed to unmodeled backlash in the gears and other effects such as link
flexibilities. Furthermore by stretching the time scale of the stride for debugging reasons, dy-
namic effects incorporated in the gait planning were reduced.

Trajectory Following Using Fast Optimal Control Trajectory

The result of conducting the same experiment as in Section 5.1.2.7 with a faster, unscaled tra-
jectory is shown in Figure 5.9. In this experiment, two strides are performed, where each stride
consists of a single-support phase and a double support phase, each taking 3 s, see Figure 5.9a.
Although the absolute error in the knee joint is 0.06 rad and hence slightly higher than in the case
of the slow trajectory, the average load on the joints is less when compared to the slow trajectory.
The robot was able to do the double stride without additional control, i.e. with joint angle control
only, without falling after adjusting the distance of the foot, see Figure 5.8. This shows that the
robot dynamics have successfully been exploited in the gait generation process.
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Figure 5.6: GCoM and individual foot FRI trajectories during two steps of an optimized statically
stable walk; taken from [13].
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Figure 5.7: Joint angle (left) and motor signals (right) of first experiments with trajectory fol-
lowing control (knee joint of left leg); taken from [13].

Figure 5.8: Step sequence with manual compensation; taken from [13].
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Figure 5.9: Joint angle, current and pwm signal for a double stride of 6 s; taken from [13].
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5.1.3 Walking Optimization for a Biologically Inspired Biped Robot

Optimal control techniques are well suited for optimization problems where the controls can be
virtually any arbitrary function. For problems with controls of simple shape in contrary dis-
cretization of the controls would increase the problem to an unnecessary big size. In [93], the
optimization of the biologically inspired elastic biped JenaWalker II (see Figure 5.10) is investi-
gated. Only the hips are driven. The knee and the ankle joints are not driven directly but effected
by the motion of the hip via muscle like springs.

Figure 5.10: The JenaWalker II. RF, BF, TA and GAS denote the springs inspired by the human
muscles Rectus Femoris, Biceps Femoris, Tibalis Anterior und Gastrocnemius; taken from [93].

The biped is driven by a central pattern generator: parameters for the frequency, the amplitude
and the offset angle generate sinusoidal hip angle trajectories for both hips. Discretization would
lead to a much higher number of parameters to be optimized. Besides the parameters for the
control of the hip, also the parameters of the muscles (like rest length, spring coefficients) may
be optimized.

Different optimization techniques like Implicit Filtering [33] and NoMad [4] have been used
to optimize a Matlab Simulink SimMechanics model of the robot scaled to human size (leg
length of 1m, mass 80kg). Starting from a set of hand tuned parameters (walking speed about



72 CHAPTER 5. PROBLEMS, MODELS AND RESULTS

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t [sec]

v
 [

m
/s

]

10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 11.1 11.2
0

100

200

300

400

500

600

t [sec]

tr
q
 [
N

m
]

|trq
Hip

 L|

|trq
Hip

 R|

Figure 5.11: Walking speed (left) and hip torques (right) with initial parameter set; taken from
[93].
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Figure 5.12: Walking speed (left) and hip torques (right) with parameter set optimized for speed
using Implicit Filtering; taken from [93].

1m/s, Figure 5.11), several optimization studies have been conducted. First the walking speed
was optimized without any constraints; this lead to an increase of velocity to 1.6m/s but also
increased the hip torques to more than 700Nm (Figure 5.12). The hip torques then have been
limited and the walking speed has been optimized in the second optimization study. Involving
NoMad even increased the constrained walking speed to about 3.6m/s at reduced hip torques
of about 410Nm (Figure 5.13). Obviously, Implicit Filtering got stuck in a local minimum. In
the third study finally, the speed was constrained to be equal or higher than 2m/s and the hip
torques have been minimized. This lead to hip torques of less than 300Nm at a final speed of
2.5m/s, see Figure 5.14. Speed is evaluated 10 seconds after the robot starts from standing, but
still increases after this time.

Both in the numerical optimizations and in experiments with the real robots, running with flight
phases has been observed. This also explains the velocities that become higher than the theoret-
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Figure 5.13: Walking speed (left) and hip torques (right) with parameter set optimized for speed
and bounded torques using Nomad; taken from [93].
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Figure 5.14: Walking speed (left) and hip torques (right) with parameter set optimized for low
hip torques and bounded velocity using Nomad; taken from [93].

ical maximum walking speed of angular velocity of the hip joints multiplied by the leg length.
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Figure 5.15: Walking motion with parameter set optimized for low hip torques and bounded
velocity using Nomad; taken from [93].
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5.2 Human Biodynamics

In the following subsections, numerical results for biomechanical applications are presented. The
kicking motion has been previously published [101, 102, 103, 104, 105, 106]. Examples have
been chosen for which complete data, i.e. captured motion data, electromyography (EMG) data
(i.e., the potentials produced by the muscles that finally lead to the exertion of muscle forces),
anthropometric and physiological data of the test person, was available in literature, to allow
validation.

5.2.1 Kicking Motion

5.2.1.1 Prediction of Motion

A time optimal kicking motion has been investigated [101, 102, 103, 104]. Kinematic and kinetic
data of the musculoskeletal system as well as muscle model parameters and measured reference
data have been taken from Spägele [97, 99]. The model (cf. Figure 5.16) consists of two joints,
two rigid links and five muscle groups. The problem is formulated as an optimal control problem

1. Ilio Psoas group

2. Vastus group

3. Rectus Femoris

4. Hamstring group

5. Gastrocnemius group

q1 hip angle

q2 knee angle

1

3

2

4

5
q2

q1

1

3

2

4

5
q2q2

q1q1

Figure 5.16: Kinematic structure of the leg with five muscle groups.

with 9 states (hip angle q1, knee angle q2, the corresponding joint velocities and 5 calcium ion



76 CHAPTER 5. PROBLEMS, MODELS AND RESULTS

concentrations) and 5 controls (activations of the muscles) as follows:

x =





q1

q2

q̇1

q̇2

γ1

...

γ5





=





hip angle
knee angle
hip velocity

knee velocity
ca2+ concentration muscle 1

...

ca2+ concentration muscle 5





, u =





u1

u2

u3

u4

u5




=





activation of muscle 1
activation of muscle 2
activation of muscle 3
activation of muscle 4
activation of muscle 5




.

The kicking motion was optimized to be time optimal, i.e. the objective function is J = tf .
The muscle lengths (cf. Equation 2.11, subscript here denotes the number of the muscle) are
calculated according to [97]:

lM1 = 0.287− 0.0497q1,

lM2 = 0.300 + 0.0330q2,

lM3 = 0.517 + 0.045 cos(1.128q1 + 0.748) + 0.033q2,

lM4 = 0.483− 0.062 cos(1.047q1 + 0.838) + 0.07 cos(1.076q2 + 0.28),

lM5 = 0.088 + 0.019 cos(1.16q2 + 0.464) .

(5.4)

The velocities are the time derivatives of the lengths, vM
i = l̇Mi , i = 1, . . . , 5. The resulting lever

arms (Equation 2.2.3.7) are also taken from [97]:

d1,q1 = 0.024 + 0.0188q1,

d2,q2 = 0.036 + 0.03e−4.33(0.17−q2)2 ,

d3,q1 = 0.052 cos(q1 − 0.63)− 0.002,

d4,q1 = 0.037 cos(1.309q1 − 0.916) + 0.026,

d4,q2 = 0.058(q2 + 0.685)2e−1.187q2 ,

d5,q2 = 0.055 .

(5.5)

The passive moments (Equation 2.14) are stated in [97] to be:

τ1,p = 0.8e−3.41q1 + 0.084e−15q1 − 0.753e2.55q1 − (7.9e−2.72q1 + 0.09e1.8q1)q̇1

τ2,p = 1.25 · 10−7e8.5q2 − 6.3e−2.9q2 − 20.1e−16.1q2 + 2.1− (0.3e1.02q2 + 1.85e−3.43q2)q̇2 .
(5.6)

The multibody system parameters (mass, inertia w.r.t. point of rotation, center of mass, length)
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for the thigh and shank are

m1 = 8.692, I1 = 0.480, z1 = 0.189, l1 = 0.447,

m2 = 15.492, I2 = 4.700, z2 = 0.501, l2 = 0.538.
(5.7)

The activation dynamics are taken into account with equations 2.5 and 2.6, the parallel elastic
element and damping element with equations 2.7 and 2.8, the force-length- and force-velocity-
relationship with equations 2.4 and 2.3. The total force of the muscle-tendon element and the
overall muscle are calculated with equations 2.9 and 2.10. The parameters for the respective
equations may be found in Table 5.1. The boundary conditions were set to

q1(t0) = 0.1,

q2(t0) = 0.15,

q̇1(t0) = 0

q̇2(t0) = 0,

γ1(t0) = ... = γt(t0) = 0

q1(tf ) = 0.8,

q2(tf ) = −0.05,

q̇2(tf ) = 0.

(5.8)

Box constraints are imposed on the states and controls

0 ≤ q1 ≤ 1.5,

−0.05 ≤ q2 ≤ 1.5,

0 ≤ ui, γi ≤ 1, i = 1, . . . , 5.

(5.9)

An overview of the data flow in the kicking model may be found in Figure 5.18.

Compared to the measured motions (and the results of [97, 99], which match the measured
data very well), our results show a shorter time and higher maximum angles (cf. Figure 5.19).
The reason for this is, that in [97] the maximum muscle forces were modified to match the
optimized time of the measurement. Obviously our optimal motion is another local minimum.
Nevertheless, the controls (Figure 5.17) show the same characteristics. Computing time and size
of the resulting NLP are shown in Figure 5.2. The direct shooting approach used in [97, 99] for
11 grid points required hours to compute the solution [96]. Comparing the computing time with
our approach (Figure 5.2) and considering how computational speed has progressed since 1996,
we still obtain a speed up of two orders of magnitude.
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Table 5.1: Parameters for the muscles of the kicking model (taken from [97]).
parameter muscle 1 muscle 2 muscle 3 muscle 4 muscle 5
b1 7.23 7.23 7.23 7.23 7.23
b2 7.46 7.61 8.37 7.46 7.61
b3 1.0 1.0 1.0 1.0 1.0
k0[N ] 0.0 0.0 257.1 378.0 0.0
k1[N ] 0.0 0.0 5.393 64.7 0.0
k2[m−1] 0.0 0.0 90.4 23.95 0.0
k3[m] 0.0 0.0 0.58 0.48 0.0
k4[N ] 0.0 0.0 0.0 0.0068 0.0
k5[m−1] 0.0 0.0 0.0 239.8 0.0
k6[m] 0.0 0.0 0.0 0.53 0.0
c1 0.017 0.017 0.017 0.017 0.017
c2 0.015 0.015 0.015 0.015 0.015
lM0 [m] 0.258 0.309 0.500 0.486 0.085
c3 0.50 0.33 0.33 0.50 0.50
c4 0.09 0.02 0.08 0.10 0.03
vM

max[m/s] -1.6 -0.5 -2.0 -1.8 -0.5
F iso

max[N ] 4800.0 5300.0 1200.0 1500.0 700.0

Table 5.2: Size of the resulting NLP and computation time on a 1700+ Athlon XP for two
different numbers of grid points in the discretization.

grid points 10 60
nonlinear constraints 81 531
nonlinear variables 129 829
computing time 1.2 s 6.3 s
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Figure 5.17: Results from optimization: Controls (corresponding to EMG, solid line) and cal-
cium ions concentrations (dashed line).
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Figure 5.18: Schematic summary of the method.
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Figure 5.19: Measured (dashed line) and optimized (solid line) joint angle trajectory of hip (left)
and knee (right).
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5.2.1.2 Analysis of Measured Motion

If not a free, goal oriented motion, shall be predicted and optimized but a measured motion is to
be analyzed, the forward dynamics approach may be used in a similar way. The only difference
lies in the objective function. Let ϕhip and ϕknee be the measured hip and knee angle trajectories.
Then, to calculate the muscle activations that lead to the measured motion and take into account
human motion control which is supposed to minimize the activation effort, the objective function
is chosen to be

J =

∫ tf

0

(q1 − ϕhip)
2 + (q2 − ϕknee)

2 + cuT udt,

where c is a weight factor for taking into account human motion control. Note that by minimizing
the differences of measured and calculated joint angle trajectories, the optimization result must
not exactly match the measured motion like it is the case when applying the inverse dynamics
approach. Thus, measurement errors may be implicitly compensated for which avoids that small
measurement errors lead to large errors in the computation results like with inverse dynamics
simulation and optimization.

The calculated and measured joint angle trajectories now of course better match (cf. Figure 5.21).
The results for the activations are given in Figure 5.20. Computation times are about only 20%

of that of the free goal oriented motion from the previous section. The reason for this is, that
as a starting solution for the joint states, the measured motion may be taken as it is known and
involved in the objective function.

Compared to the prediction of the kicking motion, the controls do not reach their boundary values
which seems sensible because in this case not the time optimal solution is calculated.

5.2.1.3 Second Order Discretization Approach

The second order approach from Section 4.3 has been tested for the kicking motion. The results
are equivalent to those from the standard approach of transforming the differential equations to
first order. The number of optimization variables for a time grid of 60 time points was reduced
from 829 to 734 compared to the previous subsection. Computation time for this simple example
was reduced by about one order of magnitude compared to the standard direct collocation ap-
proach. This, however, is a preliminary result because it has been tested in a prototype MATLAB
implementation only.
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Figure 5.20: Results from optimization for analysis of measured motion: Controls (correspond-
ing to EMG, solid line) and calcium ions concentrations (dashed line).
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Figure 5.21: Measured (dashed line) and optimized (i.e. reconstructed from analysis; solid line)
joint angle trajectory of hip (left) and knee (right).
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5.2.2 Jumping Motion

1. Ilio Psoas group
2. Rectus Femoris
3. Vastus group
4. Glutaeus group
5. Hamstring group
6. Biceps Femoris
7. Gastrocnemius group
8. Soleus
9. Tibalis Anterior

q1 hip angle
q2 knee angle
q3 ankle angle

1

2

3

4

5

6

7

8
9

Figure 5.22: Kinematic structure of the leg with nine muscle groups.

A more advanced example that has been investigated is analysis of a human jumping motion.
The motion data has been collected by [97], where the motion has been analyzed with a control
parameterization approach. Computation there took several days [95]. All motion data and
parameters of the model for this section are taken from that work.

The human leg is modeled to be plain and consist of three single-DOF joints and nine muscle
groups, see Figure 5.22. The kinematic parameters of the leg are displayed in Figure 5.23.

Besides the kinematical data, the external ground reaction forces (including its point of attack),
the motion of the hip (its acceleration) and the muscle forces are needed to compute the forward
dynamics of the leg model. The equations of motion may be analytically computed like in [97]
or by the recursive dynamics algorithm ABA (Section 3.1).

The motion is made up of three different phases: pre-flight phase, flight phase, and landing phase.
The external ground reaction force and its point of attack are displayed in Figure 5.24. During the
computations of the muscle activations, it was observed that the high and fast oscillating ground
reaction forces in forward direction of landing lead to numerical problems with finer grids. While
for rough time grids, they are filtered implicitly, for finer grids, they have been externally filtered
(in the most simple case been set to a reasonable maximum force of 100N ).
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l1 = 0.470m
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Figure 5.23: Kinematic parameters of the human leg model.

The acceleration of the hip have been gained from interpolation the measured hip position and
computing the derivatives of the interpolation. This leads to smooth derivatives, cf. Figure 5.25.

All parameters of the biomechanical part of the model are given in Table 5.3. Activation dynam-
ics according to equation 2.5 is

γ̇i = b2,i(ui − γi), 1 ≤ i ≤ 9 (5.10)

and the activation factor fAD,i is computed according to Equation 2.6

fAD,i (γi(ui)) =
(b1,iγ(ui))3

1 + (b1,iγ(ui))3
, 1 ≤ i ≤ 9. (5.11)

The total muscle force is calculated according to Formulae 2.7, 2.8, 2.9, and 2.10 (note the new
numbering of the parameters; some parameters are set fixed values). The parallel elastic element
is given by

F PEE
i (lMi ) = k2,i(e

k1,i(lMi −lM0 ) − 1), 1 ≤ i ≤ 9,

the damping element by
FDE

i (vM
i ) = k3,iv

M
i , 1 ≤ i ≤ 9.
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Table 5.3: Parameters for the muscles of the jumping model (taken from [97]).

F iso
max,i[N ] b1,i b2,i[s−1] k1,i[m−1] k2,i[N ] k3,i[Nsm−1]

muscle 1 2800.0 7.24 50.0 15.0 5.85 90.0
muscle 2 900.0 7.24 50.0 15.0 5.40 100.0
muscle 3 5400.0 7.24 50.0 15.0 6.80 100.0
muscle 4 3800.0 7.24 40.0 15.0 9.10 90.0
muscle 5 2400.0 7.24 40.0 15.0 4.10 90.0
muscle 6 1500.0 7.24 30.0 15.0 1.60 70.0
muscle 7 2400.0 7.24 50.0 15.0 8.25 90.0
muscle 8 4200.0 7.24 30.0 15.0 6.50 70.0
muscle 9 1400.0 7.24 30.0 15.0 1.30 70.0

c1 c2 lM0,i[m] c3 c4[m/s] vM
max,i[m/s]

muscle 1 0.017 0.0015 0.288 0.27 0.039 −1.1
muscle 2 0.017 0.0015 0.533 0.43 0.045 −0.9
muscle 3 0.017 0.0015 0.331 0.28 0.040 −1.1
muscle 4 0.017 0.0015 0.247 0.24 0.038 −1.2
muscle 5 0.017 0.0015 0.472 0.23 0.025 −0.8
muscle 6 0.017 0.0015 0.280 0.20 0.022 −0.8
muscle 7 0.017 0.0015 0.508 0.27 0.036 −1.0
muscle 8 0.017 0.0015 0.348 0.18 0.023 −0.9
muscle 9 0.017 0.0015 0.282 0.18 0.023 −0.9

ri,j,0[m] ri,j,1[mrad−1] ri,j,2[mrad−2] ri,j,3[mrad−3] ri,j,4[mrad−4]
i = 1, j = 1 0.0420 0.01 0.0 0.0 0.0
i = 2, j = 1 4.003 · 10−2 3.059 · 10−2 −2.164 · 10−2 −2.807 · 10−3 0.0
i = 2, j = 2 6.358 · 10−2 3.951 · 10−2 −0.1793 0.1465 −3.338 · 10−2

i = 3, j = 2 6.358 · 10−2 3.951 · 10−2 −0.1793 0.1465 −3.338 · 10−2

i = 4, j = 1 0.0620 0.0 0.0 0.0 0.0
i = 5, j = 1 4.853 · 10−2 3.843 · 10−2 −1.932 · 10−2 −1.132 · 10−2 3.813 · 10−3

i = 5, j = 2 2.725 · 10−2 4.714 · 10−2 −1.990 · 10−2 −9.532 · 10−3 5.267 · 10−3

i = 6, j = 2 0.0521 0.0143 0.0 0.0 0.0
i = 7, j = 2 3.186 · 10−2 −4.897 · 10−3 −6.119 · 10−2 8.377 · 10−2 −3.216 · 10−2

i = 7, j = 3 0.3706 −1.0169 1.1080 −0.4994 7.886 · 10−2

i = 8, j = 3 0.3706 −1.0169 1.1080 −0.4994 7.886 · 10−2

i = 9, j = 3 0.0327 0.0077 0.0 0.0 0.0
a0,i a1,i[deg−1] a2,i[deg−1] a3,i[deg−2] a4,i[deg−1] a5,i[m]

muscle 1 0.642 −1.94 · 10−3 0.0 0.0 0.0 0.470
muscle 2 1.107 −1.50 · 10−3 1.99 · 10−3 0.0 0.0 0.470
muscle 3 0.671 0.0 1.29 · 10−3 0.0 0.0 0.470
muscle 4 0.494 −2.06 · 10−3 0.0 0.0 0.0 0.470
muscle 5 1.021 2.05 · 10−3 −1.87 · 10−3 0.0 0.0 0.470
muscle 6 0.600 0.0 1.03 · 10−4 −1.21 · 10−5 0.0 0.470
muscle 7 0.897 0.0 −5.60 · 10−4 0.0 2.14 · 10−3 0.472
muscle 8 0.563 0.0 0.0 0.0 1.93 · 10−3 0.472
muscle 9 0.715 0.0 0.0 0.0 −1.30 · 10−3 0.472

j = 1 j = 2 j = 3
p1,j [Nm] 2.8 3.1 3.1

p2,j [rad−1] 5.9 5.9 5.9
p3,j [Nm] 8.7 10.5 9.0

p4,j [rad−1] 1.3 11.8 5.0
Θ1,j [rad] 1.92 0.03 1.92
Θ2,j [rad] 0.25 −1.92 1.35
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Figure 5.24: Measured ground reaction force (Fy (forward direction) and Fz (upwards direction))
and its point of attack L, cf. Figure 5.23.

The overall force of the muscle tendon element is then

FMTE
i (γ, lM , vM) = F iso

max,ifAD,i(γi)fTL,i(l
M
i )fFV,i(v

M
i ), 1 ≤ i ≤ 9,

and the total muscle force

FM
i (γi, l

M
i , vM

i ) = FMTE
i (γi, l

M
i , vM

i ) + F PEE
i (lMi ) + FDE

i (vM
i ), 1 ≤ i ≤ 9.

The muscle lengths and velocities are given by

lMi = a5,i(a0,i + a1,iq1 + a2,iq2 + a3,iq
2
2 + a4,iq3), 1 ≤ i ≤ 9,
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Figure 5.25: Measured hip acceleration (ay (forward direction) and az (upwards direction)).

and

vM
i = a5,i(a1,iq̇1 + a2,iq̇2 + 2a3,iq2q̇2 + a4,iq̇3), 1 ≤ i ≤ 9.

Two kinds of torques apply to the joints: the active joint torques τa resulting from the muscle
forces and the passive joint torques τp caused by the respective tissue. The lever arms di,j , where
i denotes the number of the respective muscle group and j the number of the joint, are given by
(note that not all di,j are needed):

di,j = ri,j,0 + ri,j,1qj + ri,j,2q
2
j + ri,j,3q

3
j + ri,j,4q

4
j , 1 ≤ i ≤ 9, 1 ≤ j ≤ 3.

Thus, the active torques are given by

τp,1 = FM
1 d1,1 + FM

2 d2,1 − FM
4 d4,1 − FM

5 d5,1,

τp,2 = FM
2 d2,2 + FM

3 d3,2 − FM
5 d5,2 − FM

6 d6,2 − FM
7 d7,2,

τp,3 = FM
9 d9,3 − FM

7 d7,3 − FM
8 d8,3.

The passive torques model the maximum joint angle range by a torque that increases once the
joint is close to the maximum values. They are given by

τp,1 = p1,1e
−p2,1(q1−θ2,1) + p3,1e

−p4,1(θ1,1−q1),

τp,2 = p1,2e
p2,2(q2+θ2,2) + p3,2e

−p4,2(θ1,2+q2),

τp,3 = p1,3e
−p2,3(q3−θ2,3) + p3,3e

−p4,3(θ1,3−q3).
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The resulting optimal control problem of finding muscle activations ui, 1 ≤ i ≤ 9, that lead
to calcium ion concentrations γi, 1 ≤ i ≤ 9 in the muscle and finally to a motion (i.e. com-
puted hip, knee and ankle joint angle trajectories q1, q2, q3) that resembles the measured motion
(i.e. measured hip, knee and ankle joint angle trajectories ϕ1, ϕ2, ϕ3) may be represented by the
following objective function J :

J (u) =
3∑

i=1

∫ 1.5

0

(ϕi(t)− qi(t))
2dt +

9∑

i=1

ωi

∫ 1.5

0

(ui(t))
2dt

The first sum of J makes the computed motion be close to the measured one and the second
sum takes into account the muscular effort for achieving this motion and is closely related to the
muscle forces. For the computations presented here, ωi = 10−3, 1 ≤ i ≤ 9.

Boundary conditions are imposed to the joint angles and velocities and to the calcium ion con-
centrations that are necessary to keep the leg standing during the starting phase:

q1(t0) = 0.624

q2(t0) = −0.594

q3(t0) = −0.072

q̇1(t0) = 0

q̇2(t0) = 0

q̇2(t0) = 0

γ2(t0) = 0.2

γ3(t0) = 0.2

Box constraints are imposed to the controls and states of calcium ion concentration:

0 ≤ ui, γi ≤ 1, 1 ≤ i ≤ 9.

In [97], the optimal control problem was divided into three phases: pre-flight phase, flight phase,
landing phase. This was done because of two reasons: first, the ground reaction forces are zero
during the flight phase and thus the computation of it consumes computation power where not
necessary, and second, the shorter flight phase should be discretized with a finer grid. For the
results presented here, only one phase was modeled because the computation time for taking
into account the ground reaction force (although zero) is believed to be computationally less
expensive than adding additional discretized state and control variables and imposing boundary
constraints to the problem. Furthermore, DIRCOL allows for successive grid refinement and
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Table 5.4: Size of the resulting NLP for two different numbers of grid points in the discretization
of the jumping motion.

grid points 15 40
nonlinear constraints 367 624
nonlinear variables 224 992

thus if more grid points are needed during the flight phase, they will be inserted automatically.
Nevertheless, future investigations shall more precisely show, whether splitting up the problem
into several phases will help to increase the convergence region of the method.

Computations have started with a grid of 15 time points and have successively been refined to
a grid of 40. Details on the number of constraints and variables may be found in Table 5.4.
Computation times depend on when the grids are refined. Furthermore, the solution may not be
obtained by a single run of the optimization method but needs careful insertion of critical parts
of the model (especially the passive joint torques, muscle lengths and velocities and lever arms
of the muscles) one after one to allow the method to converge to a feasible and optimal solution.
Future extensions of the methods should use automated homotopy methods for optimal control
to allow computation with less supervision by the user. The total computation time lies in the
region of few hours on a 1700+ Athlon XP for a time grid of 40 points. Compared to the method
used in [97], where computation times in the region of days have been reported for a time grid of
16 points [95], and taking into account the progress of computers since then, this gives a speedup
in the region of what it has been observed for the kicking motion (where one single run of the
method leads to a final result).

The measured and computed joint angle trajectories are plotted in Figure 5.26, where good quan-
titative agreement is achieved. The measured EMG data and the computed muscle activations
are given in Figures 5.27 and 5.27. Of course, the computed muscle activations can not resemble
the unfiltered EMG data. Nevertheless, a reasonable agreement may be observed between the
regions of activity and the computed results from [97]. The extension of the leg during the pre-
lift-off-phase is a result of the activations of muscle groups 2 and 3 (Rectus Femoris and Vastus).
For lift-off, especially muscle groups 7 and 8 (Soleus and Tibalis Anterior) are excited. During
the flight phase (from 0.6s to 0.91s), the muscle activations are generally low due to the absent
of external forces. For landing especially muscle groups 2 and 3 (Rectur Femoris and Vastus)
are activated.
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Figure 5.26: Measured (dashed) and computed (solid line) joint angle trajectories for the jumping
motion.
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Figure 5.27: EMG data (left) and computed muscle activation (right) for the muscle groups 2-5.
EMG data for the Ilio Psoas group is not available using surface EMG and has thus not been
measured. Note the different scale of EMG and computed data.
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Figure 5.28: EMG data (left) and computed muscle activation (right) for the muscle groups 6-9.
Note the different scale of EMG and computed data.
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5.3 Identification of Objective Functions for Muscle Control
in Human Motion

Predicting human motion (like the kicking motion of Section 5.2.1.1) besides the motion target
to reach requires an objective function concerning how the redundant muscles are involved into
the motion. Once this objective function is determined for a certain test person and a certain kind
of motion, motions really may be predicted.

Moreover, objective functions that include different involvement of each single muscle (group)
may give information about training status of certain muscle groups or might identify problems
with that specific muscles even before they become obvious to the test person. Change of the
objective functions may judge training success for specific muscles.

The problem of identifying this objective function can be formulated as optimization problem,
see Section 4.4. In this section some first examples of identifying the the objective functions for
a kicking motion (Section 5.2.1) using the methods described in Section 4.4.3 are given.

5.3.1 Re-Identification from Computed Data

First numerical results have been obtained from computing optimal motion using certain objec-
tive functions. To have an objective function that purely is based on the behavior of the muscles,
this functions were chosen to be the sum of squared controls, i.e., the muscle activations which
are closely related to the muscle forces:

Ji(u) =
5∑

j=1

∫ tf

0

ωi,jui(t)
2dt.

The following options for ωi were investigated, where ∗ denotes, that the value was kept fixed to
1, i.e. has not been subject to identification:

ω1 = (0.2, ∗, ∗, ∗, ∗)T ,

ω2 = (0.2, 1, ∗, ∗, ∗)T ,

ω3 = (0.2, 1, 1, ∗, ∗)T ,

ω4 = (0.2, 1, 1, ∗, 1)T .

Muscle group number four is not activated during the complete motion and thus does not influ-
ence the motion. Obviously its contribution factor thus can not be re-identified.
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Table 5.5: Results of re-identification from computed motion data.
i = 1 i = 2 i = 3

ωi (0.2, 1, ∗, ∗, ∗)T (0.2, 1, 1, ∗, ∗)T (0.2, 1, 1, ∗, 1)T

ω∗
i (0.200293, 1, ∗, ∗, ∗)T (0.18954, 1, 1, ∗, ∗)T (0.21306, 1, 1, ∗, 1)T

I(ω∗
i ) 3.8 · 10−10 4.3 · 10−8 6.3 · 10−8

The resulting computed joint angle trajectories q1(t), q2(t) are displayed in Figure 5.31 for dif-
ferent objective functions.

The identification problem according to 4.13 has been solved. For first results, the black-box
approach has been used. Table 5.5 shows the computation results. The weights identified from
the computed motion match the weights used for the computations very well, i.e., the objective
function was very well re-identified from the computed data.

For additional tests, the computed motion data were modified by adding Gaussian noise of mean
value 0 and standard deviation 5 deg. Because of the high noise that was added, several ap-
proximately equally good minima are found by the identification method. The best among them
re-identified the values of (0.2, 1, 1, ∗, 1)T to (0.26183, 0.90982, 1.00000, ∗, 0.99996)T and deliv-
ered a value of the identification merit function I of 1.0 · 10−5. Please note that for evaluation of
the identification objective function I the values of the computed and measured data at the grid
points only have been used. Figure 5.29 shows the noisy computed motion data and one solution
of the identification method.

Figure 5.29: Noisy computed hip and knee joint angle trajectories (dashed) and identified trajec-
tories (solid).

Further investigations showed that the approach based on sensitivity analysis of the discretized
problem lead to singular matrices. Thus, for further investigations two options exist: Overcome
the singularities or handle the problem with another method, e.g. the one from [14].
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5.3.2 Test with Identification from Experimental Data

Now the objective function is identified from measured motion data which has been used in
Sections 5.2.1.1 resp. 5.2.1.2 for comparison with the predicted motion resp analysis. The
identified objective function is

J (u) =

∫ tf

0

(0.000000u1(t)
2 + 0.97920u2(t)

2 + 0.49935u3(t)
2 + u4(t)

2 + 1.000000u5(t)
2)dt.

The identification objective function I was 1.6 · 10−3. The degree of agreement is comparable
to that of the analysis of measured motion, cf. Section 5.2.1.2 and Figure 5.30. Of course, these
identified values can not be validated directly. One possible indirect approach is to identify the
objective function for certain motions of a specific test person and then compare other motions
of the same person with results from numerical prediction of the motion using the identified
objective function.

Figure 5.30: Measured hip and knee joint angle trajectories (dashed) and identified trajectories
(solid).
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Figure 5.31: Computed hip and knee joint angle trajectories for different objective functions
(from top to bottom: ω = (0.2, 1, 1, 1, 1)T , (1, 0.2, 1, 1, 1)T , (1, 1, 1, 0.2, 1)T , (1, 1, 1, 1, 0.2)T ,
hip left, knee right).
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Chapter 6

Summary and Conclusion

In this thesis, forward dynamics simulation and optimization of legged robot and of human mo-
tion has been investigated.

Models of motion dynamics lead to systems of (ordinary) differential equations. An recursive
articulated body algorithm has been utilized for an efficient O(n) modeling of the multibody
system dynamics of tree-structured legged robots. An extension for biomechanical problems
has been developed by replacing the motor-gear by muscle-tendon units. Both active properties
of the muscle like force-velocity and force-length relation and passive properties of the tissue
and its influence to the joint torques are modeled, as well as muscle paths and the resulting
lever arms. The chemical process of activation dynamics is taken into account by additional
differential equations. The extended dynamics algorithm has been implemented in an object-
oriented manner. It is superior to other algorithms in terms of computational time for systems
with a high number of degrees of freedom and modularity, i.e., the exchange of components.

Simulation-based optimization problems for motions of legged robots or humans like walking
result in optimal control problems, where the control variable trajectories are to be determined
in a manner that the motion from an initial to a final position is optimal with respect to a certain
objective like time or energy. Besides the differential equations describing the dynamic behavior
of the multibody system, proper constraints like boundary conditions and nonlinear inequality
constraints have to be considered in the optimization problem formulation to obtain reasonable
results. For human biodynamical systems not only the motion dynamics model is usually larger
than for comparable robotic systems, also the degrees of freedom of the optimization problem is
much higher due to the many, redundant muscle groups involved in a leg or arm motion. While
the inverse dynamics simulation and optimization of human motion dynamics is well established
and efficient for special objectives for muscle control, the forward dynamics simulation and op-
timization approach is yet cumbersome and suffers from extraordinary high computational cost.
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However, it was chosen here because of its generality concerning different objective functions
and activation dynamics, its implicit filtering properties for the analysis of measured motion, and
its principle capability of predicting goal oriented motion if validated models are used. For fu-
ture applications of validation of hypotheses in biomechanics, first steps towards an optimization
technique for identification of unknown objectives for muscle control as a linear combination of
elementary types of objectives have also been taken.

For efficient numerical solution of the optimal control problems for forward dynamics simula-
tion and optimization, a direct collocation approach is used which avoids repeated integration of
the differential equations of motion by discretizing both the control and the state variables. A
tailored approach directly treats the systems of second order multibody system dynamics equa-
tions, avoids the inefficient transformation to first order systems required by general numerical
optimal control methods, and thus further decreases computational time.

Several problems of simulation-based motion optimization for legged robots and humans have
been investigated through proper modeling and successful application of the developed opti-
mization approach. First, the walking motion of a four-legged Sony AIBO ERS-210 robot was
optimized using a forward dynamics simulation model based on data partially provided by the
manufacturer and partially estimated from repeated experiments. Finally, a fast and stable, up-
right walking motion was achieved in good agreement of simulated and experimental robot mo-
tion. Second, stable walking motions have also been obtained for a slow gait for a humanoid
robot using the described methods. Implementation of the computed walking trajectories lead to
a stable walking experiment of the 80 cm high prototype using only joint angle PID-control and
without using additional sensors for monitoring and maintaining postural stability.

As first examples for the application to human biodynamics, kicking and jumping motions of a
human leg have been investigated in terms of analysis for a measured motion and of prediction as-
suming a reasonable objective function. The muscle activations in the first case and the resulting
motion in the second case very well resembled data found in literature and measured data. First
steps towards identification of the objective functions used in muscle control have been taken by
re-identifying the objective functions from (artificially disturbed) simulated measurement data,
and identifying the objective function from a measured kicking motion.

The computational costs for the biomechanics scenarios investigated were reduced by two orders
of magnitude compared to commonly used methods due to the applied efficient methods for
dynamics modeling and optimal control. As a consequence, it may now become feasible to use
forward dynamics simulation and optimization of human motion dynamics in the near future on
desktop PCs and in an interactive manner. Thus, many new applications in biodynamics research
may be opened which may have been thought intractable before, like validation of biomechanical
hypotheses or calibration of biomechanical model parameters.
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Future work might include consideration of fatigue for repeated motion. Furthermore, introduc-
tion of wobbling masses and a detailed foot model will be needed for accurate investigation of
fast motions. More complex examples can be investigated; for this, detailed data of not only
the motion but also the test person must be collected. Automated homotopy methods will be
useful to enlarge the convergence region of the optimization approach. The developed identifi-
cation method for muscle control objectives can be improved by methods based on solving an
additional optimization problem to obtain the sensitivity information. Identification methods in
combination with dynamics simulation and optimization can be used in several other applications
like offline or online recognition and classification of human motion. The dynamics algorithms
can be extended to the computation of derivative information.

As the forward dynamics simulation and optimization methods are getting fast and if they will
also be robust enough to solve problems of medium or large size on common desktop computers,
several new applications in medicine and biology will arise.
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Chapter 7

Zusammenfassung

In dieser Arbeit wurde die Vorwärtsdynamiksimulation und -optimierung von Bewegungen bei
Laufrobotern und Menschen untersucht.

Modelle für die Dynamik von Bewegungen führen auf Systeme von (gewöhnlichen) Differential-
gleichungen. Der rekursive ,,Articulated Body” Algorithmus, dessen Aufwand linear mit der An-
zahl der Gelenke anwächst, wird für die effiziente Modellierung der Mehrkörpersystemdynamik
von baumstrukturierten Robotern eingesetzt. Die Modellierung wurde vom Einsatz für Roboter
erweitert auf den Einsatz bei biomechanischen Problemen; dazu wurden die Motor-Getriebe-
Einheiten durch Muskel-Sehnen-Einheiten ersetzt. Sowohl die aktiven Eigenschaften des Mus-
kels, wie die Kraft-Geschwindigkeit- und die Kraft-Längen-Beziehungen, als auch die pas-
siven Eigenschaften des Gewebes und dessen Einfluß auf die Gelenkdrehmomente werden mo-
delliert. Die Muskelpfade und die resultierenden Hebelarme werden berücksichtigt. Der chemi-
sche Prozess, der im Muskel zur Kraftentfaltung führt, wird als Aktivierungsdynamik durch
zusätzliche gewöhnliche Differentialgleichungen berücksichtigt. Der erweiterte Dynamikalgo-
rithmus, der verglichen mit anderen Algorithmen insbesondere für hochdimensionale Systeme
mit mehr als sechs Freiheitsgraden sehr effizient und dabei modular im Hinblick auf die Aus-
tauschbarkeit von Modellkomponenten ist, wurde objektorientiert in C++ umgesetzt.

Simulationsbasierte Optimierungsprobleme für Bewegungen von Laufrobotern oder Menschen,
wie beispielsweise Gehen, führen auf Optimalsteuerungsprobleme, bei denen die Trajektorien
der Steuervariablen so zu bestimmen sind, dass die Bewegung von einer Anfangs- zu einer End-
position optimal bezüglich einer gegebenen Zielfunktion, z.B. Zeit oder Energie, ist. Neben
den Differentialgleichungen, die das dynamische Verhalten des Mehrkörpersystems beschreiben,
müssen geeignete Nebenbedingungen wie Randbedingungen und nichtlineare Ungleichungs-
beschränkungen im Optimalsteuerungsproblem berücksichtigt werden, um sinnvolle Ergebnisse
zu erhalten. Für menschliche biodynamische Systeme ist nicht nur das Bewegungsdynamik-
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modell normalerweise größer als für vergleichbare Robotersysteme, sondern auch die Anzahl
der Freiheitsgrade im Optimierungsproblem ist durch die vielen, redundant an Arm- oder Bein-
bewegungen beteiligten Muskelgruppen viel größer. Während die Inversdynamiksimulation und
-optimierung menschlicher Bewegungsdynamik für spezielle Gütekriterien zur Muskelsteuerung
bewährt und effizient ist, ist die Vorwärtsdynamiksimulation und -optimierung durch den außer-
ordentlich hohen numerischen Aufwand immer noch schwerfällig. Trotzdem wurde der Vor-
wärtsansatz wegen seiner Allgemeinheit in Bezug auf verschiedene Zielfunktionale und die Ak-
tivierungsdynamik, seine implizit-filternden Eigenschaften für die Analyse von gemessenen Be-
wegungen und seiner prinzipiellen Fähigkeit, Bewegungen unter Verwendung von validierten
Modellen vorherzusagen, gewählt. Für zukünftige Anwendungen, wie die Validierung von Hy-
pothesen der Biomechanik, wurden erste Schritte hin zu Optimierungsverfahren zur Identifika-
tion von unbekannten Zielfunktionalen für die Muskelsteuerung als Linearkombination von Ele-
mentarzielfunktionalen unternommen.

Zum effizienten numerischen Lösen des Optimalsteuerungsproblems der Vorwärtsdynamiksi-
mulation und -optimierung wird ein direkter Kollokationsansatz verwendet, der die wiederholte
Integration der Bewegungsdifferentialgleichungen durch Diskretisierung sowohl der Steuerun-
gen als auch der Zustände vermeidet. Ein angepasster Ansatz behandelt die Mehrkörpersystem-
dynamikgleichungssysteme zweiter Ordnung direkt, vermeidet so die ineffiziente Transforma-
tion auf Systeme erster Ordnung, die von allgemeinen numerischen Optimalsteuerungsverfahren
benötigt werden, und reduziert dadurch den Rechenaufwand weiter.

Mehrere Szenarien zur simulationsbasierten Optimierung bei Laufrobotern und Menschen wur-
den durch geeignete Modellierung und Anwendung des entwickelten Optimierungsansatzes er-
folgreich untersucht. Zuerst wurde die Laufbewegung des vierbeinigen Roboters Sony AIBO
ERS-210 unter Verwendung eines Vorwärtsdynamikmodells, das auf teilweise vom Hersteller
gelieferten und teilweise auf aus wiederholten Experimenten geschätzten Daten basiert, opti-
miert. Damit konnte eine schnelle und stabile, aufrechte Laufbewegung mit guter Übereinstim-
mung zwischen simulierter und experimenteller Roboterbewegung berechnet werden. Mit den
beschriebenen Methoden wurden stabile Laufbewegungen auch für ein langsames Gehen eines
humanoiden Roboters erzielt. Die Implementierung der berechneten Laufbewegung führte zu
einer stabilen Laufbewegung im Experiment mit dem 80 cm hohen Prototypen unter Verwendung
von nur einer Gelenkwinkel PID-Regelung und ohne zusätzliche Sensoren zur Überwachung
oder Regelung der Stabilität der Laufbewegung.

Als erste Beispiele für die Anwendung auf menschliche Biodynamik wurden eine Kick- und
eine Sprungbewegung eines menschlichen Beines untersucht, sowohl im Hinblick auf die Ana-
lyse einer gemessenen Bewegung als auch für die Vorhersage unter der Annahme eines sinn-
vollen Zielfunktionals. Die Muskelaktivierungen für den ersten Fall und die resultierende Bewe-
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gung für den zweiten Fall stimmen sehr gut mit Daten aus der Literatur und gemessenen Daten
überein. Erste Schritte hin zur Identifizierung des Zielfunktionals, das in der Muskelsteuerung
Anwendung findet, wurden durch die Re-Identifizierung des Zielfunktionals von (künstlich ver-
rauschten) simulierten Bewegungsdaten und durch die Identifikation des Zielfunktionals für eine
gemessene Kickbewegung gemacht.

Der Rechenaufwand für die untersuchten biomechanischen Szenarien konnte im Vergleich zu
herkömmlichen Verfahren durch die angewandten effizienten Methoden zur Dynamikmodel-
lierung und Optimalsteuerung um zwei Größenordnungen reduziert werden. Folglich scheint es
machbar, in naher Zukunft die Vorwärtsdynamiksimulation und Optimierung der menschlichen
Bewegungsdynamik auf Arbeitsplatzrechnern und in interaktiver Art und Weise einzusetzen. So
können neue Anwendungen in der Biodynamikforschung erschlossen werden, die zuvor unlösbar
erschienen, wie die Validierung biomechanischer Hypothesen oder die Kalibrierung von Para-
metern biomechanischer Modelle.

Zukünftige Arbeiten könnten die Betrachtung von Ermüdungserscheinungen für wiederholte Be-
wegungen enthalten. Die Einführung von Schwabbelmassen und eines detaillierten Fußmo-
dells wird nötig sein, um sehr schnelle Bewegungen genau untersuchen zu können. Kom-
plexere Beispiele können untersucht werden, wenn dafür detaillierte Daten nicht nur der Be-
wegung sondern auch der Testperson aufgenommen werden. Automatisierte Homotopiever-
fahren werden hilfreich sein, um den Konvergenzradius des Optimierungsansatzes zu vergrößern.
Das entwickelte Identifizierungsverfahren für die Gütekriterien der Muskelsteuerung kann durch
Verfahren, die auf der Lösung eines zusätzlichen Optimierungsproblems zur Berechnung der
Ableitungsinformationen basieren, verbessert werden. Identifizierungsverfahren in Kombination
mit Dynamiksimulation und -optimierung können in zahlreichen weiteren Anwendungen wie
offline- oder online-Erkennung und -Klassifizierung von menschlichen Bewegungen eingesetzt
werden. Die Dynamikalgorithmen können auf die Berechnung von Ableitungsinformationen
erweitert werden.

Mit den Entwicklungen in dieser Arbeit konnte gezeigt werden, dass die Vorwärtsdynamiksimu-
lations- und -optimierungsverfahren noch beschleunigt werden können; wenn sie nun auch bei
Problemen mittlerer oder hoher Größe robust genug sind, um sie auf Arbeitsplatzrechnern einzu-
setzen, werden sich zahlreiche neue Anwendungen in Medizin und Biologie auftun.
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Tübingen, 2002.

[49] A. V. Hill. The heat of shortening and the dynamic constants of muscle. Proceedings of
the Royal Society of London, 126 B:136–195, 1938.

[50] A. L. Hof and J. van den Berg. EMG to force processing ii: estimation of parameters of
the hill muscle model for the human triceps surae by means of a calferometer. Journal of
Biomechanics, 14:759–770, 1981.
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