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IX

Introduction

To learn and from time to time
to apply what one has learned
- isn’t that a pleasure ?

Confucius: Analects (1,1)

This thesis has been motivated by a concrete industrial control problem.
The task is to find a suitable transition for a cryogenic air separation plant
from one operational regime to another one. These cryogenic air separation
plants are chemical engineering plants which separate ambient air into its
main fractions in a distillation-like process.

In the last decades the model predictive control (MPC) technique has been
developed. This technique promises an elegant solution of advanced control
problems especially due to the availability of increasingly powerful numerical
tools. However, there are still difficulties both on the theoretical side as
soon as the control problem becomes a more general one (in particular if the
process model is nonlinear) as well as on the practical side (mainly due to the
necessary online capability of the controller), thus keeping model predictive
control an area of intense research in both engineering science and numerical
mathematics. In this thesis some of the more practical problems of MPC in
the context of the industrial application in view are addressed.

Advanced Control Techniques

Due to strongly competitive markets chemical engineering industry is faced
with steadily increasing demands on product quality and efficient utilisation
of resources (e.g., energy, raw materials, machinery, human labour). In addi-
tion also environmental issues have found attention and must be considered
in industrial production. As a consequence, the plants have to be run using
more intelligent control strategies and in largely varying operational regimes.

On the one hand, these demands are met with the application of increas-
ingly sophisticated numerical methods for simulation and optimisation of
large-scale dynamical process models during the engineering phase, cf., e.g.,
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[Marq 91), [PaBa 93|, [Zapp 94]. Here, the determination of optimal quasi
steady-state setpoints by numerical optimisation is state-of-the-art in chemi-
cal engineering [Voit 94|, [ELBK 97|, [S6rg 97] while in chemical engineering
the computation of open-loop optimal control strategies for large-scale pro-
cesses by numerical optimal control is a relatively young technique (cf., e.g.,
[Bieg 88|, [BAFG 98|, [EKKS 99]).

On the other hand, model predictive control has been developed since
standard control methods, e.g., PID controllers, are in some cases no longer
sufficient for some applications. This is especially the case if plants have
to be operated under strongly varying operational conditions, or if state
constraints are of major importance [BiRa 91]. In MPC the control task is
formulated as an optimal control problem on a moving horizon which is solved
repeatedly online in parallel to the physical process. Feedback is obtained
by setting an estimate of the actual process state as initial conditions for
the optimal control problem. A powerful feature of this approach is that
the control moves are determined on the basis of a predicted future system
behaviour, intrinsically accounting for disturbances by this state feedback.
Due to the optimal control formulation and the predictive nature of the
technique constraints can be naturally included into the controller design.
This has been one of the incentives for the development of MPC [BiRa 91].
The price to be paid for nonlinear MPC (which is the general case of MPC) is
a sufficiently detailed model of the process, the online solution of an optimal
control problem, and the online estimation of the process state.

In case of very fast or large-scale processes the online requirements are of-
ten too high given present standard computational resources. Here, a possible
remedy can be found in the theory of neighbouring extremals which provides
the basis for a short-cut method. The basic idea is to extend the applica-
bility of a once expensively computed optimal solution for a longer period
in time by fast updates accounting for disturbances that are always present
in real-world processes, e.g., [Krdm 85], [Pesc 89a], [Pesc 89b], [KuPe 90a],
[KuPe 90b], [MaPes 94], [MaPes 95], [BiiMa 98], [BiiMa 00].

We introduce the optimal load-change of air separation plants as an ad-
vanced control task. Difficulties are given by the nonlinearity of the process,
by constraints which have to be satisfied all the time, and the size of the mod-
els required for an adequate mathematical description of the plants. Based
on this data we propose a control concept which is developed in the frame-
work of nonlinear model predictive control. The concept takes into account
the different time scales separating the control task into different subtasks.
Especially, we discuss an algorithm for the computation of open-loop optimal
controls and propose a fast online update technique. In its core the computa-
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tion of the control strategy is based on integration and parametric sensitivity
analysis of (in our case) very large-scale discontinuous so-called semi-explicit
index-2 DAE® process models.

Discontinuities and Consistent Initial Conditions

This work focuses on nonlinear dynamical process models described by very
large-scale DAEs with state and time dependent discontinuities.

On the one hand, these discontinuities arise from the discontinuous na-
ture of the process itself. E.g., in chemical engineering there are processes
which consist in a sequence of batches [Allg 97], [Feeh 98|, or on a lower
level one has to cope with phase changes. In mechanical multibody systems
one can observe discontinuous effects caused by the transition between dif-
ferent regimes of friction [Eich 92]. On the other hand, discontinuities can
be introduced by simplifications required in the course of modelling. Such
simplifications may be mirrored, e.g., by the need for measured data which
is often available in the form of tabular data interpolated with a low order
of differentiability only.

A numerically satisfactory method for the detection and location of dis-
continuities is the switching function technique as presented in e.g., [Eich 92].
In this method each discontinuity is indicated by the sign change of a ded-
icated switching function. The switching function technique has been de-
veloped for implementation into integrator algorithms. There it is used to
obtain basic information required for efficient integration of discontinuous dy-
namical systems as for numerical reasons integrators(® should be restarted
after any discontinuity. Some practical details on the design of discontinuous
models with an emphasis on switching functions can be found in [ScWi 94].

In the ODE case the initial integration step as well as the restart at dis-
continuities do not impose major difficulties, cf., e.g., [Watt 83], [GSB 87],
[Sham 87]. This situation changes when a DAE has to be integrated numeri-
cally. Here, in general the integrator has to be provided with consistent initial
conditions in order to avoid inefficiency or unnecessary failure [Petz 82]. In
addition to the equations of the original DAE initial values have to satisfy
constraints that are “hidden” in the DAE. Moreover, without insight into the
nature of the problem described by the DAE and without deeper analysis of
the DAE itself it is in general neither clear how many dynamic degrees of

DAEs are systems of coupled differential and algebraic equations. For a detailed
discussion of theoretical aspects of DAEs see Section 1.1.

() We restrict to sequential integration algorithms such as one-step and multistep meth-
ods. For simultaneous integration with collocation methods the situation is different.
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freedom have to be specified nor which of the variables in the DAE system
are suitable candidates for specification.

The development of methods for the (semi-)automatic computation of
consistent initial values is still in progress. The techniques available range
from purely integrator related methods such as special initial backward Euler-
steps [KMG 92], [BCP 96], the solution of a BVP [AmMa 98], and back-
tracing [SEYE 81], to more DAE related methods that are based on the
compilation and solution of the consistency equations [Pant 83a], [LPG 91],
[MaS6 93], [CaMo 94], [UKM 95], [CKY 96], [GoBi 99], [CVSB 01], [WuWh 01],
or projector based techniques [Hans 92], [Lamo 97], [EsLa 99].

In Chapter 3 we review the different methods for consistent initialisa-
tion of higher index DAEs. Keeping these methods in mind we develop
two algorithms tailored for the consistent initialisation of large-scale semi-
explicit index-2 DAEs arising from real-life chemical engineering applica-
tions. These two algorithms are implemented into the simulation environ-
ment OPTISIM" of the Linde AG, Linde Engineering Division, [Burr 91],
[Burr 93|, and are compared in numerical examples.

Sensitivities for Discontinuous Models

In general, models depend on parameters. Thus the question arises on the
dependency of the state variable trajectories from the parameters. Mathe-
matically this dependency is expressed by the (parametric) sensitivity func-
tions, sensitivity matrices, or, shortly, sensitivities. If parametric sensitivities
of state variable trajectories are to be computed the question is on how dis-
continuities affect the sensitivities.

One of the first successful attempts to treat the problem of computing sen-
sitivities in discontinuous systems of ODEs has been reported by [Roze 67].
[Feeh 98] derives the corresponding expressions for index-1 DAEs. Further-
more he shows that his work includes the results of [Roze 67| as a special
case.

In most contributions on discontinuities only real-valued switching func-
tions have been treated. In the process models of our interest, however, in
general several switching functions (or, from a different point of view, one
multi-dimensional switching function) are incorporated. Thus, the sequence
of discontinuities may change according to the value of the model parameters.
The problem is that differentiability with respect to the parameters may be
lost at points in parameter space where the sequence of discontinuity events
changes [Feeh 98].

In the case of multi-dimensional switching functions an indicator for a po-
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tential loss of differentiability is that several entries in the vector of switching
functions change their sign at the same point. However, this is no sufficient
condition for non-differentiability. It will shown that in a special case differ-
entiability is preserved, and that the test for this special case requires few
additional computational effort only.

In Chapter 4 we discuss several approaches to the transfer of parametric
sensitivities in discontinuous DAE systems and develop two algorithms for
the sensitivity transfer in our special problem setting. These two algorithms
are directly based on our algorithms for consistent initialisation developed
before.

Notational Conventions

We have chosen to enclose arguments of mappings in general within brackets
(+), while square brackets [-] enclose vectors and matrices. Therefore, the
construct (%) denotes the binomial coefficient p!/(v!(x — v)!), while in, e.g.,
f ([#]) the vector [u!,vT]T is the argument of the mapping f.

Sets are denoted by curly braces {-}. N is the set of positive integers, Ny
is defined as NU {0}. R, denotes the set of all non-negative reals, R,\ {0}
is the set of all strictly positive reals. The number of elements in a set is
denoted by card(-). W denotes the union of two disjoint sets.

In general, f, g, s, and F denote real, multi-dimensional functions, while
x, Yy, z, and £ are reserved for variable vectors. Mostly, parameter vectors are
indicated by p. Dimensions of multi-dimensional functions are in common
of the form m,, those of variable and parameter vectors are of the form n,.
The real-valued independent variable in the systems of equations is ¢ (time).

C’(R*,R”) denotes the continuous mappings from R* into R”, while
C!(R*,R) represents the continuously differentiable mappings from R* into
R”. Cg (R#,R”) denotes the piecewise continuous mappings from R* into R”.

Let there be a differentiable multi-dimensional function F' € C'(ng, mp) :
£ — F(&). Then we denote its Jacobian with respect to € by

OF/0 ---  O0F.{/0

— = € R™Fxne
o€

DgF = F& = : <. :
OF [0 -+ OFp, [0,

Similarly, given sufficient differentiability we define the total derivative of the
multi-dimensional function F' € R™F with respect to a vector, say p € R"»,
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as
dF,/d --- dFy/d
AF 1/dp, 1/dpn,
— = : . : € RMFX"p
dp : . :

dF,,./dp, --- dF.,, /dpnp

For a real-valued function F' € C'(ng,1) : € — F(&) the Nabla operator is
defined as

356(6)

-1 B 8F T
CE —[a(@] .

aﬁng

More specifically, V,, := [0/0z]T. Please note that in this treatise the symbol
A is used as a qualifier only (i.e., it is not the Laplace operator), e.g., Ap
means a vector in R™ of usually small norm in relation to the vector p.

Matrices are in general denoted by non-boldface capital letters, most
commonly A, B, J, M, P, Q. Exceptions are the identity matrix Id =
diag(1,...,1) € R"*”, v € N, and the matrix filled with zeros 0 € {0}"*",
i, v € N; in most cases their dimensions are not especially noted.

k is reserved for functions describing point constraints, including initial
or other boundary conditions. This is already a link to optimal control
problems. There, ¢ is used for path inequality constraints, while J denotes
objective functions.

1 and v are general purpose indices.

Additional symbols will be introduced on demand.

We have added paragraphs which are not strictly necessary for the de-
velopment of the main points of this work, but which provide additional
thoughts and information. These paragraphs are printed in a smaller font
and are introduced as

Remark 0.1:

O

The notation in various citations has been adapted, mainly in order to
ease keeping the thread between the different sections.
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Chapter 1

Fundamentals

1.1 Some Fundamental Definitions in the Con-
text of DAEs

The Tao is forever undefined.
Small though it is in the unformed state,
it cannot be grasped.
If kings and lords could harness it,
The ten thousand things would come together
And gentle rain fall.
Men would need no more instruction and
all things would take their course.

Lao-Tse: Tao-te-king

Ordinary differential equations (ODEs) are commonly used by scientists and en-
gineers in order to represent dynamical processes in mathematical terms.

In the course of the modelling of physical systems often additional algebraic
constraints arise naturally [Matt 89]. Although it may be possible to find an equiv-
alent description by a system consisting of ordinary differential equations only, the
description by the original system of differential and algebraic equations has been
recommended due to advantages in computational modelling and simulation, e.g.,
[SEYE 81], [GePe 84].

Such combined systems are called differential-algebraic equations (DAE).

Remark 1.1:
DAEs are commonly encountered, e.g., in mechanical multibody systems (e.g., [ABES 93],
[Fiihr 88], [FiiLe 91]), in the simulation of electric circuits (e.g., [Asch 90], [GiiFe 99a],
[GiiFe 99b]), and in the modelling of chemical engineering processes (e.g., [ByPo 88|,
[Bart 92], [BSS 95], [ELBK 97]). They also arise if PDEs are solved using the method
of lines (e.g., [BCP 96], [PRGJP 97], [Asch 99]). Moreover, optimal control problems with
path constraints are to be considered as DAE problems (e.g., [FBB 95], [FeBa 98]). ¢
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The generic form of a DAE initial value problem (DAE-IVP) is

F(t,&(t),€(1))
kK™ (to, &(t0), &(t0)) =

0; t€[to,tf CR, (1.1a)
, (1.1b)

where t € [tg, t¢] is the independent variable (time), & € R™ is the vector of state
variables, and F : Dp — R%, Dp C [to,t] X R% ™™ is a system of first order
DAEs. £ := 0&/0t denotes the derivative of € with respect to ¢. The initial
conditions are specified via k'™ : RITme e _y RMpini

In general, the Jacobian® [0F/9€](t, &, &) of the DAE system F(t, ¢, £) with
respect to the time differentials of the state variables £ is singular in the domain of
F; (implicit) ODEs are a special case of DAEs (1.1a) with det([0.F /9€](t, &, €)) # 0
along a trajectory. However, ODFEs and DAEs are distinguished due to fundamen-
tal differences between both types of dynamical systems.

1.1.1 The Solution of a DAE

In slight modification of [KuMe 94] we define the solution of the generic DAE(-
IVP) as

Definition 1.1 (Solution of a DAE / DAE IVP)
A function € : t — £(t), [to,t] — R, is called a solution of Eq. (1.1a) if &(t)
is sufficiently smooth with respect to the free variable t in each of its component
functions £, : t = &,,(t),[to,td] > R, p=1,...,n¢, £:=[&1,... ,Enf]T, and if £(t)
satisfies Eq. (1.1a) pointwise for all t € [to, tg].

It is called a solution of the DAE initial-value problem Eqgs. (1.1a)—(1.1b) if £
is a solution of Eq. (1.1a) and if € satisfies the initial condition Eq. (1.1b).

Definition 1.1 does not explicitly specify the minimum smoothness of a solution(),
However, obviously at least some of the components of a solution vector &(¢) must
be of class C! with respect to the free variable ¢ (apart from the degenerate purely
algebraic case [BF/Bé](t,g,é) = 0). Moreover, there may be components of a
solution of Eq. (1.1a) for which existence of higher order (> 2) derivatives with
respect to time is required later on. This property is summarised in demanding
sufficient smoothness of £(¢) and will not be noted in the sequel anymore.

In difference to ODE(-IVP)s where existence and uniqueness of the solution
can be established under weak conditions on the smoothness of the ODE (cf., e.g.,
[HNW 87]), existence and uniqueness results in the DAE case are more difficult.
[RaRh 94] obtain theoretical results based on the differential geometric approach
towards DAEs. There, existence and uniqueness in the DAE case is reduced to

() Unless explicitly specified we assume throughout this treatise that all functions are
sufficiently often differentiable with respect to their arguments.
() This is in contrast to [KuMe 94] where a solution has to be of class C*.
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standard ODE theory by construction of a sequence of shrinking manifolds which
finally becomes stationary. The intersection of these submanifolds is called the
core, and is again a submanifold. Additionally, on the core an ODE is constructed
which is equivalent to the original DAE.

A characteristic property of DAEs is that — unlike in the case of ODEs — the
structure of the DAE Eq. (1.1a) determines the admissibility of initial conditions
Eqg. (1.1b) in a non-trivial way. Here, we use admissibility in the sense that a
solution of the DAE-IVP exists, given solvability of the DAE (1.1a) (see Definition
1.2 below). This fundamental issue is subject to closer examination in Chapter 3.
Therefore, k™ (-) will be specified in detail later.

1.1.2 Solvability of DAEs

We assume that a connected open set of initial values is given, e.g., as the manifold
defined by a parameterised set of initial conditions, as well as an open interval in
time. In common, a DAE (1.1a) is said to be solvable if for each of the initial values
a locally unique solution exists on the entire interval in time and if the graphs of
the solutions form a smooth manifold [BCP 96| (the solution manifold [CaGr 95)):

Definition 1.2 (Solvability of a DAE)

Let I C R be an open interval,  a connected subset of RIt™¢+m¢ and let F -
Q2 — R be a differentiable function. Then the DAE (1.1a) is solvable on I in )
if there is an r-dimensional family of solutions ¢(t,c) defined on a connected open
set I X SNZ, QcC R", such that:

1. ¢(t,c) is defined on all of I for each ¢ € Q.

2. [t,d(t,c), d(t,c)] € Q for [t,c] € I x Q.
3. If4(t) is any other solution with [t,9(t),9(t)] € Q, then ¢(t) = ¢(t,c) for
some c € §).

4. The graph of ¢ as a function of [t,c| is an r + 1-dimensional manifold (1.

Only in some special cases solvability of DAEs can be verified a priori, cf., e.g,
[UKM 95], [BCP 96]. Otherwise, verification of solvability requires considerable
numerical effort. E.g., [CaGr 95] have developed an algorithm to check a slightly
modified notion of solvability. However, this method is primarily suitable for DAEs
of moderate size given in analytical form. Therefore we assume throughout this
treatise that the DAEs considered are solvable according to Definition 1.2.

(i) In [CaGr 95] the term manifold is specified as differentiable manifold. We adopt to
this definition.
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Remark 1.2:
Other notions of solvability can be found, e.g., in [CaGe 95] (geometric/uniform solvabil-
ity). [RaRh 94a], [RaRh 94b], [Arno 97] treat DAEs which own solutions with impasse
points, i.e., points that can be reached but not passed by a solution in the classical sense
[Arno 97]. O

1.1.3 Special forms of DAEs

Several special forms of DAEs are distinguished. As with PDEs a classification
according to formal properties is motivated by corresponding analytical and nu-
merical characteristics. Additionally, in certain fields of application DAE models
of a typical form are widely spread.

E.g., in chemical engineering the DAEs encountered are in general of the linear-
implicit type [Marq 91], [EKKS 99]:

Definition 1.3 (Linear-Implicit DAE)
A DAE is called linear-implicit, if it is of the form

Al(t’w(t)ay(t)) AZ(tam(t)ay(t))] A |:m(t):| _ [f(tam(t)ay(t))]
0 0 y)] let=®),y()]”’

with f : Ri+na+ny 5 Rz g : Ri4Metny 5 Ry A; : Ri*na+iy _, RiaXna
Ag : RIFnetny  RneXny and if [A1] ! exists and is bounded in a neighbourhood
of the solution.

In the sense of the following definition semi-ezplicit DAEs are a special case of
linear-implicit DAEs [BCP 96]:

Definition 1.4 (Semi-Explicit DAE)
A DAE is called semi-explicit, if it is of the form

©(t) = f(¢, (1), y(t)),
0= g(tam(t)ay(t)) )

with f : RiH"emy 5 R and g : RIF"e 7y 5 Ry,

(1.2)

In the semi-explicit case there is a natural separation of the variables into differ-
ential variables © and algebraic variables y, as well as a separation of the DAE
system into a differential part f and algebraic constraints g.

Remark 1.3:
In literature, the term semi-ezplicit DAE is also applied to more general systems [BCP 96]

0= f(t,z(®),y), &),
0=g(t,z(t),y(t)),

~—
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with f : RiFnetnytna _, R= apnd g : R1+"=+7y — R given that [0f/0z] " exists and
is bounded in a neighbourhood of the solution. This definition of semi-explicit DAEs is
related more closely to general nonlinear DAEs than to linear-implicit DAEs. ¢

Another special form are DAEs of Hessenberg form [BCP 96]:

Definition 1.5 (DAE of Hessenberg form)
A DAE is in Hessenberg form of size r if it is written

-'.Bl(t) = fl(tawl(t)am2(t)a cee ,wT—l(t)awT(t)) )
(1) = £t B (8, 2u(t), 21 (8); p=2...r—1,  (L3)
0= f’r(t’wT—l(t)) ’

r—1
fi: R0 =1 ey —y Ry fu: R X =1 e R=u, y=2,...,7, and if

|: of ] . [afr_l] [%] . [afl] is nonsingular.

oxr_1 O0xy_o oz oz,

Remark 1.4:
By definition, 0f,,,/0x, € R'ev+1*"ev y = 1,...,r — 1, and Of,/0x, € Rr=1*"er,
Thus the matrix product in Definition 1.5 is well defined, and the product is a square
matrix in R rX%er, O

1.1.4 The Index of a DAE

An important attribute of a DAE is its so-called indez(") , € Ny. There are several
different definitions of an index.

One of the most often encountered indices is the differential index 1q [BCP 96].
Its definition is based on structural properties of a DAE (cf. Definition 1.7 below).
The perturbation indez ¢, can be regarded as a counterpart to the differential index
as it directly refers to numerical properties of a DAE. By construction it provides a
measurement for the influence of disturbances on the solution of a DAE [HW 91],

[Eich 92]:

Definition 1.6 (Perturbation Index)

The DAE system F(t,£,€) = 0, F : Rt tn¢ 5 Rn¢  has the perturbation index
tp along a solution €(t) for t in a bounded interval [0, 1], if 1, is the smallest integer
such that for all functions g(t) having a defect

F(t,€,8) = o(t)

(V)Often the index is denoted with the symbol v. We have decided to stick to ¢ (iota) as
we use v for enumerations.
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there exists an estimate on [0, tf]
€0 - &0 < © (1€0) €0l + guas, | [ 5t6) )

(p—1)
g (90 + ..+ g [0 20 )

whenever the expression on the right-hand side is sufficiently small. C € R,
denotes a constant which only depends on F' and ty.

The differential-geometric approach towards DAEs as vector fields on manifolds
motivates the definition of a geometric index 1y [Reic 90], [RaRh 94]. The projector
based approach of [Mérz 89], [Méarz 92] leads to the introduction of the tractability
index 1y; we will take a closer look at it in Section 3.1.9. In order to overcome
some theoretical shortcomings of the differential index and of the perturbation in-
dex [CaGe 95] introduce the uniform indez 1y, the mazimum differentiation index
tvp, the mazimum perturbation index vvp, and the uniform differentiation in-
dez typ. Relationships between different indices are examined, e.g., in [GHM 92,
[CaGe 95], [Hank 95].
Remark 1.5:

[Gear 90] made the widely spread assertion that the differential index of a DAE is equal
to its perturbation index, or higher by one at most. By construction of a family of
counterexamples [CaGe 95] show that this is not always the case. The problem is that
continuity with respect to a class of perturbations is not involved in the definitions of both
indices. However, [CaGe 95] prove the relations typ < tmp < tup + 1 between the uniform
differentiation index and the mazimum perturbation index. O

We restrict to the differential indez as discussed in [BCP 96]("):

Definition 1.7 (Differential Index of a DAE)
Let there be a DAE

F(t,§(t),€(t) =0, (1.4)
F : Ritnetne _ Rne. Furthermore, with &9 := L ¢(t)|, € R define Ej =

. dtt
Hg(l)]T ety [g(j)]T] and

0= ﬁ‘j(t,g,gj)

F[O](tag(o)ag(l)) F(tag(t)ag(t))
_ F[l](tag(o)ag(l)aga)) — %F(taﬁ(t)’g(t)) (1 5)
Fi; (6,60, €0),...,9) ST F(1,€(1),€(1))

(")Unless stated differently, index always denotes the differential indez in the sequel.
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The differential index g of Eq. (1.4) is the smallest integer vq such that F, 4+l
uniquely determines the variable £ as a continuous function of £ and t.

_Remark 1.6:
€9 i =1,... 14, represent the (higher order) time derivatives of the state vector at a
fixed, but otherwise arbitrary point of a solution of the DAE. In Eq. (1.5) the variables
€% are interpreted as free variables. ¢

Definition 1.7 does not specify the subset in R'*™¢*"¢ within which the min-
imising property of ¢q has to hold — the reference work [BCP 96] only remarks
that “... As with the definition of solvability in [ Definition 1.2 ], all of these state-
ments, including [ Definition 1.7 ], are taken to hold locally on open subsets of
RIFIme ” (IBCP 96], p.33). This often neglected specification of the set on which
tq is to hold has already been mentioned in [CaGe 95]. However, the consideration
of open subsets in the definition space of the DAEs implicates an interpretation
as a global property (e.g., [Unge 90] gives the argument “...[Definition 1.9 (which
is a reformulation of Definition 1.7)] does not state anything about exceptions at
some points along a trajectory of a solution ...” ([Unge 90], p.15)).

Apart from some special forms of DAEs the differential index of a DAE can be
considered as a measure of the difficulties that are to be expected for its numerical
and analytical treatment (this is also true with other definitions of an index). DAEs
with index tq > 2 are called higher indez problems [CaGe 95]. Their treatment is
in general substantially more difficult than the index-1 case.

Eq. (1.5) will be of importance later on. Therefore we introduce [LPG 91]

Definition 1.8 (Derivative (Array) Equations)
Equations (1.5) are called the derivative equations or derivative array equations
of DAE (1.4).

Definition 1.7 can be stated more intuitively as [BCP 96]

Definition 1.9 (Differential Index of a DAE, Reformulated)
The minimum number of times that all or part of

F(tag(t),g(t)) =0, (16)

F :R'"metne — R must be differentiated with respect to t in order to determine
& as a continuous function of € and t, is the differential index ¢4 of the DAE (1.6).

A more practical, but less general way for the characterisation of the differential
index than in Definition 1.7 and Definition 1.9 is the following algorithm discussed
in [Gear 88], which essentially reduces a DAE F(t,&,&) = 0 of arbitrary index
to an index-0 DAE, i.e., an ODE. The number of iterations performed before
termination are then equal to the differential index of DAE (1.1a) [BCP 96]:

Algorithm 1 (Index Reduction and Determination)
1. If [OF /0€] is nonsingular, then stop.
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2. Suppose that [0F/d€] has constant rank and that nonlinear coordinate
changes make the DAE semi-explicit (in the sense of Definition 1.4).

Differentiate the algebraic equations, let F = 0 denote the new DAE, and
return to 1.

This method does not work in the general case as the conversion to semi-explicit
form in step 2 is not always possible.

In [LéPe 86] the number of iterations required by Algorithm 1 is called the
global indez of a (nonlinear) DAE. Therefore, the term “global index” is synony-

mous to the differential index.
Remark 1.7:
For certain forms of DAEs straightforward index conditions can be formulated, e.g.:

(a) The differential index of the semi-explicit DAE (1.2) is one if and only if [8g/dy] is
non-singular [BCP 96].

(b) The differential index of a DAE (1.3) in Hessenberg form of size r is r [BCP 96].

(c) As a special case of b, the differential index of a semi-explicit DAE (1.2) in ¢ri-
angular form (i.e., the algebraic equations are of the type 0 = g(¢,x(t))) is two if
[[0g/0x] - [0f /0y]] is non-singular [LPG 91].

In all three cases the index criterion is expressed as a condition on the rank of a matrix
(the rank condition for case b is already contained in Definition 1.5). As the numerical
determination of the rank of a matrix is expensive for larger systems and tends to be
badly conditioned [UKM 95], it is advantageous to rely on the structural properties of the
matrices and employ an algorithm as described in [Duff 81]. An additional problem of
conditions b and c in connection with large (and sparse) DAEs is that the product of the
sparse Jacobians involved in general need no longer be sparse.
For semi-explicit DAEs of the type

©(t) = f(t,2(t)) + Gy(t),
0= HZI:(t) - Ay(t) ’

with f : R\t? — R" and constant matrices A € R >, G € R >, H € R X"
[DuGe 86] have proposed an algorithm to determine whether the index exceeds two. The
algorithm is based on structural properties of the Jacobian of the DAE. A drawback is
that it can exhibit non-polynomial complexity for certain problems.

In Section 3.1.5 we discuss the Algorithm of Pantelides which (with some restrictions)
can be utilised to evaluate the index of a general DAE (1.1a). It is also based on structural
properties of the DAE but has a computational complexity of O(ng) [UKM 95]. ¢

1.1.5 Consistent Initial Conditions

As will be discussed in detail within Section 3.1.8, Algorithm 1 detects information
besides the differential index:

It generates a system of explicit ODEs which is called the underlying ODE
(UODE) of the DAE. Additionally, during the course of its run new algebraic equa-
tions appear which are not obvious in the original DAE. These algebraic equations
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are called hidden constraints or hidden equations. Taken together the UODE and
all algebraic equations give the corresponding extended system [UKM 95]:

Definition 1.10 (Corresponding Extended System of a DAE)
The corresponding extended system

40)
0

F(t, &(t), (1.7)

(t,£(1),

of a DAE (1.1a) is built up by the underlying ODE F : Rt — R together with
the hidden constraints and the algebraic equations of the original DAE collected
in G : RI*" — R ~"ddr where the fixed number ngqr € {0, ... ,ng} is the number
of dynamic degrees of freedom.

Il
Q

The underlying ODE of a DAE is not uniquely determined. However, different
UODEs have the same solution for identical initial values [Eich 92].

Remark 1.8:
The underlying ODE as well as the hidden equations are equally contained in the derivative
array equations; Algorithm 1 (or Algorithm 6 in Section 3.1.8) provides them in a more
concise form. 0

In the case of ODEs &(t) = f(t,&(t)), f : RIT" — R it is often a natural
choice to specify initial conditions ®(ty) = ¢ with an arbitrary vector ¢ in the
domain of f. More generally, depending on the Jacobian [8 f /8:6] also initial
conditions of the form @(t9) = &¢ may be imposed with an arbitrary value of &
within the range of values of f (e.g., if admissible &y = 0 defines a stationary point
as initial point), or an appropriate mixture of both types of initial conditions.

On the other hand, in the general DAE case not all vectors (or exactly, sub-
sets of the components of the vectors) {£,,£,} in the domain of the mapping
F(t, ¢, €)|i—, are admissible values for specification as initial conditions as they
have to satisfy the corresponding extended system Eq. (1.7). ILe., these vectors are
constrained to the manifold defined by the original DAE and the hidden equations.
Due to their special role the admissible vectors are called consistent initial condi-
tions. More precisely, consistent initial conditions can be defined as [UKM 95]

Definition 1.11 (Consistent Initial Conditions)
The vectors €, and &, are called consistent initial conditions of the DAE (1.1a) at
to, if they satisfy the corresponding extended system Eq. (1.7) at t = t,.

Remark 1.9:
Definition 1.11 avoids the distinction between the subset of the components of the vectors
&y and éo which can be specified externally and the complementary set of components
which is fixed by the DAE. O

A definition of consistent initial conditions independent from the corresponding
extended system and in accordance with Definition 1.7 (differential index of a DAE)
following [Eich 92] is:
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Definition 1.12 ((Strictly) Consistent Initial Conditions)

Let vq be the index of the DAE F(t,£(t), €(t)) = 0, F : R'*netne _y Rne Ini-
tial conditions &(tg) = &, € R™ are called (strictly) consistent, if the system of
equations

F(t,6(2),€0)| 1, =0,

£€=¢
d .
ZFLEDED)| =y =0,
§:€o
dd .
SEF(LEWEW)| Ly =0,
£=¢
interpreting é(t)|t:t0, ... ,E(Ld+1)(t)|t:t0 as variables £, ..., &%) has a solution

g(t()a&O)'

By construction, the corresponding extended system is equivalent to the deriva-
tive array equations in the sense that the former can be generated from the latter
by repeated substitution and elimination. Therefore, a set of consistent initial
conditions {&g,&(to, &)} according to Definition 1.12 is consistent according to
Definition 1.11 with &, := &(to, &), and vice versa.

Remark 1.10:

The conceptual difference between the two definitions of consistent initial conditions leads
to two different methods for their computation: Pantelides’ Algorithm — which is related to
Definition 1.12 — is discussed in Section 3.1.5; in Section 3.1.8 we consider Gear’s Approach
which is based on Algorithm 1 and Definition 1.11. O

Definition 1.12 is based on the derivative array equations in connection with a
set of initial conditions of the special form

k'™ (to, € (to), €(t0)) := &(to) — & = 0.

The step to a more general specification is straightforward and gives rise to the
definition of consistency equations in the sense of [LPG 91]

Definition 1.13 (Consistency Equations)

Let there be a DAE (1.1a) and initial conditions (1.1b). Then the nonlinear system
of equations composed of the derivative equations Eq. (1.5) of Eq. (1.1a) together
with Eq. (1.1b) is called the consistency equations of the problem Eqs. (1.1a)—
(1.1b).

The corresponding extended system Eq. (1.7) of a DAE (1.1a) is a system of ng
explicit differential equations F : R1*"¢ — R"¢ and ng — nqqr algebraic equations
G : Rif"¢ — R™% nddf (the number of dynamic degrees of freedom ngqr has been
introduced in Definition 1.10). Therefore, nqqsr “appropriate” initial conditions
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kini(-) specifying the initial state have to be added in order to obtain a square
system, fixing ngqr components of {E(to),é (to)}- The choice of these equations
— or of the components of the vectors &, 5 that can be assigned arbitrary initial
values, respectively — is not free as we require a full rank system

&(to) = F(to, &(t0))
0 = G(to,&(to))
0= kini(thg(tO)aé(tO)) ’

which can be solved for the consistent initial conditions. This motivates [UKM 95]:

Definition 1.14 (Dynamic Degrees of Freedom)
Variables € or time derivatives & which can be assigned arbitrary initial conditions
and still allow consistent initialisation are called dynamic degrees of freedom.

For a DAE Eq. (1.1a) there may (and in general will) exist different subsets of
the variables &, € of cardinality ngqr that are suitable for specification as the set of
dynamic degrees of freedom. The non-uniqueness of this set of degrees of freedom
in connection with the inherently combinatorial nature of the problem of specifying
the dynamic degrees of freedom is one of the mayor difficulties in the automatic
numerical computation of consistent initial conditions for general large-scale DAEs
(see Section 3).

In [Camp 83], [BCP 96] a different concept of consistent initial conditions is
introduced. There, initial conditions are said to be consistent if they admit a
smooth solution of the DAE through the initial point:

Definition 1.15 ((Smoothly) Consistent Initial Conditions)

A vector €, € R is called a (smoothly) consistent initial condition for the DAE
Eq. (1.1a) at t = tg if there is a differentiable solution &(t) to Eq. (1.1a), defined
on an interval [to, o + €] C [to, 1], € > 0, such that &(to) = &g-

Remark 1.11:
[Cobb 83] shows that even solvability in a distributive sense can be adequate in case of
systems that suffer a change at t = tg, e.g., by the opening or closing of switches in electric
circuits. According to this definition, arbitrary initial conditions can be consistent. ¢

1.2 DAEs and Structural Calculus

Vestigia terrent.

The footprints frighten me.

(From a story about a fox who saw footprints
lead into, but not out of a lion’s den.)

Horace, Epistulae
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As we will see later on, structural calculations are of special interest in the context
of DAE analysis. In this section we give a summary of the structural calculus
discussed in [UKM 95].

Structural calculus distinguishes hard zeros and nonzeros only [UKM 95]:

Definition 1.16 (Fundamental Assignment of Structural Values)

Whenever there is a numerical (or symbolical) representation of operands in R
such that a certain operation in R yields a nonzero result, then the result of
the corresponding structural representation of this operation is “«”. Conversely, if
there is no such numerical (or symbolical) representation then the structural result

is “0”.

Thus structural calculus can be regarded as the “crudest way of computation”
[UKM 95]. Besides hard zeros and nonzeros in practice soft zeros have to be
considered. Soft zeros originate from numerical operations which appear to deliver
constantly zero as a result but which may as well generate a nonzero entry. These
soft zeros give raise to problems at the interface from real-valued arithmetics to
structural calculus as in such cases it is difficult to decide whether the numerical
result of floating point operation is a blurred hard zero (with the nonzero value
caused by round-off error) or whether it is actually a structural nonzero.

The notion of structural properties of operands applied to matrices leads to a
characterisation of matrices by their (structural) pattern [UKM 95]:

Definition 1.17 (Pattern of a Matrix)
The representation of a matrix M € R™*™ where nonzero elements are represented

by “” and zero elements are represented by “0” is called the pattern of M and is
abbreviated by pat([M]).

Based on the pattern of a matrix the structural rank of a matrix is then defined
by [UKM 95]

Definition 1.18 (Structural Rank of a Matrix)

Let Ny C R™*™ be the set of all possible numerical representations M, of
pat([M]). Let rank ([M,]) be the numerical rank of M,, € Nj;. Then the max-
imum of all values rank ([M,]) is called the structural rank s, of pat([M]), i.e.,
sr(pat([M])) = maxp,en,, (rank ([My])).

By definition the structural rank of a matrix is an upper bound for the numerical
rank of a matrix.

In practice the structural rank for a matrix-valued function given in dense rep-
resentation has to be generated based on a small number of numerical evaluations
and thus sample patterns of this matrix (consider, e.g., the determination of the
structural rank of a Jacobian which is expensive to evaluate numerically). The
problem is then the distinction between hard zeros, i.e., zero entries in the numeri-
cal representation of the matrix that are structurally zero, and soft zeros, i.e., zero
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entries in the numerical representation of the matrix that are structurally nonzero.
In case of matrices given in a sparse representation the (fixed) sparsity pattern of
the matrix may be — and practically is — used as the structural pattern of the
matrix, independent from the numerical values of the matrix entries. This elegant
method allows a fast and reliable determination of the structural rank of a matrix,
given that the sparse representation of the matrix is carefully implemented.
Example 1:
Consider the mapping

e = [ 5"
and a sparse numerical representation of its Jacobian [1 “(’)1] (the element “-” is
not contained in the sparse matrix), as well as the corresponding sparsity pattern
0 ¥]- Depending on the value of ;1 the upper right entry in the numerical Jacobian
varies; in case of @1 = 0 this entry is a soft zero. Due to the entry in the lower
right corner the structural rank of the Jacobian based on the sparsity pattern is 2,
while the numerical rank of the Jacobian is 1. This bad result can be avoided by
recognising the lower right entry as a hard zero and removing it from the sparse
Jacobian. However, such unnecessary soft zeros are hard to detect numerically as
apart from extreme cases (such as in this example) they do not affect sparse matrix
solvers which are the most prominent numerical algorithms employing structural
information. o
From Section 1.1 it is clear that we need a structural equivalent to differen-
tiation if we intend to apply structural calculus in the context of DAEs. Unfor-
tunately, there is no definition of a structural differentiation that provides the
correct pattern of the Jacobian of a function in the general case unless higher or-
der derivative information is used. The two extreme possibilities are structurally
nonlinear and structurally linear differentiation which provide the mazimum and
the minimum number of nonzeros in the Jacobian of the differentiated equations,
respectively [UKM 95]:

Definition 1.19 (Structurally Nonlinear/Linear Differentiation) ~
The structural differentiation of a function G : t — G(t) := G(£(t), G €
C'(R,R™¢) with respect to time t, where G : & — G(£), G € C' (R, R™c),
and & = [El,...,Ene]T e R%, ¢, :t £ (), € € CHRR), v = 1,...,ng, is
called a
1. structurally nonlinear differentiation if [dG/dt] = [0G/0€)€ is considered to
depend on all variables §,,, v =1,...,ng, appearing in G(§).

2. structurally linear differentiation if [dG/dt] = [0G/0¢]¢ is considered to
depend onno §,,, v =1,...,ng.

After these preparations central concepts of the analysis of DAEs can be restated
in the structural sense [UKM 95]:
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Definition 1.20 (Structural Index/Number of Degrees of Freedom)

The structural index 1y and the structural number of degrees of freedom rg of a
DAE system F(£(t),£(t)) = 0, F : R2% — R are the index and the number of
degrees of freedom obtained if all computations [connected with Definition 1.7 and
Definition 1.10] are carried out according to the structural algebra defined above.

Structural index and structural degrees of freedom of a DAE can be shown to be
independent of the kind of structural differentiation used [UKM 95]:

Proposition 1.1 (Structural Index and Jacobian Patterns)

The structural index g and the structural number of degrees of freedom r5 of a DAE
system F(£(t),€(t)) = 0, F : R — R is solely determined by pat([0F /O£])
and pat([OF [0€]).

Consequences of Proposition 1.1 are:

1. For the computation of the structural properties s and rg it is sufficient to
know pat([0F /9€]) and pat([0F /9¢)), i.e., the only information required is
for each equation which of the variables and which of the time derivatives,
respectively, occur in it.

2. 15 and 7g of a nonlinear DAE are identical to those of the linearisation of the
DAE around a solution trajectory.

Until recently it was commonly asserted that the structural index of a DAE
is equal to or smaller than its differential index [Unge 90], [UKM 95], [BCP 96].
[RMB 00] have found examples originating from the simulation of DAE models of
electric circuits with differential index 1 and arbitrarily high structural index.

However, structural algebra implemented on computers is per se free of round-
off errors and can be used as a basis for very efficient algorithms. Moreover,
currently structural calculus provides the only numerical technique applicable for
the analysis of large-scale DAEs.

1.3 Discontinuities

Natura non facit saltus.
(Nature doesn’t make any leaps.)

Carl von Linné: Philosophia botanica

According to [Cell 79], [Bart 92], [BaPa 94], processing systems in general own a
combined discrete/continuous structure. More precisely, nearly all processes of our
interest are principally of continuous nature, more or less frequently subject to dis-
continuous changes. Therefore, discontinuities have to be considered in modelling,
simulation, and optimal control. Combined discrete/continuous systems are also
called hybrid dynamical systems.
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[ScSc 99] give a general introduction into hybrid dynamical systems. A review
of the developments in the area of hybrid dynamical systems with emphasis on
chemical process control can be found in [EKK 97].

As a first preparation we define discontinuities in dynamical systems, extending
[HaGr 80]:

Definition 1.21 (Discontinuity)

A discontinuity in a dynamical system is an instantaneous transition from one state
of the system to another. As the discontinuity occurs the set of model equations
(and/or external controls — if present —) describing the system may change so as
to represent the new system state rather than the old state.

From the modelling point of view, hybrid dynamical systems can be described,
e.g., by the following formalism summarised in Definition 1.22 (see [GaBa 98],
[GFB 99]). However, other formalisms are also considered, cf., e.g., [BSBS 00].

Definition 1.22 (Description of Hybrid Dynamical Systems)
A hybrid dynamical system is described by a state space S = ULH:S1 S,, where each
mode S, p = 1,...,mg, is characterised by

(»)
1. the independent variable t (time), a set of state variables & W) e R (and

. . . . . (r) . .
their derivatives with respect to time), controls ul) € R’ , and time inde-
pendent parameters p € R"?

2. a set of equations

0= FU) (1,002, €" (), u (t), ).,
(w) 4 (1) ()
F)  RUF2nTAndTine g , which in connection with a consistent
initial condition

0= kim'(u) (t, ¢ (t), é(“) (1), u) (t),p),

.. () | (1) (k)
gini(t) , gla2ngtnitnp R™kini | at t = tg“ ) describes the system dynamics

within an interval [t(()“), tﬁ“) [,

3. and a possibly empty set of transitions J® C {1,... ,mg} to other modes
Sy. A transition from mode S, to mode(V) S, is possible if v € JW),

() The case that a mode S, may be reached from mode S, in different ways can be
included by extending the notation to incorporate subindices.
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Each potential transition (from mode S, to mode S,, v € J (#)) is charac-
terised by a switching condition (Vi!

QW (t, €™ (1), €Y (1), u (1), p),

(w) 4 (1) .. .- .
W, R tna e (46 false}, determining the transition time

t= tfp’fj) (the transition is triggered when Q,(,” ) becomes true ), and a transition
function (also called transition condition, or jump function)

0= KWt e (1), €Y (1), u (1), €1 (1), €™ (1), u® (1), p),

(¥) 4 () (1) 4 (1) m 3 .
KW . R g a0y g % connecting the variables at

the end of mode S, with the variables of S, at its start. As a special case,
the transition function

0= KgO) (th 5(1) (tO)ag(l) (tO)a u(l) (tO)ap) )

() 4 (1) m
K 50)  REF2e At tne UK 50), determines the initial conditions of the
initial mode Sy at to = t{").

The switching condition Q,(,“ ) is composed by logical expressions. In prac-
(1)

tice, Q,(,“ ) will be replaced by an equivalent scalar switching function qy
indicating the transition by a sign change.

If there are different possible transitions starting from mode S, the active tran-
sition is indicated by the earliest root in any of the scalar switching functions

associated to mode S,. The special case of different scalar switching functions

q,(,” ) having an identical root is pathological in the deterministic framework given

by Definition 1.22.

Remark 1.12:
Note that Definition 1.22 is an abstract description for hybrid systems and especially the
switching functions q,(,” ) have to be distinguished from practically implemented switching
functions. In practice (cf. the discussion on the location of discontinuities below) it may be
the case that two or more switching functions vanish at the same time. But as in applica-
tion different parts of the model are affected coinciding roots do not cause a contradiction.
The point is that is such a case y € N “practical” switching functions correspond to 2*
modes with accordingly defined “theoretical” switching functions. O

As solvability in the sense of Definition 1.2 does not directly apply to hybrid
DAE systems, we extend it for such systems in an intuitive way:

(Vi) [GaBa 98] and [GFB 99] use the term transition condition instead of the term switch-
ing condition. We applied this modification in order to avoid confusion with the transition
function introduced below. Note that we will use the terms transition function and tran-
sition condition synonymously.



1.3.1 Hidden Discontinuities 17

Definition 1.23 (Solvability / Solution of Hybrid DAE Systems)
A hybrid dynamical system S = U,T:S1 S, as given in Definition 1.22 is solvable

if each dynamical system 0 = F®) js solvable in the sense of Definition 1.2 on
the time interval I, = [t(()“ ),tl(c” )[ in a suitable domain Q,, and if the transition

functions K% (including K{®) together with the initial conditions k™" allow
the determination of consistent initial conditions at the transition times and at
the initial time, respectively.

A function € : t — £(t), [to, t] — R™ is called a solution of the hybrid system
if there is a decomposition of the interval [ty,tf] such that for each partial interval
there exists a dynamical system 0 = F®) with the property that £ restricted to
this partial interval is a solution of 0 = F*) in the sense of Definition 1.1, and
if all active switching, transition, and initial conditions are satisfied in the entire
interval [to, t.

The numerical problems arising in the simulation of dynamical systems with
discontinuities are well known, see, e.g., [Cell 79], [GeOs 84], [Eich 92], [ToBa 02].
Plain integration ignoring a discontinuity can lead to gross inefficiency, unreliable
results, or failure of advanced (variable-order, variable step-size) integrator algo-
rithms. Thus, fully satisfactory and reliable results can only be achieved if each
discontinuity is located and integration is restarted in consequence.

Discontinuities which only depend on time (time events) can be handled easier
than state-dependent discontinuities (state events) as time events are essentially
known a priori, rendering costly location unnecessary. Therefore, the discussion
below primarily addresses state events (although time events can be handled in
the same way as state events — if efficiency is not of interest).

1.3.1 Hidden Discontinuities

In the worst case explicit information about a discontinuity is missing. l.e., in
the context of Definition 1.22 the discontinuity is actually ezecuted, e.g., within a
lower level model routine, but this event is not signalled by the means of a public
switching function. As such discontinuities are hidden within the simulation code
they are termed hidden discontinuities [ToBa 02].

There are primarily two reasons for the existence of hidden discontinuities
[ToBa 02]:

e On the one hand, modelling with switching functions requires considerable
effort during the implementation of a model functionality (see the next sec-
tion on switching functions).

e On the other hand, the discontinuous part of the model behaviour may not
be of major interest. In this case the integrator is expected to cope with the
discontinuities internally, accepting the possible drawbacks of such a method
as mentioned above.
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For ODE models given as black-box routines without switching function in-
formation [GeOs 84] developed a method for the location of discontinuities based
on the local error estimation formulas of linear multistep methods. However, due
to its inherent limitations [GeOs 84| regard their method as a remedy only and
recommend the application of switching functions whenever possible.

Hidden discontinuities can also significantly deteriorate numerically computed
parametric sensitivity information. As the transition times cannot be located
exactly, in a consequence the correct transition of the sensitivities across these
discontinuities cannot be performed (methods for the transition of sensitivities
across discontinuities are discussed in Chapter 4). Therefore, [ToBa 02] propose
to generate the switching function code automatically in order to tackle with the
problem of hidden discontinuities in its origin. They have modified an automatic
differentiation tool in order to analyse the model code for potential discontinuities
and then add code for switching function handling.

1.3.2 Location of Discontinuities Using Switching Func-
tions

Switching function based methods as considered in [HaGr 80] are

1. to assume that the discontinuity has taken place at the end of the integration
step in which a sign change in the switching functions has been detected.

This is a very simple but also dangerous method, as it produces unreliable
results especially for larger step-sizes. Due to the demand for highly precise,
reliable, and efficient simulation this method is in general inappropriate for
use in state-of-the-art integrators.

Remark 1.13:
[Otte 95] explicitly uses step events which are defined as discontinuities that can
become active at the end of a successful executed integration step only. O

2. to locate the discontinuity more precisely within the integration interval
where a change of sign of a switching function has been detected.

This can be achieved by, e.g., inverse interpolation. In this method the tra-
jectory of the active switching function is interpolated on the basis of a few
evaluations within the interval of interest. Assuming that the interpolation
is sufficiently exact the roots of the interpolating polynomial are then taken
as the roots of the switching function, cf., e.g., [Cell 79], [Eich 92]. Other
methods for the localisation of discontinuities in ODE and DAE systems are
discussed in, e.g., [Kron 02].

A widely used technique for the exact and efficient location of discontinuities
is discontinuity locking [PBa 96] (cf. Figure 1.1). In this technique a discontinuity
is monitored by the sign change in at least one of the switching functions after
a successfully executed integration step, i.e., the signs of the switching functions



1.3.2 Location of Discontinuities Using Switching Functions

19

< start >
(n30)

Y

evauate and save signs of
switching functions at t=t

y
execute integration step
th — Theg

Y

evaluate switching
functionsat tpq

have signs of

v . €es
switching functions y

Y

locate discontinuiti/ exactly
(t=tgisc

Y

switch
system of equations

Y

evaluate and save signs of
switching fgrncti ons at

t=tgisc

changed ?

[

'

reinitialise at disgronti nuity,
the1 = lgisc

advancen+l——s n

no

end of
integration horizon
reached ?

yes

Figure 1.1: Integration of discontinuous systems using the discontinuity locking
technique (sketch). The main steps are highlighted.

at time t, and t,4; are compared. The fundamental assumption justifying this
comparison is that the value of the state vector calculated for time ¢, in the trial
integration step is at least numerically “reasonable” although the model equations
have not been switched (thus the name discontinuity locking). The exact point
of discontinuity can then be located by a root-finding algorithm employing, e.g.,
inverse interpolation in order to increase the efficiency of the method. In case
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of more than one switching function exhibiting a root within the integration in-
terval the earliest root is used. After this the model equations are switched and
integration is restarted at the discontinuity.

For the developer of a model unit the discontinuity locking technique results
in several restrictions and in additional effort (unless the automated switching
function generation method of [ToBa 02] is employed) [Eich 92], [ScWi 94]:

e Discontinuous effects have to be expressed in terms of switching functions
(cf. Definition 1.22).

e Decisions about which of the model equations are to be used are allowed
on the basis of an additional discrete state vector only. I.e., the discrete
state vector contains the authoritative information about the active model
variant.

e This discrete state vector must not be modified by any routines apart from
the switching function driver.

In an implementation the switching of the model equations (see right branch
of Figure 1.1) is realised by a modification of the discrete state vector. The
new value of the discrete state vector is determined by the switching func-
tion driver based on the actual state variable vector. Other changes in the
discrete state vector are not permitted.

Remark 1.14:
In a consequence the switching function driver has to be provided with the required
modelling level knowledge. O

[Eich 92] presents a refined inverse interpolation method which is especially
designed for application within linear multistep integrators (e.g., BDF algorithms).
There, a considerable amount of computational time is preserved by employing the
natural interpolation polynomial of the discretised state variable vector in order to
compute the values of the switching functions required for inverse interpolation.

Additionally, [Eich 92] treats the problem of inconsistent switching™) by in-
troducing a three-valued switching logic under application of the notion of gener-
alised solutions of differential equations according to Filipov. Inconsistent switch-
ing is given if the state trajectory does not cross the switching manifold in state
space (given by the switching functions) at the point of the discontinuity, staying
on this manifold for a non-trivial interval in time.

As examined in [PBa 96] the treatment of discontinuities in DAE models is
aggravated by potential discontinuity sticking. Discontinuity sticking is caused by
the interpolation of the state variables applied in the discontinuity location phase.
Due to the interpolation error (which is reflected in the missing consistency in

(Vi) The term inconsistent switching is not related to the notion of consistency in the
context of DAEs.
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the interpolated state variable values) the discontinuity may not be located pre-
cisely enough. Therefore, in the next integration step the same discontinuity may
be triggered again which necessitates the repeated treatment of the discontinuity.
In order to overcome this problem [PBa 96] extend the discontinuity detection
and location algorithm. Core part is the consistent event location, i.e., the point
of the discontinuity is determined simultaneously with the corresponding consis-
tent states at the discontinuity before the discontinuity is executed. According
to [Kron 02], however, discontinuity sticking is rarely observed in non-academic
examples.

In practice, additional issues have to be considered:

The discontinuity location procedures in general assume that the discontinu-
ities are indicated either by a sign change or by a switching function becoming
exactly zero, starting from a non-zero value. In order to avoid the problem when
the switching function is exactly zero at the start of the integration step, [Otte 95]
introduces a small e-band around the switching functions.

If a switching function owns an even number of roots within an integration step
the corresponding discontinuities cannot be detected as the sign of the switching
function is the same at both the start and the end of the step. Therefore, [Cell 79]
proposes to consider (higher order) time derivatives of the switching function as
well. Then Rolle’s Theorem provides a means to locate the first change of sign
of the original switching function by iteratively excluding a of a part of the inte-
gration time step, starting from exactly one root of a higher order derivative of
the switching function and going down to the undifferentiated switching function.
However, the maximum number of oscillations within an integration interval has to
be known in advance. Additionally, higher order time derivatives of the switching
functions have to be provided.

Finally, simultaneous switching events have to be considered. Especially, the
execution of an event can immediately trigger another event, e.g., in boolean arrays
(or deterministic finite automata). In such a case switching has to be repeated until
no further change in a switching function occurs [Otte 95]. Special measurements
to prevent dead-locks have to be taken.

1.4 Sensitivity Analysis for DAEs

Dicit ei Simon Petrus “Domine, quo vadis?” [...]
(Simon Peter asked him, ”Lord, where are you going?”[...])

The Bible, John 13:36

Mathematical models of real-world problems in most cases contain parameters.
Examples are the mass of a pendulum (see Section 6.2.1), heat transfer parame-
ters in a heat exchanger (see Example 6 on page 131), or parameters introduced
by application of the direct single shooting method for the numerical solution of
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optimal control problems where control variables are replaced by parameterised
functions (see Section 2.4.2).
Now let there be a parameter dependent DAE-IVP

F(t,&(t;p),&(t;p),p) =0; t €[t t] CR, (1.8a)
k™ (to, &(to; p), & (to; p), p) = 0, (1.8b)

with the model F' : R+2ne tnp _y R initial conditions k'™ : RIt2ne tnp _y RiMuini
and the constant vector of parameters p € R", n, € N. The notation -(¢;p) is
used to indicate the dependence of both the state variable trajectories £€(-) and of
their first order derivatives with respect to time &(-) from the vector of parameters
p (this notation may also be applied to other quantities than £(-) and ¢ () in the
sequel).

In the context of parameter estimation, design optimisation, optimal control,
model reduction, and experimental design knowledge on the dependency of the
solution trajectories of the parameter dependent DAE-IVP Egs. (1.8a)—(1.8b) from
the values of the parameters is required, cf., e.g., [PSLRC 01]. This investigation
is called the sensitivity analysis of the DAE-IVP Egs. (1.8a)—(1.8b), e.g., in slight
modification of [Gerd 01]:

Definition 1.24 (Sensitivity Analysis for DAEs)
The investigation of the dependency of the solution of a parameter dependent

DAE-IVP Egqs. (1.8a)—(1.8b) with consistent initial conditions &€(to;p), &(to;p)
from the parameters p is called the sensitivity analysis for the DAE-IVP Eqs. (1.8a)
(1.8b)

Given differentiability of the solution trajectory &€(t; p), t € [to, tf], with respect
to p, sensitivity analysis for the DAE-IVP Egs. (1.8a)—(1.8b) means to calculate the
(parametric) sensitivity functions, sensitivity matrices, or shortly, the (parametric)
sensitivities

0¢(t;p)

w(t;p) = [Tp ] € R X

Thus the sensitivities represent the linearisation of the trajectories around a nom-
inal parameter value. E.g., consider a trajectory £€(¢;p,) and the corresponding
sensitivity functions g—f} (t; py) evaluated at the nominal value of the parameter pj.
Then for a small disturbance Ap € R™ in the parameter a first order approxima-
tion of the trajectory &(¢;py + Ap) is given by

. 0¢
£(t;po + Ap) = &(t;po) + %(t;po)AP-

In the case of a parameter dependent ODE-IVP without discontinuities a de-
tailed discussion of sensitivity analysis including proofs for existence and unique-
ness of the sensitivity matrices can be found in [HNW 87]. Existence of the sensi-
tivities in the case of semi-explicit index-1 DAEs without discontinuities has been
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shown, e.g., in [Heim 92]. [Gerd 01] proves existence for general nonlinear DAEs
of finite, but otherwise arbitrary index. Sensitivities for discontinuous ODEs are
treated in, e.g., [ScSc 99]. [Feeh 98] addresses existence of sensitivities for ODEs
and index-1 systems with discontinuities. A detailed discussion of the problem
of computing sensitivity functions for discontinuous nonlinear ODEs, nonlinear
index-1 DAEs, and semi-explicit index-2 DAEs is the subject of Chapter 4.

Three different approaches have been investigated for the numerical approx-
imation of parametric sensitivity functions for DAE models: Numerical differ-
entiation (finite difference approzimations) (e.g., [BHK 94], [Grup 96], [SWS 95]),
backward integration of the adjoint equations (e.g., [MoSa 86|, [BeSe 92], [GPS 95],
[BBiS 99], [CLPS 00], [CLP 00]), and integration of the (associated) sensitivity
equations (e.g., [CaSt 85], [LeKr 85], [MaPe 96], [HeSt 96], [FTB 97]). For a com-
parison of these methods see, e.g., [RoLu 91], [PSLRC 01]. According to [BSS 95]
numerical algorithms for the approximation of sensitivity matrices can be divided
into two classes:

1. External numerical differentiation methods (END):

END obtains the sensitivity functions basically independent from the numer-
ical integration of the original state variable trajectories. E.g., the sensitivity
equations may be integrated independently from the model equations. This
approach has the advantage that the integrator may be used as a black box.

2. Internal numerical differentiation methods (IND):

In the IND approach the integrator scheme employed for the numerical inte-
gration of the model equations is differentiated, and a modified integration
scheme for the combined calculation of both state variable trajectories and
sensitivities is constructed. In this way suitable approximations to the sensi-
tivities of the numerical solution may be obtained even for loose integration
precisions. In contrast to END, IND is stable in the sense of backward er-
ror analysis [BSS 95]. However, deeper analysis of the integrator algorithm
and extentions of its program code are necessary. E.g., in Section 2.4.3.b
and Section 5.2 we discuss the implementation of an IND algorithm for the
integration of the sensitivity equations.

In general, internal numerical differentiation is superior to ezternal numerical
differentiation in terms of reliability and efficiency, cf., e.g., [BSS 95], [Kieh 99].
However, IND is not applicable in every case, especially if the code of the algo-
rithm employed for the integration of the DAE-IVP Egs. (1.8a)—(1.8b) cannot be
modified, while END can be performed given access to an integrator as a method
only.

Due to practical reasons we employ integration of the sensitivity equations,
cf. Section 2.4.3. Formally, the sensitivity equations can be obtained by total
differentiation of the DAE-IVP Egs. (1.8a)—(1.8b) with respect to the parameters
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p along a solution trajectory &(¢;p), t € [to, tg]:

d .

OF o, 1, [oF i OF

[ag] L) [ap(t’p)] + [ag] o) [ap(t )] + |:8p:| Le(tp)
&(tp),p &(tip),p &(tip),p

oF OF . OF

{ag] e P T [a_g] v ORI [Bp] é(tp) (1.9)
( 7p)=p E(t,P),P E(tip)ip

0— %ki“i(to,£(to;P),é(to;P),p)

8kini %(t . ) akini ‘ %(t . ) N akini
aE t07£ t07p ap 0> p 85 tO)g(t07p ap 0 p ap tojg(toﬂ))
&(to;p),p &(to;p).p £(to;p),p
8kini 8kini 8kini
{ 8£ :| tOzE tpr w(th p) |: 6£ :| to;ﬁ tOsp) (t07 p) + |: 8p :| t‘Osg(tO ;p) )
E(to;p).p £(to;p),p &(to;p),p
(1.9b)

An important property of the sensitivity equations Eqgs. (1.9a)—(1.9b) is that they
always form a linear DAE-IVP in the sensitivities independent from the nonlinear-
ity of the model DAE [CaSt 85]. Due to Proposition 1.1 on page 14 the sensitivity
DAE owns the same structural index as the model DAE.

As pointed out by [CLP 00] there are pathological cases in which the sensi-
tivity DAE-IVP Egs. (1.9a)—(1.9b) is not solvable although the original DAE-IVP
Eqgs. (1.8a)—(1.8b) is well defined. This can be the case if the original DAE-IVP is
solvable for a special choice of the parameters only, rendering parametric sensitiv-
ity information meaningless. Therefore we assume throughout this treatise that
the DAE-IVPs considered are well-posed in the sense of Definition 1.25, following
[CLP 00]:

Definition 1.25 (Well-Posed Parameter Dependent DAE-IVP)
The parameter dependent problem Eqs. (1.8a)—(1.8b) is called well-posed if for the
given vector of parameters p there exists a value e € R, \{0} and a neighbourhood

Ne(p) :== {p € R |||p — p|| < €} around p so that for any vector of parameters
D € N¢(p) the DAE-IVP Egs. (1.8a)—(1.8b) has a unique solution &(t;p), t € [to, .

Additionally, in order to perform parametric sensitivity analysis we assume that
for each fixed parameter p of interest the stronger condition of differentiable para-
metric dependency of the trajectory £(¢; p) holds on a neighbourhood N¢(p), € > 0,
around p.
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Chapter 2

Aspects of Nonlinear
Model-Based Predictive

Optimal Control with
Large-Scale Process Models

2.1 Application and Background

2.1.1 An Industrial Optimal Control Challenge

Gases like nitrogen (N3), oxygen (O3), and argon (Ar) are used in industry as raw

materials or as auxiliary substances. nitrogen N, [78.084 [vol%]
E.g., nitrogen is the basis of fertilis- oxygen Oy | 20.946 [vol%)]
ers, oxygen is required for the refine- argon Ar 0.932  [vol%]
ment of steel, and argon is needed | .arbon dioxide COy | ~ 335 [vppm]
for welding. At the same time, these neon Ne | 18.18 [vppm]
three gases are the main components helium He 5.239  [vppm]
of air (see Table 2.1). Thus a natu- krypton Kr 1.14  [vppm]
ral idea is to obtain such industrial xenon Xe 0.086 [vppm]

gases by the separation of air which
is available at any place on earth in
sufficient amounts.

In 1902 Dr. Carl von Linde, the founder of the Linde AG, built the world’s
first commercially viable cryogenic air separation plant. This type of air separa-
tion plants is based on liquefaction of ambient air and rectification (which can be
regarded as a highly efficient form of distillation) in order to separate the various
fractions contained in the feed. In industrial application the energy consumption
required for cooling to the prescribed deep temperatures governs the operational
costs of the process. Therefore, the different processing parts in such air separation

Table 2.1: Average composition of air (with-
out variable constituents [Rohd 94]).
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plants are strongly interconnected in order to keep as much of the energy within
the process as possible.

Nowadays, air separation plants are often integral parts of other industrial

production facilities. Their capacities range from 25 [t/d] (tons per day) to 15000
[t/d] of processed air. E.g., the

plant depicted in Figure 2.1
consists in two identical cryo-
genic air separation plants and
has a capacity of 2 x 2150 [t/d]
gaseous O2 in 99.5[%] purity
and 2 x 600[t/d] gaseous Ng
with a maximum impurity of B
10 [ppm] Oq.

Currently, in  Mexico #
the world’s largest nitrogen ™
generation  facilities  pro-
vide 4 x 335000 [Nm?®/h]
(= 4 x 10000 [t/d]) pure nitro- EHaMes
gen [Lind 98]. The nitrogen =
is injected into an oil well in i
order to increase crude oil pro-
duction. The facilities consist
of four identical cryogenic air m=-

separation plants built by the =7 . -
Linde AG, each of which is F_lgure 2.1: An air separation plant
Linde AG).

ey

(picture by

o E S i )

larger than any other currently
existing air separation plant. The energy required is generated by an auxiliary
550 [MW] power plant.

By the arguments given above, modern air separation plants are very complex
industrial facilities with increasingly growing demands on productivity, safety,
and efficiency. In consequence, construction and operation must rely more and
more on numerical simulation.

A critical phase in the control of these plants occurs when a load-change,
i.e., a transition from one operational point to another one (e.g., from 100% to
60% air throughput) must be performed. It is of utmost importance that various
constraints on gas concentrations at certain points in the plant are not violated
in order to guarantee safe operation of the plants and purity of the products also
during the load-change (as an example the data for an existing air separation plant
are given in Table 2.2; see also, e.g., Section 6.3.5, Section 6.3.6). Other objectives
such as maximisation of product gain or minimisation of energy consumption are
of minor importance. During a load-change the controls of the process essentially
consist of continuously working valves (see Figure 2.2).

The numerical treatment of this difficult problem using the powerful tools of
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Table 2.2: Example 2: Data on constraints to be satisfied during load-changes of
an existing air separation plant of the type shown in Figure 2.2 (cf.,
e.g., [EKKS 99]).

name min max description
[mol/mol] |[mol/mol]

02 LOX 0.997 1.0 05 fraction in liquid Oy product
09 GOX 0.997 1.0 05 fraction in gaseous Og product
0O, DLIN 0.0 |[5.0-107%| O, fraction in liquid Ny product
02 GAN 0.0 5.0-107%| Oy fraction in gaseous Ny product
Ar Prod 0.965 1.0 Ar fraction in Ar product

Oq feed ArC| 0.90 1.0 O, fraction in feed of argon column

numerical optimal control (for an overview see, e.g., [BBBB 01]) provides the basic
motivation for this thesis; though, the techniques presented here may also apply
to other optimal control problems.

2.1.2 The Basics of Cryogenic Air Separation Plants

The development of efficient solution procedures for difficult optimal control prob-

lems originating from industrial real-life applications requires sound knowledge of

the engineering background as well as of the physics (or chemistry, biology, ...) of

the underlying application. Therefore we discuss in this section the basics of cryo-

genic low pressure air separation plants, cf., e.g., [BBKS 83], [Rohd 94], [Voit 94].

The different operational groups introduced below can be found in Figure 2.2.
Cryogenic air separation basically works in the following way:

1. In the feed preparation section the feed air is compressed, pre-cooled, and
washed. Water and carbon dioxide are removed in molecular sieves.

2. The dry air is cooled near to the dew point (= —170°C). Heat is transferred
in the main heat exchanger. The cooling duty originates from the cold prod-
ucts leaving the process and from compression/expansion processes. (For
clarity, details of the cooling facilities such as the nitrogen cycle are omitted
in Figure 2.2.)

3. The separation of the various components of the feed air takes place in the
rectification section:

(a) In the high pressure column (HPC, pressure = 6 [bar]), the feed is
separated into pure liquid high pressure nitrogen at the top of the
column and impure liquid high pressure ozygen at the sump of the
column.
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Figure 2.2: A simplified flowsheet of a low pressure cryogenic air separation

plant without refrigeration cycle according to [BBKS 83], [ELBK 97],
[Zapp 94].

main units: 1: filter, 2: compressor, 3: cooling, 4: flash, 5: molecular
sieves, 6: main heat exchanger, 7: compressor/expander, 8: cooling,
9: high pressure column, 10: low pressure column, 11: argon column,
12: heat exchanger

products: GAN: gaseous Ny, DLIN: high pressure liquid N9, GOX:
gaseous Oo, LOX: liquid Os, crude Ar

controls: a: GOX drain, b: crude Ar drain, c: Ar condenser turnover,
d: reflux HPC, e: reflux LPC

constraints (an example set of constraints is specified in Table 2.2):
A: Oy LOX, B: O4 GOX, C: Oy DLIN, E: Ar Prod, F: O, feed ArC

The high pressure oxygen is fed into the low pressure column (LPC,
pressure =~ 1.5 [bar]) at the middle section; high pressure nitrogen is fed
into the low pressure column at the top section. At the top of the low
pressure column highly pure nitrogen is obtained. At its bottom oxy-
gen with about 0.3 [mol%] impurities is removed in liquid and gaseous
fractions.

At a certain position in the middle section of the low pressure column
(the argon side-stream level) a gaseous fraction is drained off which
contains argon in a higher concentration. This fraction is fed into the
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argon column. At the top of the argon column, crude argon is removed.
The sump product of the argon column is fed back into the low pressure
column.

It is of crucial importance that the feed of the argon column contains nitrogen(
only in a very low concentration as otherwise the rectification process in this
column can break down. Due to the strong interaction in the plant this would
cause harm to the entire air separation process. Once nitrogen has entered the
argon column exceeding a critical amount there is no quick countermeasure due
to large time constants present in the air separation plant. E.g., according to
[MoLe 91] a typical high purity distillation column has an open-loop time constant
of approximately 200 [min], and a generally achievable closed-loop time constant
of approximately 20 [min]. This means that when it becomes obvious that the
process dynamics tend to evolve into an undesired state it is already too late
for counteractions. Even worse, a load-change strategy that fulfils all constraints
within, say, the initial two hours, can lead to a break down one hour later.

2.2 Modelling and Simulation of Chemical En-
gineering Processes

We accept as an aziom
that a meaningful system
produces meaningful mathematics.

Bellman [Bellm 71}, Sect. 14.1

Numerical simulation and optimisation tools have become indispensable in the
development and design of chemical engineering processes [Marq 91], [Sawy 92],
[Voit 94], [BAFG 98], [Marq 99al:

On the one hand, production has to be steadily improved, i.e., feedstock and
energy consumption has to be as efficient as possible — which also includes the
trend to more flexible plant operation — while product quality still has to be guar-
anteed. On the other hand, growing restrictions on pollution have to be satisfied.
Additionally, safety and risk analysis is necessary in order to allow safe operation
of the highly optimised processes. Finally, the development of the processes itself
has to be fast and efficient while meeting all of the demands above.

®In normal operation the measurement of the very small nitrogen fraction at the argon
transition is not feasible. As a remedy, the oxygen fraction is measured. This indirect
technique is justified by physical reasons as an appropriate lower bound on the oxygen
fraction excludes a breakthrough of nitrogen at the argon transition (cf. Table 2.2: O,
fraction in feed of argon column).
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Figure 2.3: The flowsheet, a graph oriented description of a process.

2.2.1 Flowsheeting

Due to the the complexity of the plants and due to the high accuracy requirements
in industrial application (cf., e.g., Table 2.2) the process models are typically of
large scale (consider, e.g., the example given in Section 6.2.3). Therefore, such
models have to be generated by means of computer-aided modelling tools.

In general, the mathematical model of a chemical engineering plant is based
on the flowsheet of the process. A flowsheet is a graph-oriented description which
consists in the parts of a plant (the units) in its nodes while the edges between the
nodes represent physical flows or flows of information (the streams), see Figure 2.3.
This flowsheeting technique is a common tool in chemical engineering [ELBK 97].
A simple flowsheet has already been shown in Figure 2.2.

The graph-oriented description allows automated compilation of the entire
mathematical model of the plant using standard or legacy models of the single
units, cf., e.g., [HRW 99]. In turn, the standard models are provided in unit li-
braries.

Example 3:

As an example for a standard unit consider the single stage thermal separator
(flash), see Figure 2.4. In the flash drum the feed is separated into a vapour fraction
which is richer in the lower boiling components, and into a liquid fraction which is
richer in the higher boiling components. The vapour ascends and is removed from
the top of the drum while the liquid is withdrawn from the bottom. An index-2
DAE model of the single-stage equilibrium separation unit with neglectable holdup
in the vapour phase is given by [ELBK 97] (if)

d
SM=F-V-1L, (2.1a)
d
E(M:I:N):qu—Vyﬂ—La:“; p=1...,nc0mp—1, (2.1b)
Ncomp

Y ozu=1, (2.1¢)
n=1

()Tn order to keep consistency with the chemical engineering literature we temporarily
overload symbols which have already been used in a different context.
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Figure 2.4: Flash drum.

Ncomp
d =1, (2.1d)
pu=1
yu = Ku(T,P,z,y)z,; p=1,...,%o0mp; (2.1e)
L=3&(M), (2.1f)
%(MhL) = Fr' —VvhY — LRt +Q, (2.1g)
h* =nt (1", P z), B =hV(TV,PV,y), (2.1h)
PV=pl=p, TV=Tl=T, (2.1i)

where M is the molar liquid holdup in drum, V and L are the molar vapour and
liquid flowrates, =, and y,, are the mole fractions of component p, u = 1,..., Neomp,
in liquid and vapour, h” and hY are the molar enthalpies of liquid and vapour, T,
T, and TV are the temperatures in drum, liquid, and vapour, and P and PV are
the pressures in liquid and vapour. The pressure P in the drum, the heat source
Q, the flowrate F' of feed, the mole fraction z, of component u, 4 =1,..., Neomp,
in the feed, and the molar enthalpy of the feed hf" are chosen as control variables.
For further details on the model see, e.g., [ELBK 97].

Once Egs. (2.1a)—(2.1i) have been inserted into a library this model can (and
as one of the fundamental units in chemical engineering will) be used several times
within a flowsheet without the need to care for the underlying equations. O

Example 4:
Another example is the model of a simple one dimensional heat exchanger unit
Egs. (3.58)—(3.63) discussed in Example 6 on page 131). 0
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2.2.2 The Numerical Tools

As reviewed in [Marq 99a] the beginnings of numerical process simulation date
back to the early 1950’s. Since then numerical process simulation has experienced
a rapid progress. Nowaday several sophisticated software packages for the numer-
ical treatment of chemical engineering processes are available, e.g., ABACUSS
([FeBa 96] [PBa 96], [Allg 97], [Feeh 98]), ABACUSS II ([Bart 00], [TCB 01]),
AsPEN CusToM MODELLERO (which is based on SPEEDUP" [Bart 00]), DIVA
([HMG 88], [KHMG 90], [Krén 02]), GPROMS" ([Bart 92], [PaBa 93], [OhPa, 96]),
HYSYSO, OPTISIM" ([Burr 91], [Burr 93], [BMS 94], [Voit 94], [Zapp 94],
[ELBK 97], [EnSc 97], [Sorg 97]), and SPEEDUP" ([Pant 88b]).

[Marq 91] gives a detailed overview on the issues connected to dynamic pro-
cess simulation and a summary of the simulation tools available in the early
1990’s. Some of the tools are compared in [KFGE 97] (ABACUSS, DIVA, and
GPROMS") and in [Luyb 01] (AsPEN DyNamics(l, HYSYSO).

The simulation tools can be classified according to the methodology they em-
ploy for solving the model. [Bart 00] discusses three basic methods:

e In the simultaneous equation-oriented method [PaBa 93] the entire flowsheet
is translated into a single system of equations which is then solved simulta-
neously. In application these systems are typically very large.

e In contrast, the sequential-modular method [HiHe 86] proceeds step-wise.
Each unit is simulated on its own, using the input generated from the sim-
ulation of the upstream units. After convergence the result is passed on to
the downstream units.

e The simultaneous-modular [Bart 00] method blends the two methods above.
Here the overall system of equations is partitioned into blocks of equations
which are solved in sequence. The partitioning is done independently from
the division of the process into units.

A remarkable result of [Bart 00] is that in application the sequential option is still
indispensable although the simultaneous method is theoretically and numerically
more appealing. On the one hand, the simultaneous equation-oriented approach
is better suited for more sophisticated tasks such as e.g., dynamic simulation,
dynamic sensitivity analysis, and optimal control than the sequential-modular
method. On the other hand, in practice the sequential-modular technique is
the more robust and reliable tool for generating an initial steady-state solution.
The problem of simultaneous equation-oriented approach is that multi-dimensional
Newton-type root-finding methods (which in general are at the core of these simu-
lation algorithms) require an initial guess sufficiently close to the desired solution.
In contrast, the sequential-modular method can use unit specific knowledge in
order to find a solution.

Basis of our practical work is the software tool OPTISIM" [Burr 93], [ELBK 97].
OPTISIM" is an in-house modelling, simulation, and optimisation tool of the
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Linde AG. Its steady-state calculation capabilities include design optimisation,
data reconciliation and parameter fitting, and optimisation of plant operation (on-
line and off-line). Its dynamic calculation features cover the development of control
strategies, the tuning of control parameters (trial and error), and operator train-
ing. Recently, OPTISIM" has been extended with an optimal control algorithm
[EKKS 99]. This optimal control algorithm serves as our starting point.

Within OPTISIM" a unit model in general consists of a set of differential
and/or algebraic equations together with their first order partial derivatives coded
in executable form. Additionally, switching functions are provided if necessary.

In standard operation OPTISIM" employs the simultaneous equation-oriented
simulation technique; the computation of a steady-state solution can also be per-
formed in the sequential-modular mode. In order to compile the model of an
entire process in the simultaneous equation-oriented mode OPTISIM" analyses
the flowsheet of the plant, assigns the vector of state variables, and generates a
calling sequence for the unit models. The evaluation of the numerical model of
the flowsheet or of its partial derivatives consists then in the combination of the
evaluations of the unit model equations or of the partial derivatives connected to
each unit in the flowsheet, respectively.

2.2.3 Special Properties of the Models Considered

In general, dynamical process models of chemical engineering plants are described
by DAEs in linear implicit form (cf. Definition 1.3). OPTISIM" uses semi-explicit
DAE models(i)

©(t) = f(¢,=(t),y(t), u(t), signq(t, (t),y (1), u(?)), (2.2a)
0= g(ta .’B(t), y(t), u(t)a sign q(t, w(t), y(t)a u(t)) ’ (2'2b)

f : Rifnetnytnutmg oy Rre g : RiA7etnytnutme 4 Ry where discontinuities
are handled by switching functions g : R1t"= 7w +7u _ R™Ma For ease of notation
we include model parameters in the vector of external controls u : R — R"™ as a
special case.

In the applications of interest the models show several properties that become
important factors in the design and practical applicability of both off-line and
on-line optimal control algorithms.

2.2.3.a Size of the Models Considered

As already noted, dynamic models of the processes of interest are of very large
scale (in our case, ng + ny ~ O(1000) ... O(10000)). Currently the numerical
simulation of such models is still only possible by exploiting the sparsity of the

sign((q]) := [ign(qy). - sign(gn, )" € {~1,0,1}"™
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Jacobian matrices (about 0.01 to 0.1 percent nonzero entries), e.g., [ELBK 97].
Although the Jacobians neither possess any special structure nor in general exhibit
definiteness, their sparsity allows the application of special solvers designed for very
large and sparse linear systems of equations ([Duff 99] discusses various methods).

2.2.3.b Differential Index 2

The large-scale models of real-world air separation plants treated by the simulation
tool OPTISIMY exhibit an index of two, cf., e.g., Section 6.3.5 and Section 6.3.6.
The index of the DAEs has been verified in a structural sense by Pantelides’
Algorithm (see Section 3.1.5). This result has been obtained by the implementation
SPALG [UKM 95] of Pantelides’ Algorithm which was added to OPTISIM" in
the course of our research. Causes for the higher index of these DAEs can be found
at both, unit modelling level and flowsheet level.

As investigated by [GaCa 92] in some cases the higher index of single unit
models can be directly attributed to modelling issues. However, they also note
that under certain modelling conditions higher index problems cannot always be
avoided. A closer inspection of OPTISIM" shows that in part the higher index of
some of its process models is due to the modelling paradigms applied. Thus this
higher index has to be classified as a problem which is not easily avoided. In the
context of chemical engineering, the modelling of dynamic equilibrium processes
is a typical situation where higher index DAEs arise as there differential variables
are related by the phase equilibrium conditions [PGMS 88]. As an example for
the consequences of the specification of the simulation problem itself [PGMS 88|
examine the rigorous model of a rectification column. In the example problem
either the column top pressure or the column bottom pressure has to be specified
externally. If the column top pressure is fixed then the model is shown to have
a differential index of two. If the bottom pressure is fixed then the index column
equals the number of column trays plus one (note that high purity rectification
columns typically own 50 — 150 (theoretical) trays). If, however, the perfect control
law for the column top pressure imposed by the fixed pressure condition is relaxed
by a suitable real control law, or if it is replaced by a pressure drop relation then
the index of the model is one.

At flowsheet level the connection of several index-1 unit models can produce
an index of the overall system exceeding one [LeSr 93a], [LeSr 93b]. For the special
case of DAEs arising from the modelling of chemical engineering processes [Moe 95]
and [Kron 02] observe that these DAEs are in general of index 1 if all unit models
are of index 1 and if the units are coupled by algebraic states only.

[Matt 89] and [FeBa 96] state that problems with higher index arise naturally.
Therefore, higher index problems are an active field of research in chemical en-
gineering, e.g., [GPS 95], [Feeh 98], [EKKS 99]. Higher index problems are also
present in other fields of application, especially in models of electrical circuits (e.g.,
[GiFe 99a]) or in mechanical multibody systems (e.g., [ABES 93], [FuLe 91]).
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Finally, there is a controversy whether the treatment of higher index problems
is reasonable at all [Marq 91]. On the one hand, higher index problems are termed
as ill-conditioned, leading to the recommendation that they should be avoided. On
the other hand, they are considered as reasonable problems which can be handled
by tailored numerical methods.

Given a higher index DAE model index reduction may be performed in order
to obtain an index-1 model. In this context the dummy derivative method (cf.
[MaS6 92], [MaSo 93], [CeEl 93], and Section 3.1.6) has already been successfully
applied, e.g., in ABACUSS [Feeh 98], and DYMOLAD [CeEl 93], [ECO 93]. In
both algorithms automated formula manipulation is employed. In the case of
OPTISIM" automated formula manipulation is ruled out as the unit models are
available as executable code only. Thus the advantages of the index reduced model
have to be seen in relation to the numerical costs imposed by the necessarily numer-
ical differentiation of parts of the Jacobian of the DAE (cf. Section 3.2.3.b). Here
automatic differentiation (e.g., ADIFOR [BCCGH 92]) may be an interesting ap-
proach to be examined in future investigations. In the context of the presented
work automatic differentiation has been out of scope due to lack of resources for
implementation. Moreover, during the course of an integration the initially gen-
erated index-1 model can become inappropriate, and a new index-reduced model
has to be determined (dummy derivative pivoting, [MaS6 93]). The monitoring of
the index-reduced system requires numerical rank estimation [MaS6 93] which is
costly especially for large-scale DAE systems as in our setting. In order to address
this problem less expensive monitoring strategies have been investigated, cf., e.g,

[Feeh 98].

Remark 2.1:
The largest numerical examples considered by [Feeh 98] are the index-2 model of a dis-
tillation column with 195 equations, and the startup of a coupled CSTR. (continuously
stirred tank reactor) / distillation column section modelled by an index-2 DAE with 680
equations. o

In summary, reformulation of the unit models and index reduction by the
dummy derivative method may be considered as possible approaches in order to
obtain index-1 models instead of index-2 models in the industrial simulation en-
vironment OPTISIM". However, on the one hand the realisation of each of
these approaches requires considerable effort and resources. On the other hand,
algorithms suitable for the numerical integration and parametric sensitivity anal-
ysis of large-scale index-2 DAEs are already employed in OPTISIM" [ELBK 97],
[EKKS 99]. Therefore the decision has been made to stick to the DAE models,
and to extend the numerical algorithms where necessary (cf. Chapter 4).

2.2.3.¢c Discontinuities

Typically, the process models considered exhibit discontinuities. As already dis-
cussed in Section 1.3 the discontinuities are commonly classified into purely time
dependent discontinuities (where the time of the discontinuity is fixed, e.g., in
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Figure 2.5: A possible sequence of load-changes and phases of quasi-stationary
operation at constant load (process air input).

ramp forcing functions) and state dependent discontinuities which in general oc-
cur at a priori unknown times. State dependent discontinuities arise, e.g., due
to the physical nature of the process (such as in batch processes), by the neces-
sity for different models in different domains in state space (e.g., the model of
an open valve differs from that of a closed valve), or by necessary model simpli-
fications (say, continuously interpolated physical property measurements). State
dependent discontinuities are generally more difficult to handle than purely time
dependent discontinuities as their location requires considerable effort (cf. Section
1.3.2).

2.3 A Concept for Model Predictive Optimal
Control

Omnia tempus habent

et suis spatiis transeunt universa sub caelo.
(For everything there is a season,

and a time for every matter under heaven.)

The Bible, Qoh 3:1

2.3.1 Problem Setting

In common, cryogenic air separation plants are operated quasi-stationarily at a
constant load over many periods of time, i.e., the amount of processed air is kept
constant. From time to time a transition of the process to a different load has to
be performed (see Figure 2.5). Such a transition is termed a load-change. More
flexible plant operation is required. Thus load-changes will occur more often than
usual in the past. For the problems treated a load-change takes about 1 — 3 hours.
In our framework (see Figure 2.8 on page 49) the operator has to specify the type
of the load-change, and the optimality criterion to be minimised as well as the
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constraints to be satisfied during the load-change. As discussed in Section 2.1.1
and Section 2.1.2 the strict fulfilment of the constraints is of highest priority during
the load-change.

We now consider the optimal control of an air separation plant in permanent
operation, e.g., during a year ([tg,%f] = [0,365] days). The load history (see Fig-
ure 2.5) admits application of the Bernoulli-Bellman Principle of Optimality so
that we may split the long term optimal control problem into optimal control
problems on smaller horizons without loss of optimality. Each of these horizons
covers quasi-stationary operation at load A — instationary load-change — and
quasi-stationary operation at load B.

Given the specifications of the customer the quasi-stationary points of oper-
ation can be computed efficiently, cf., e.g., [ELBK 97|, [Sorg 97]. Therefore we
assume that the values of the state variables x; ,, /B and Yy, 44 /B and of the
control variables uy 4, characterising the different loads at the beginning and
at the end of the load-change are known.

In contrast to the quasi-stationary case the determination of load-change strate-
gies was mainly based on human expertise and experimental data in the past. This
data needs to be obtained from time and cost expensive tests conducted on the
ready-to-use air separation plant. As a consequence it has been proposed to employ
advanced numerical methods in order to facilitate the determination of the load-
change strategies. [Nijs 96] proposed a direct transcription method suitable for
index-1 DAE models in the context of air separation plants. A problem, however,
was the approximation of the gradients required for the sequential quadratic pro-
gramming (SQP) solver by finite differences of perturbed trajectories via external
numerical differentiation. Such an approximation is numerically costly, of limited
accuracy, and to be handled with great care [Kieh 99]. In [EKKS 99] a method
for the numerical off-line determination of load-change strategies for air separation
plants modelled by large-scale index-2 DAEs has been developed. This method is
based on direct transcription of the optimal control problem into an optimisation
problem employing the direct single shooting approach. Reliable gradient infor-
mation is obtained via computation of the sensitivities by efficient integration of
the sensitivity DAE associated to the model DAE (see Section 2.4 and [BBBB 01]
for details). However, only time-dependent discontinuities in the models have been
considered there. The extension of the algorithm for the numerical approximation
of sensitivity functions to DAE models with state dependent discontinuities will
be discussed in Section 4.3.

Applying the Bernoulli-Bellman Principle of Optimality we now split the long
term optimal control problem into a sequence of load change problems, each of
which can be solved separately. If we consider, e.g, the ;' load-change on a
prediction horizon Pj=[to j,t¢;], j = 1,2,3,. .., covering the entire load-change the
corresponding optimal control problem incorporating the DAE model Egs. (2.2a)—
(2.2b) can be formulated as:
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Definition 2.1 (Optimal Control Problem)

Let there be a dynamical process described by a model Eqgs. (2.2a)—(2.2b). Given
an interval in time [to j,tr;] C R, an objective function J : Cg — R in Mayer form
(represented by E : R1*t"=+nv — R)  path inequality constraints ¢ : R 7= +nytnu
R™e  point inequality constraints k;f : Ritretnytne _y R — 1 s Myic, and
initial conditions k™ : Ri*tne+nytnatne _y RMini the optimal control problem is
to find optimal controls w € Ch(R, R™) such that (iv)

Jlu] = Etrj, 2(trg), y(tr;) — min! (23)

subject to V)

In our applications each horizon P; typically covers approximately one up to several
hours of real-time. In general, the objective consists in a weighted sum of partial
objectives

Ju] =wiiu]l + -+ wp, Tnyul, w,>0v=1,...,n75,

corresponding to, e.g., product gain and energy consumption.

Remark 2.2:
J[u] may also include penalty terms in order to account for constraints that are hard to
fulfil, e.g., V9

te
jcu [U] = Ec,u(tf,j) = l (cu7+(t,a:,y,u,q))2 dta
0,5

cf., e.g., [VSP 94b)]. Here, ¢, : R'T"=+7y+nu _ R represents a real-valued component of
the multi-dimensional function ¢, i.e., g € {1,...,m.} fixed but otherwise arbitrary.

The penalty term J.,[u] vanishes at the eract solution of the infinite dimensional
optimal control problem Eq. (2.3). It becomes significant after discretisation of the con-
straints ¢ on a grid on the horizon [t ;, tf,;] which is one method to treat path (inequality)

((V)Without restriction of generality we consider optimal control problems with the ob-
jective functional in Mayer form. Objective functionals in Lagrange form or Bolza form
are easily transformed into Mayer form. Additionally, the weighted least squares objective
can be found in parameter identification problems, cf. Remark 2.3 below.

(™ For ease of notation we drop the arguments of the switching function, i.e.,

q:=q(t,z(t),y(t),u)).

(") The positive part of a real-valued function n(-) is defined as

n(-)+ := max(n(-),0).
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constraints numerically in the context of direct optimal control algorithms (cf. Section
2.4.2). O
Remark 2.3:
The optimal control problem specified in Definition 2.1 is not restricted to the load-change
problem. In case of a parameter estimation problem 7 describes a nonlinear least squares
objective consisting of a sum of squares of differences between values obtained from mea-
surement and simulation. E.g., if at the sample times ™™ v = 1,. .. nmm, Measurements
z'(?})m of (typically) a subset of the state variables 2 C {&1,...,Zn,,Y1,-- -, yny}, z € R"=,

are available, then the weighted least squares objective with weights w, € R;\{0},
v=1,...,n,, can be denoted as

gu= Y Y (s )

v=1,...,Nmmt, p=1
t
1 €, 5 ,4t1,5]

This type of objective applies to item (c) in Figure 2.8 on page 49 and is used in some of
the examples given in Section 6.2.3. O

2.3.2 Model Predictive Control
Prediction is very difficult, especially of the future.

Niels Bohr

In the last decades the (nonlinear) model predictive control (N)MPC) strategy
has been developed which can serve as a basic framework for an online solution of
the optimal control problem Eq. (2.3).

Originally, MPC algorithms have been investigated since standard controllers
— typically, PID controllers (proportional plus integral and derivative controllers,
cf., e.g., [Dubb 81], [Fish 91]) — are no longer able to fulfil increasing requirements
on controller performance [BiRa 91]. Especially, tightly coupled processes, plants
operated in largely varying regions of operation, and process constraints are diffi-
cult to handle with standard PID controllers. Here, the prediction of the process
behaviour makes MPC suitable for complex processes and changing operational
regimes — as far as covered by the process model. At the same time MPC provides
a means for explicit incorporation of both hard and soft constraints as a part of
the controller formulation.

Still most process control problems can be successfully addressed by conven-
tional control schemes, cf. [Sebo 99]. Therefore [Sebo 99] recommends to apply
advanced control schemes such as (N)MPC only if they offer significant advan-
tages over conventional control techniques. In this context [LoPe 99a], [LoPe 99b]
analyse the dependency of the economic benefit of an MPC controller from the
structural design of the control loop.

2.3.2.a General Work

[EaRa 92] define model predictive control as
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objective

process state
[model parameters/ disturbances]

Figure 2.6: The basic structure of an MPC control loop, adapted from [PRE 90],
[Rawl 99]. Items in square brackets [...] are optional or advanced
features.

u: controls, yP: plant outputs, y™: measured outputs,
wP: external process disturbances, w™: measurement errors

Definition 2.2 (Model Predictive Control)

Model predictive control (MPC) is a control scheme in which the controller deter-
mines a manipulated variable profile that optimises some open-loop performance
objective on a time interval extending from the current time to the current time
plus a prediction horizon. This manipulated variable profile is implemented until
a plant measurement becomes available. Feedback is incorporated by using the
measurement to update the optimisation problem for the next step.

[EaRa 92] emphasise that the characteristic feature of model predictive control is
the repeated solution of an open-loop optimal control problem over a time horizon
starting at the present and extending into the future. The incorporation of process
knowledge in form of a model is not a proprietary feature of MPC since classic
feedback controllers may also include process models. The general control structure
is sketched in Figure 2.6.

Definition 2.2 already contains the basic strategy for an MPC algorithm. The
corresponding algorithm consists in the repeated execution of the following steps
during the progress of the process:

Algorithm 2 (Basic MPC Algorithm)
1. Initialise system. Fix an initial control strategy.

2. Implement the open loop control on the actual control horizon. In parallel,
execute the subsequent calculations.

3. Estimate the state of the process.

4. Compute an open loop optimal control on the actual optimisation horizon
using the estimated state as initial conditions.

5. Advance optimisation and control horizon in time.
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Figure 2.7: The progress of an ideal moving horizon model predictive controller
in time (without delay due to measurement, data transfer, estimation,
and feedback computation). A sketch considering these dead-times
can be found in [BBBB 01].

P,.3: prediction horizon, Cs.3: control horizon, x*?%3: predicted opti-
mal internal process states on P.3, u*%3: open-loop optimal control
on the respective prediction horizon.

6. Continue with step 2.

The optimisation horizon is the interval in time starting with the present on which
the open-loop optimal control problem is solved, i.e., the portion of the future for
which a prediction of the process behaviour is made and then taken into account
for control design. The control horizon is a subinterval of the prediction horizon (in
general, it is a proper subinterval of the prediction horizon). Only the restriction of
the open-loop optimal control to the control horizon is implemented. A schematic
overview of the progress of the algorithm in time is given in Figure 2.7.

The length of both the prediction horizon and the control horizon are two
tuning parameters in the moving horizon technique. An enlargement of these
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horizons increases the robustness(Vil) against modelling errors and disturbances.
However, also the reaction time deteriorates and the computational time required
for the larger optimal control problems grows [PRE 90].

Model predictive control methods are classified into LMPC and NMPC meth-
ods. In case of a linear process model, a quadratic objective function, and con-
straints that are linear in the controls the respective algorithm is termed a lin-
ear model predictive control method (LMPC). Otherwise (especially if the model
is nonlinear) the control algorithm is called a nonlinear model predictive control
method (NMPC) [BiRa 91].

Although constraints are easily incorporated into the MPC formulation they
can lead to problems regarding stability already for linear moving horizon con-
trollers with finite prediction horizon. If an infinite prediction horizon is applicable
it removes instability, however at the cost of infeasibility(") [RaMu 93]. [AlBo 95]
have shown the existence of a finite prediction horizon for NMPC with a discrete
time model and explicit state and control constraints such that the controller is
asymptotically stable, given that some technical assumptions hold. Yet the compu-
tation of the required length of the horizon is impractical. According to [ScRa 97]
a final solution for the stability problem for constrained MPC in the general case
has not yet been found.

Remark 2.4:

In the context of nonlinear control systems already the definition of stability is nontrivial.
Especially, there is no single definition of stability [AlDo 97]. For further information we
refer to the discussion of stability in [AlDo 97]. O

[HAM 00] consider the decomposition of the control problem according to dif-
ferent time scales inherent in the process. If the disturbances can be split up into
a constant or slowly varying part and into high frequency noise also the control
algorithm naturally decomposes into tasks that have to be performed infrequently,
such as the estimation of slowly varying parameters, and into tasks that have to
be solved in higher frequency, such as the computation of new optimal controls.
E.g., [LiBi 90] employ this decomposition in their Newton-type control method.

Until now, the ongoing research has produced a variety of predictive control
approaches. The interest in this field is mirrored in a huge number of publications
so that the following discussion can only give some aspects of the work that has
been done (however, [Mayn 00] asserts convergence of the NMPC techniques pro-
posed). For further information and in some cases extensive bibliographic reference

(Vi) «A property is robust if, should the property hold at one point, it holds in an open
neighbourhood of that point. [...] Robustness [in the context of automatic control] refers
to the notion that small changes in initial conditions and/or structural properties of the
system elements preserve solution properties [...] and yield only small variation in closed
loop performance [...].” ([BGW 90], p. 5).

(viii) According to [ScRa 97] infeasibility means that no sequence of control inputs within
the input limits exists which satisfies the state constraints (or, in our more general setting,
the path constraints).
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we refer to general reviews, e.g., [GPM 89], [Bequ 91a], [Fish 91] (who also pro-
vides reference to standard control techniques), [Mayn 97], [MeRa 97|, [Hens 98],
[ABQRW 99], [MoLe 99], [Rawl 99], [Sebo 99], [MRRS 00], [BBBB 01].

Furthermore, [Benn 96] gives an interesting overview on the historical devel-
opment of (conventional) automatic control, and [AlZh 00] survey many recent
results.

2.3.2.b Linear Model Predictive Control

[MuRa 93] discuss LMPC in a theoretical framework given by a stabilising infinite
horizon linear quadratic regulator. Other overviews on LMPC can be found, e.g., in
[GPM 89], [LeCo 97]. E.g., DMC (dynamic matrix control) and QDMC (quadratic
dynamic matrix control), [EaRa 92]), MAC (model algorithmic control), and IMC
(internal model control, [GaMo 82]) are LMPC methods.

The basic MPC algorithm does not prescribe a certain kind of representation
for the process, although the particular choice of the model affects the final al-
gorithm, e.g., in the range of processes that can be treated (such as integrating
systems), in the incorporation of disturbances, and in the applicability to more
complex systems. Model types traditionally used for LMPC are step response
models, finite impulse response models, transfer function models, and models in
state space form [MoLe 91], [Rick 91]. Other models are considered, e.g., in the
review of [BBBB 01]. An issue besides the modelling of the known process is the
modelling of a priori unknown disturbances. In the context of LMPC [MoLe 91]
show that inappropriately modelled disturbances can lead to poor closed-loop per-
formance independent from the tuning of the controller.

2.3.2.c Nonlinear Model Predictive Control

Chemical engineering processes are known to be inherently nonlinear. Thus the
quality of the prediction based on a linear model (as in LMPC) is limited in case of
processes operated in larger operational regions or processes subject to significant
disturbances. In order to obtain a better prediction of the system behaviour a
straightforward step is to employ a nonlinear process model [ABQRW 99], aiming
at an improvement of the control performance.

In this sense NMPC can be regarded as an evident extension of LMPC. How-
ever, the nonlinearity makes its theoretical and numerical investigation cumber-
some and renders its application far from trivial. Questions arise for, e.g., stability
and robustness of the method, efficiency of the calculations, suitable feedback de-
sign incorporating disturbances, and proper handling of constraints [BiRa 91].

The solution of the nonlinear programming problems (NLPs) resulting from the
MPC formulation after discretisation of the optimal control problems defined on
the moving prediction horizon poses two major problems. Either the convergence
of the NLP solver may be too slow, or the solver may not converge to a suit-
able solution at all. In order to address the first problem [BiRa 91] recommend
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to utilise the warm start capabilites of modern NLP solvers, to abort the NLP
solution process prematurely and continue with this result, or to solve a relaxed
control problem (the latter will be discussed in Section 2.6.3). The second prob-
lem can be alleviated by cascading the optimisation-based controller with lower
level controllers, e.g., with PID controllers. If cascaded, the optimisation-based
controller can be taken out of the loop without causing a shut-down of the pro-
cess. Additionally, the resulting two-stage controller offers improved robustness
properties [BiRa 91]. In this context [Mayn 00] emphasises that the basic problem
is in the nonconvexity of the NLP which is in general observed for NMPC.

[Rick 91], [Lee 00] emphasise that the difficulties connected with the generation
of a suitably accurate nonlinear model pose one of the main obstacles in NMPC
besides the timing constraints in the online framework noted above. [Rick 91]
considers the combination of nonlinear steady-state models with low order linear
time-invariant dynamic models, models in linear time-invariant dynamic form but
with time-varying parameters, and nonlinear ODE (state-space) models. [Lee 00]
also discusses nonlinear extensions of modelling techniques known from linear sys-
tem identification such as NARMAX. In this context neural networks are of special
interest as an alternative to the complexity in the development of models based on
physical knowledge (fundamental models) and to the difficult model identification
procedure required [Rick 91]. Practical issues of neural networks in process mod-
elling are discussed in, e.g., [Qin 97]. In the long term it is to be expected that
both fundamental models and empirical models will be tied together in order to
complement each other [Miha 99], [Lee 00].

Stability and robustness for NMPC are issues under active investigation. Sev-
eral methods have been proposed in order to arrive at NMPC schemes with guar-
anteed stability. Addition of a terminal equality state constraint to the online
optimal control problems has been used, e.g., in [MaMi 90]. However, due to
numerical and theoretical restrictions this approach is not recommended for prac-
tical application [ChAl 98]. For a class of finite horizon NMPC applications with
nonlinear time invariant ODE model and control constraints [YaPo 93], [Oliv 96],
[OIMo 96a], [OIMo 96b] obtain stability by addition of a contractive constraint to
the repeatedly solved optimisation problems. Again, this technique is not suitable
for practical applications [ChAl 98]. [MiMa 93] have proposed to employ a reced-
ing horizon controller in order to reach a terminal region, and then switch to a
stable local linear controller within this region. The resulting dual-mode controller
is then stable. The main problem of the dual-mode controller is in the computation
of the terminal region and of the stabilising linear controller. Starting from the
idea of the dual-mode controller quasi-infinite horizon NMP(C has been developed,
cf., e.g., [ChAl 96], [ChAI 98]. Similar to the dual-mode controller the infinite
time horizon is split into a finite interval and an infinite remainder. In quasi-
infinite horizon NMPC then the contribution of the infinite part to the objective
is taken into account by a terminal penalty term. As the terminal penalty can be
determined offline only a finite horizon optimal control problem needs to be solved
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online. Further information on stability and robustness in the context of NMPC
can be found in [ChAl 98]. [ChAI 98] also state that a general robustness theory
for NMPC is still missing. [NMS 00] give a concise and practically oriented com-
parison of the various approaches employed in order to obtain NMPC algorithms
with guaranteed stability properties. In the context of robustness they especially
mention o, control as a promising technique. [AlDo 97] address stability and ro-
bustness analysis for NMPC, controllability and observability of nonlinear control
systems, and nonlinearity measures in a differential geometric control framework.

Remark 2.5:
An early treatise on controllability and observability of linear time invariant DAEs has
been given in [YiSi 81]. O

[FiAl 99] examine NMPC with index-1 DAE models. They conclude that most
of the MPC schemes developed for ODE models can be applied, eventually after
some minor modifications. As an example they design a quasi-infinite horizon
NMPC algorithm which uses control parameterisation (see Section 2.4) in order
to solve the open-loop optimal control problem and apply it to the control of a
high-purity binary rectification column. [DUFS 01], [Dieh 01] use direct multiple
shooting (again, we refer to Section 2.4) in connection with NMPC for index-1
DAE models. In order to improve the real-time capabilities of their approach they
employ a special warm start technique for the underlying SQP solver extending,
e.g., [LBS 97]. [Bell 97] develop an approach for robust constrained NMPC which
handles index-1 DAE as well as — at least theoretically — DAEs of any finite con-
stant index by a derivative-free partitioning technique. The constraints are treated
by introduction of slack variables in connection with an interior point method. In
order to obtain robustness the (inequality) constraint bounds are modified using
linearisation and an estimation based on Gronwall’s Lemma such that their fea-
sibility can be guaranteed in a neighbourhood of the nominal solution at least
during the control horizon. The optimal control problem is solved numerically
by an indirect approach; in order to do so necessary conditions for constrained
optimal control problems with an index-1 DAE model are derived. [KuDa 98],
[KuDa 99] emphasise that the formulation of a process model as a higher index
DAE may be advantageous for controller design if this higher index is caused by
the approximation of fast reactions with quasi steady-state conditions. In such a
case a model with exact rate conditions is typically stiff due to largely different
time scales. This, in turn, can lead to controller ill-conditioning and instability.
Therefore they propose an algorithm for the design of controllers based on higher
index DAEs which relies on a special index reduction into ODE form.

In the end, however, according to [MoLe 99] fully nonlinear MPC is not widely
spread in industry as there has not been a clear justification for the online solution
of NLPs together with the underlying nonlinear dynamics. Instead, linearisation
approaches are employed, cf., e.g., [Bequ 91a], [Hens 98]. The various methods
and their extensions attempt to apply linearisation as far as required in order to
arrive at a suitably simple control problem while at the same accounting for the
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process nonlinearities in an adequate manner.

2.3.2.d State Estimation, Parameter Estimation, and Data Rec-
onciliation

The state estimator is one of the central parts of the MPC algorithm (see Fig-
ure 2.6 on page 40) as feedback in MPC controllers is achieved by the update of
the current process state used as initial conditions for the solution of the moving
optimal control problems [MuEd 97]. Parameter estimation is required in order
to provide a suitably tuned process model, which is essential for a successful MPC
implementation (see above). Dynamic data reconciliation primarily is a step in
which the imperfect transient measurement data is preprocessed for state and pa-
rameter estimation in such a way that it is consistent with the predictions from the
model. In general estimates of the process state, of unknown process parameters,
and information on the model uncertainty are obtained simultaneously with the
adjusted measurements [BBDM 98].

Especially in the nonlinear case these tasks are complex, difficult, and still
subject to investigation. Yet we will only pay attention to some aspects in this
area as the details are beyond the scope of this treatise. For a more general
discussion of state estimation and data reconciliation we refer to, e.g., [LEL 92],
[MuEd 97], [BBDM 98], [Soro 98], [ABQRW 99].

[BGW 90] emphasise the close interplay between state estimation and control
algorithm. This has also been confirmed in the context of modern control and
estimation methods [AHM 98]. In the work of [AHM 98] an optimisation based
estimation technique (receding horizon estimation, RHE) has shown superior to
the classical extended Kalman filter (EKF). Similar earlier results have also been
summarised in [LEL 92]. [MiMa 95] construct an MPC controller explicitly using
a moving horizon observer.

The motivation for the time window approach employed in RHE, or synony-
mously, in moving horizon estimation (MHE) is to limit the amount of data used
for state estimation due to real-time requirements. Without this restricted point
of view the measurement data to be used as the basis for state estimation steadily
increases with time, finally rendering the estimation problem intractable. How-
ever, as pointed out in [RaRa 00] a plain MHE approach can lead to instability.
Therefore, the concept of arrival cost has been introduced which reintroduces past
data that is not part of the estimation window. In oder to guarantee stability
of the estimator it is sufficient to penalise a suitable global lower bound on the
arrival cost. Still the problem is to obtain this global bound. Therefore, [RaRa 00]
develop an alternative stable MHE estimator which does not require the global
lower bound on the arrival cost.

A practical aspect in application is that typically not all measurement data is
available at the same time, i.e., some measurements such as temperatures can be
obtained frequently, while other measurements such as concentrations are taken
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infrequently. Therefore, [Bequ 91b] propose a multirate approach for state esti-
mation and data reconciliation, which in the case of RHE amounts to a slightly
generalised objective function.

[BBDM 98], [BBDM 01] develop an RHE algorithm for dynamic data recon-
ciliation of DAE models based on a simultaneous optimal control strategy using
wavelets. This wavelet-based strategy is especially suitable in a real-time environ-
ment as from iteration to iteration the solution is steadily refined. Thus a coarse
approximation may be used in case of a lack of time, or an improved approximation
may be used if more computational time is available. [SBR 00] consider state and
parameter estimation for a class of DAE models. They propose to apply standard
LQ filters or EKF to the index reduced system. Nonlinear DAEs are treated by
linearisation of the system around a reference trajectory. The problem of consis-
tent initial conditions is not dwelt into deeply. [Grup 96], [HeSt 96], [SWS 95] use
optimisation based approaches for parameter identification in DAEs.

2.3.2.e Industrial Application of MPC

[QiBa 97], [QiBa 00] provide overviews of commercially available linear model pre-
dictive control algorithms. Additionally, the historical development of the MPC
technique is reviewed.

According to [Hens 98] on the one hand currently all industrially available MPC
algorithms are based on linear approaches. On the other hand, there are strongly
nonlinear processes or processes with largely varying operational conditions which
necessitate the application of nonlinear control methods. However, [Hens 98] see a
number of open questions in the context of NMPC, e.g., the adequate modelling of
nonlinear processes (as already mentioned above), robustness and stability analysis
for nonlinear control schemes, a measure for nonlinearity in order to facilitate
the choice between linear and nonlinear methods, and finally the investigation of
NMPC algorithms that are suitable for application to large-scale problems (such
as real-time optimal control of entire plants). As noted above, some of these
questions (stability and robustness analysis, nonlinearity measures) have already
been addressed, cf., e.g., [AlDo 97].

[OgWr 97] review the state of nonlinear process control in the chemical engi-
neering industry arriving at a similar result as [Hens 98]. They state that due to
economical reasons plants have to be operated such that nonlinearities inherent
in the processes become more and more obvious. Thus nonlinear control will be-
come increasingly important although presently linear control is the predominant
technique.

Still MPC is not the final solution to all control issues. E.g., [GRP 91] em-
phasise that limitations in process understanding and thus shortcomings in the
modelling set the limits in the implementation of MPC control loops. Besides
a discussion of model identification and validation issues they therefore introduce
the total control concept, which contains an explicit exception handling layer above
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the (MPC) control layer. Within the exception handling layer the process is mon-
itored, abnormal operation is detected, and corrective action is implemented (in
practice this layer always exists; it may only not be recognised as such). According
to [GRP 91] full automation of the exception layer — and thus of overall plant con-
trol — in general is not applicable, as the human process understanding required
for the appropriate counteractions is often difficult to fit into an algorithm.

2.3.3 The Overall Optimal Control Concept

Inspired by the idea of model predictive control as discussed in Section 2.3.2 we
have developed a concept for an online optimal control method. Our concept
is summarised in Figure 2.8. In its design we have taken into account several
important characteristics present in our special problem setting:

e The processes to be controlled are of very large scale as we consider highly
integrated industrial plants (especially cryogenic air separation plants).

e The processes show a highly nonlinear dynamic behaviour.
e The fulfilment of (nonlinear) path constraints is essential.

e Although the governing time constants of the process are relatively large (cf.
Section 2.1.2), also disturbances on smaller time scales have to be considered
in order to avoid intolerable drift away from a previously determined optimal
operation strategy. Otherwise loss of optimality — or more severe — violation
of the constraints may be the consequence.

e Detailed rigorous nonlinear dynamic process models are available.

The concept consists in several interconnected components (bold letters refer to
Figure 2.8):

e The operator (a) specifies the optimal control task. He (or she) defines the
final process state to achieve (e.g., (%), respectively x(ts;)), the objective
to be minimised by optimal control, and the constraints.

As an example the optimal control task can consist in a load-change of an
air separation plant from state A (100% load) to state B (60% load) within
1-2 hours. The product gain is to be maximised without violating safety
constraints and product specifications.

In general, the operator is a human who also supervises the process, e.g,
the operating personnel of an air separation plant. The operator may (rel-
atively) infrequently reformulate the optimal control problem, i.e., he (or
she) may choose a different objective, may select alternative constraints, or
may request a new final state. In case of an air separation plant additionally
the downstream customer (such as a steelworks) may request varying prod-
uct specifications (especially product amounts and purities). These product
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Figure 2.8: Overall concept of a model predictive control algorithm for real-time

optimal control of large-scale dynamical systems.

Solid lines indicate the flow of information from one item to another
item in the (direction defined by the arrows), the dotted lines indicate
in which parts of the control concept the process model enters enters

as a basic ingredient of the computations.

specifications are then transformed into corresponding (optimal) points of

operation for the air separation plant.

e A very detailed (and thus large-scale) process model (b) provides the basis
of the real-time optimal control concept. It consists in a large system of
ODE:s or of DAEs (the latter being our model type of interest, see Section
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2.2.3).

In order to preserve the reliability of the model on the long term the model
is recalibrated from time to time. To this end the model parameters are es-
timated by an optimisation based parameter estimation algorithm (c) using
measurement data collected over a longer period of time (as an example con-
sider, e.g., the parameter estimation problem discussed in Section 6.3.2). By
this model adaptation disturbances with low frequency or gradual changes
in the process can be considered. In the context of chemical engineering
systems typical disturbances of this class are, e.g., fouling of heat exchanger
areas and decalibrated or malfunctioning sensors.

The state estimator (d) determines the process state for all state variables of
the process model at the current time. According to the respective applica-
tion different real-time requirements have to be fulfilled. These requirements
increase from parameter identification (c) (long term), over optimisation on
moving horizon (e) (mid term), to fast update of near optimal trajectories
(f) and setpoint trajectory tracking control (g) (short term).

For state estimation see the discussion and references in Section 2.3.2.d.

Repeated computation of optimal controls on a moving horizon(e) deter-
mines new optimal setpoint trajectories within the current prediction hori-
zon. The process behaviour is predicted on the basis of the estimation of
the process state at the beginning of the prediction horizon and on the non-
linear process model. As optimal control algorithm the open-loop method
described in Section 2.4 is employed.

The optimal controls and the respective state trajectories have to satisfy the
specifications (such as objective and constraints) imposed by the operator.

The fast update of near optimal trajectories (f) is based on the linearisa-
tion of neighbouring parameterised extremals of the solution of the optimal
control problem on the current prediction horizon, see Section 2.5 and Sec-
tion 2.6. It is executed within the current control horizon if the deviation
between predicted state and actual state becomes too large.

The setpoint trajectory tracking control (g) of the optimal state and control
trajectories is primarily required in case of large deviations between process
and dynamical model. Such deviations can arise under two conditions:

1. The numerical computation of the optimal setpoint trajectories on the
current prediction horizon (or their near optimal updates, respectively)
is slower than required by the prescribed real-time repetition rate. This
depends on the size of the dynamical process model, on the computa-
tional resources available, and on the optimal control method and its
implementation.

2. Within the prediction horizon the deviation between the progress of
the actual process and the model based prediction of the state variable
trajectories are too large.
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If the open-loop optimal control is used as a pre-control the drag error can
be reduced, cf., e.g., [Stry 94] for an application in optimal control of an
industrial robot. Also [HAM 00] consider tracking control in the context of
MPC.

Altogether, the setpoint trajectory tracking control offers an additional con-
trol layer which increases robustness of the overall controller. Furthermore,
it can help to avoid shut-down of the process in cases when both the master
control problem (e) cannot be solved within the required time range and
when the fast update of near optimal trajectories (f) fails (cf. [BiRa 91], as
discussed in Section 2.3.2).

e The plant is split up into base control, process, and measurements.

The base control consists in the automated control system of the plant. Al-
though in this concept the MPC layer (b)—(g) theoretically should account
for most of its original functionality it has to be kept for safety and reliability
reasons.

We consider the lowest level control layer — which in chemical engineering
plants is given by, e.g., temperature, flow, pressure, or quality controls — as
an integral part of the process itself. These lowest level controllers directly
influence the process behaviour and thus have to be accounted for in the
process model (b) in order to provide a sufficiently precise description of
the process for the MPC computations.

2.4 Open-Loop Optimal Control Algorithm

2.4.1 Applied Optimal Control

One can affirm that the charm, exerted all along by the calculus of variations on so
many first rate greatnesses of mind, is chiefly traceable to the role which particular
problems have played and are playing even today in the development of this theory.

C. Carathéodory, cf. [PeBu 94]

Consider the optimal control problem Eq. (2.3) describing, e.g., the optimal
load-change of an air separation plant. Then the principle approach of moving
and receding horizon MPC is to achieve an optimal®™) dynamical path during the
course of the process in the presence of unmodelled or unpredictable disturbances
by solution of a sequence of substitute optimal control problems. Here, substitute
optimal control problem means that the time interval may be (and typically is)
smaller than the overall optimal control horizon. This has two effects:

(ix) Although often applied in an intuitive way, the notion of optimality in a real-time
environment is not finally clarified. For a discussion of this topic we refer to [ESBZ 97]
and [KSBK 01].
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e A closed control loop is obtained by the state feedback induced from em-
ploying the actual process state as initial conditions for solving the sequence
of optimal control problems (closed-loop characteristics of MPC).

e The optimal control problems on finite horizons (open-loop characteristics
of MPC) can be handled with established optimal control techniques even
for large-scale processes.

Based on the requirements imposed by our applications of interest we have to
select a method for the (open-loop) solution of the optimal control problem(s) on
finite horizons. This method will then be discussed in the remaining sections of
this chapter.

As reviewed in [BBBB 01] there are three basic approaches to solve optimal
control problems with Bolza, Lagrange, or Mayer type objective functionals:

1. Hamilton-Jacobi- Carathéodory-Bellman partial differential equations (HJCB)
[PeBu 94] and Dynamic Programming [Bellm 65],

2. Calculus of Variations, Euler-Lagrange differential equations (EL-DEQ), and
the Mazimum Principle (indirect methods) [PBGM 65], [BrHo 75], and

3. direct methods based on a finite dimensional parameterisation of the controls
[BoP1 84], [Kraf 85], [Bett 98], [Stry 00].

In order to utilise the advantages of different methods also the combination of in-
direct methods with direct methods to hybrid methods has been proposed in, e.g.,
[BoP1 84] (direct and indirect multiple shooting), and elaborated for the combina-
tion of direct collocation with indirect multiple shooting [StrBu 92], [Stry 94] (for
a discussion of the indirect multiple shooting approach we refer to, e.g., [Buli 71],
[StBu 90], and the bibliography in [BBBB 01]).

We restrict our choice to direct methods 3 as appropriate extensions of the
methods 1 and 2 (and especially the algorithms derived of these methods) to op-
timal control problems with large-scale higher index DAE models are not known.
The difficulties are both of theoretical and practical nature, cf., e.g., [BBBB 01].
Though, some results regarding the Calculus of Variations [Jonc 88] and the Maxi-
mum Principle [LiYa 88] regarding optimal control problems with DAE state equa-
tions are available. More recent investigations concerning necessary conditions for
optimal control problems with index-1 DAE models have been made by [Bell 97]
(there mixed state and control path constraints are considered) and [PiVi 97] (their
results are restricted to semi-explicit index-1 DAEs and simple control and state
constraints).

A common feature of all direct methods is the parameterisation of the controls.
This parameterisation restricts the optimal control problems where the candidates
for the controls are members of an infinite dimensional class of functions, e.g.,
u(-) € Crl,(-, R"+), to finite dimensional problems, where the possible controls are
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the members of a finite dimensional family of functions u(-, p) parameterised by
a vector of shape parameters p € R", e.g., piecewise polynomial functions (see
Section 2.4.2 below). In other words, control parameterisation converts the infinite
dimensional optimal control problem, i.e., the determination of a vector of opti-
mal controls u, into a finite dimensional nonlinear programming problem (NLP),
i.e., the determination of an optimal vector of shape parameters p. The compu-
tationally attractive feature of direct methods is that these NLPs can be solved
by sequential quadratic programming (SQP) which will be discussed in Section
2.4.2.b. The relatively recent development of these efficient optimisation algo-
rithms provides a key prerequisite for the successful application of direct methods
to real-world problems.

The difference between the various direct methods is found in the extent to
which also the dynamical part of the optimal control problem, i.e., the model
equations, is subject to parameterisation.

On the one hand, there is the direct single shooting method. Here, the model
IVP is repeatedly integrated for fixed sets of optimisation parameters as requested
by the optimisation method. On the other hand, there is the direct collocation
method where both control and state variables are fully parameterised. Thus, op-
timisation and integration are treated simultaneously as one problem. This means
that state variable trajectories satisfying the model equations in general are avail-
able only after convergence of the optimisation method at the optimal point. The
third popular method, direct multiple shooting, takes a position in between direct
single shooting and direct collocation. Similar to direct single shooting the controls
are parameterised. Additionally, a grid on the integration interval including start
and final time is selected (the multiple shooting nodes), splitting the integration
interval into multiple shooting intervals. On each multiple shooting interval a new
IVP is defined. As in the direct single shooting approach the IVPs are integrated
separately. However, the initial conditions at the multiple shooting nodes are
added to the optimisation problem as new optimisation parameters. Continuity
of the states is enforced by augmenting the parameterised optimisation problem
with continuity conditions. Thus the full solution of the dynamic model over the
entire optimisation interval is a direct part of the final optimisation problem as in
direct collocation.

A detailed discussion and comparison of these three direct methods can be
found in [BBBB 01]. Based on this up-to-date review, currently direct single
shooting emerges as the preferable approach in the context of our application.

2.4.2 A Direct Single Shooting Algorithm

2.4.2.a Control Parameterisation

Parameterisation of the control variables provides the central step for the transfor-
mation of the optimal control problem into an optimisation problem in the single
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shooting technique.

Often a general full (open loop) parameterisation of the controls by piece-
wise polynomial shape functions u(t,p) = ZL”:II uu(t,p,), p= (pf,... ,p%I)T €
R'»u™ p, € R"u, p =1,...,m1, np, € N is applied, where m; is the number
of control intervals and u,(-) = 0 outside control interval p, p = 1,...,m;. If
consistent initialisation at every point of the control mesh is to be avoided this
parameterisation has to satisfy additional differentiability conditions. As shown
in [Gerd 01] these differentiability conditions are related to the highest order time
derivative of the controls present in the UODE.

In the large-scale optimal control problems regarding the computation of load-
change strategies for cryogenic air separation plants (cf. Section 6.3.5, Section
6.3.6) we employ a tailored low-dimensional global parameterisation with a single
control interval (m; = 1) based on control functions that are used in the conven-
tional (closed loop) automated control of these plants. In this way on the one hand
application level knowledge is directly incorporated into the numerical solution of
the optimal control problem, and on the other hand the results of the optimal
control algorithm are in a form which is immediately accessible to the user. These
control functions are of the form w,.(t, ), uae : R1T™® — R we denote their
parameterised counterparts as Uac(t, €, p), Uac : R+ — R This approach
is also known as specific optimal control [HiRa 71].

By substitution of the controls w(-) with their parameterised counterparts
U(t, p) or Uy (t, z, p) and enforcement of the path inequality constraints ¢(¢, z, y, u)
on a mesh TJ(-)’C << T]Mj’c € [to,j; tr,;], with M;+1 € N mesh points, ([VSP 94a],
[VSP 94b)) the infinite dimensional optimal control problem Eq. (2.3) is converted
into the finite dimensional optimisation problem (NLP)

Tlp) = Bty (tr; p), Y(tsyip)) — min! (2.42)
subject to
0> E(TJ‘-"C,:’E(Tf’c;p),@(T}"c;p),p) su=1,...,Mj, (2.4b)
0> Ry (t Bt ), Bt P),P) s =1,y e '
and

~
~

Z(t;p) = f(t,2(t; p), Y(t;p),p,signq) ; t € [to,j, tr],
0=g(t z(t;p),y(t;p), p,signq), (2.4¢)
~ini

0=k (to;, ©(to;p),Y(to;p), Z(to,;P), P) -

Here, we use = as a qualifier in order to denote the functions and variables which
are derived by the parameterisation of the respective terms in Eq. (2.3).
Remark 2.6:
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After discretisation the path inequality constraints are enforced at the mesh points only.
This means that reasonable results (with respect to the original optimal control problem)
can only be expected if the frequency of the constraints is small in comparison to the
density of the mesh points and the parameterisation of the control. In order to improve
the confidence in the solution obtained from Egs. (2.4a)—(2.4¢), e.g., penalty terms on the
integral error as discussed in Section 2.3.1, Remark 2.2, can be introduced [VSP 94b]. ¢

2.4.2.b Sequential Quadratic Programming

By parameterisation the optimal control problem is transformed into a finite di-
mensional optimisation problem. The transformed problem is suitable for solution
by an optimisation algorithm. Due to their efficiency, robustness, and broad range
of application (as already mentioned in Section 2.4.1) we employ SQP methods
for the solution of the NLP Egs. (2.4a)—(2.4c). Several sophisticated SQP algo-
rithms are available, e.g., NPSOL [GMSW 98], SNOPT [GMS 97b], or SOCS"
[BeHu 97] — only to enumerate some of them. [Wrig 02] briefly discusses some
available SQP algorithms, as well as implementations of other optimisation meth-
ods.

In the sequel we discuss some of the basics of a certain type of SQP methods
which we employ (infeasible path line-search based SQP methods with differentiable
augmented Lagrangian merit function). Detailed information is provided in, e.g.,
[Flet 87], [GMW 95]. [GoTo 00] discuss various approaches of state-of-the-art SQP
methods for the solution of large-scale NLPs covering also trust region methods
which make up the second large class of SQP methods.

For ease of notation we consider the general class of NLPs

®(p) — min! (2.5)
D
au(ﬁ):();lglv‘gmem bu(ﬁ)z();lgl/gmic,

where p € RP are the optimisation variables, ® : RP — R is the objective,
a, : RP -5 R u = 1,...,me, are equality constraints, and b, : RF — R
v = 1,...,mj, denote inequality constraints The qualifier - refers to variables
and functions which are used in the context of the general NLP Eq. (2.5). As
SQP is based on derivative information objective and constraints are assumed to
be twice continuously differentiable. Closely connected to the NLP Eq. (2.5) is its
Lagrangian function

Mec Mic

( b,o ,:8 Zauau Zﬂu . (2'6)

The additional variables ¢ € R™e< and 8 € R™c in Eq. (2.6) are called the

Lagrangian multipliers.
Remark 2.7:
In non-academic problems global C? differentiability in the objective function and in
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the constraints often cannot be guaranteed. However, modern SQP algorithms such as
NPSOL [GMSW 98] or SNOPT [GMS 97b] can cope with local, isolated discontinuities
if they do not appear near the optimum. O

In preparation of the following discussion we introduce the notion of an active
(inequality) constraint, cf., e.g., [GMW 95]:

Definition 2.3 (Active Inequality Constraint of an NLP)
An inequality constraint b,, v € {1,...,mj.}, of the NLP of Eq. (2.5) is said to be
active at p if b,(p) = 0.

Assume that p* is a local minimiser of Eq. (2.5). Further, let
B(p*) :== {V | 1 <v<mye by(p*) = 0}

be the index set of all active inequality constraints at p*. If at least one of the
constraints a@,, p = 1,...,Mec, by, v € B, is nonlinear we say that constraint
qualifications hold at p* if the gradients of the active inequality constraints and
the gradients of all equality constraints are linearly independent. If all of the
active inequality constraints and all equality constraints are linear we also say
that constraint qualifications hold.

Remark 2.8:
Other constraint qualifications than the assumption of linearly independent gradients of
the active constraints (in the sense of Definition 2.3 all equality constraints are active at
a local minimiser) can be employed, cf., e.g., [GMW 95]. O

After these preparations the first order necessary conditions of optimality for
the NLP of Eq. (2.5) can be formulated as in the following Theorem 2.1, cf., e.g.,
[Flet 87], [GMW 95], [Stry 00]:

Theorem 2.1 (15* Order NLP Optimality Conditions (KKT-Conditions))
Let @, ay, b =1,...,mec, and b,, v € mj., be continuously differentiable func-
tions. Ifp* is a local minimum of the NLP Eq. (2.5) such that constraint constraint
qualifications hold and that the conditions

au(ﬁ*)zoa ,u=1,...,mec,
b,(p") =0, v € B(p"),

are satisfied then there exist multipliers o € R« and B € R™i  and the following
relations hold

Mec Mic
VL(F',a,8) = ViB(F') — 3 e Vpau(®) = 3 B, Vsbu(F) =0, (270
pn=1 v=1
auau(?:) =0, p=1, s Mec (2.7b)
:Bybl/(p)zoal/:]-a s Mic
B,>0,v=1,...,mj (2.7¢)
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The idea of SQP is to compute a sequence of vectors of optimisation variables
{p'}; which converges to the optimal solution of the NLP. Basically, {p'}; is gen-
erated by solving a sequence of quadratic subproblems such that {p'}; converges
to a solution of the first order necessary optimality conditions Egs. (2.7a)—(2.7c) of
the NLP (therefore the term sequential quadratic programming), cf., e.g., [Han 77],
[Powe 78], [Schi 81a], [Schi 81b]. These subproblems are set up by linearisation of
the constraints and by a quadratic approximation of the Lagrangian function of the
NLP Eq. (2.5). In each iteration of a line-search SQP method the new optimisation
variables and the corresponding multipliers are generated according to

pitl 7k T4
The direction of search d € R", the updates A € R™ect™ic for the Lagrangian

multipliers p = [a”,87]", and the step length o € R are calculated in two
consecutive steps:

At first, the direction of search d’ is determined from the quadratic program-
ming problem (QP)
Lo oiT i gi (=T i .
E(d) H'd"+Vo(p')" d — min! (2.8)
d'L
Va, (@) d +au(d') = 0; 1 < pi < mec,
Vb, (p")"d' + b, (P') 2 031 < v < mye,

which arises from a quadratic approximation of the Lagrangian (2.6) and lineari-
sation of the constraints. H? € R**"# is the Hessian of the Lagrangian L at p'.
The QP Eq. (2.8) itself is solved by an iterative quadratic programming method
which usually employs either an active set or an interior point strategy.

Remark 2.9:
In order to avoid failure of the whole algorithm due to an unsolvable quadratic subproblem
actual implementations use modified versions of Eq. (2.8), cf., e.g., [GMW 95]. O

The updates X! for the Lagrangian multipliers of the NLP are taken as the
multipliers connected to the solution of Eq. (2.8). Then the step length o is
chosen so as to achieve a (sufficient) decrease of a test or merit function

o= (2] o,

where p € {R;\{0}}™ect™ic is the vector of positive penalty parameters. Different
penalty functions 1,(-) have been proposed, e.g., the differentiable augmented



58 2.4 Open-Loop Optimal Control Algorithm

Lagrangian function

o [ =

_gx%%@pgwmmﬁ—Ez(mwm—%ww%@ﬁ

vEBL(D)

with the set B,(P) := {v |1 < v < mjc; b,(P) < B,/Py1m., } and its complement
Bo(p) :={1,...,mic} \ B(p), cf., e.g., [GMW 95].

An obvious problem connected to the QP Eq. (2.8) is that 2"¢ order derivative
information of the Lagrangian (2.6) is needed which in practice is rarely available
(see, however, the exceptions enumerated in Remark 2.10 on page 60). Therefore
SQP algorithms mostly use an approximated Hessian H instead of the exact Hes-
sian H. A popular technique is the BFGS scheme, where, e.g., starting from the
identity matrix, a positive definite approximation to the Hessian is constructed
from updates after each SQP iteration according to

yi = VﬁL(ﬁH_l,aia,Bi) - VﬁL(ﬁZaazaﬁz) )
Si—l—l I ﬁH—l _ ﬁz
O )
— i 1 T i
BN =" - ——— ' (sTsH +
(sz’)THZsi

i y'(y')

In order to preserve a positive definite approximate Hessian the update has to
be modified in case of (y*)Ts* < 0. Other methods for the approximation of the
Hessian are discussed, e.g., in [BCH 97].

In application frequently special NLPs with a quadratic objective
my
() = 3 ¥u(p)* — min!
pu=1

have to be considered. In the context of direct shooting methods such NLPs arise
if the objective of the underlying optimal control problem is a sum of quadratic
terms e.g., if the model parameters of the state equations are to be identified
by a weighted [s-criterion, or if the deviation of the trajectory from a prescribed
path has to be minimised (with the deviation measured in the Lo-norm), see also
Remark 2.3 on page 39. The point is that the Hessian H of the quadratic cost
functional ® in Eq. (2.4.2.b) reads as

H(p)=2[J(®)"J(®) + Q(D)]
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with
mw _
p) =3 0B,
p=1

where J(p) is the Jacobian of ¥(p) = [1/)1,...,1/1m¢]T(ﬁ), and I:Tu(ﬁ) are the
Hessians of 1, (P), p = 1,...,my. This special structure of H(p) can (and should)
be exploited [GMW 95], [Bjor 96]. E.g., for the “classic” SQP algorithm NPSOL
[GMSW 98] the especially tailored derivate NLSSOL is available [Wrig 02]. For
more general information on the solution of nonlinear least squares problems we
refer to, e.g., [GiMu 78], [GMW 95], [Bjor 96].

2.4.2.c Tying together SQP, Integrator, and Sensitivity Analysis

Before the parameterised optimal control problem Eqgs. (2.4a)—(2.4c) can be solved
by a standard SQP algorithm this NLP has to be stated in the standard form
Eq. (2.5). As easily seen, the equivalences are

p:
O(p) := E(tyj, B(tr,j;p), Y (s p))
bu(P) := —¢(7}"%, 2(7}"%p), y(7}/";p),P) s =1,.... Mj,
- ~ic
buin; (D) := —k, (tu, 2(t;P), Y(L; P), )5 p=1,...,myic,
mic == M] + mkic )

P,
—E

where the state variable trajectories Z(t;p), y(t;p) are determined by the IVP
Eq. (2.4¢).

As discussed in Section 2.4.2.b above SQP algorithms commonly require for
fixed set of optimisation parameters the values of the objective function and of
the point constraints ®(p) and b, (P), p = 1,...,mjc, as well as their first order
derivatives with respect to the optimisation parameters d®(p)/dp and db,(p)/dp,
@ =1,...,mji. The evaluation of the objective and of the point constraints basi-
cally reduces to the integration of the model equations. For the derivative of the
objective we have

@) d ., . ~ 0E o0z 0Eo0y oOF
dﬁ dp ( f’J7$( fy]’p)’y( f,]?p)) am ap ay ap ap o
3]

The derivatives for the constraints are found accordingly. Assuming that the par-
tial derivatives of objective and constraints with respect to their arguments are
known the missing piece of information are the sensitivity functions 0Z/dp(t,p)
and 0y/0p(t,p). In Section 2.4.3 we discuss the computation of the sensitivi-
ties which generally is one of the most expensive and difficult tasks of the single
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Figure 2.9: Basic structure of the direct single shooting method.

shooting algorithm.

Remark 2.10:
If gradient information is not available some SQP algorithms provide an option to approx-
imate the required first order derivatives by finite differences, e.g., NPSOL [GMSW 98].

On the other hand, some SQP algorithms can additionally use second order deriva-
tives. In this case the Hessian of the Lagrangian can be computed without approximation.
The generation of this second order derivative information as well as the potential of
its application for the solution of optimal control problems have been discussed, e.g., in
[VBB 99], [BBAV 02]. In the context of parameter identification problems [GiMu 78] dis-
cusses the utilisation of second order derivative information for the solution of nonlinear
least squares problems with modified Gauf-Newton methods. See also [GMW 95]. 0

Figure 2.9 summarises Section 2.4.2. It depicts the major steps that the direct
single shooting method takes in order to obtain the parameterised optimal control
for an optimal control problem.

2.4.3 Computation of Parametric Sensitivity Functions
by Internal Numerical Differentiation

As discussed in Section 1.4 currently three different numerical approaches are
employed in order to compute parametric sensitivity functions for DAE models.
These approaches are based on finite difference approximations, integration of the
adjoint equations, and integration of the sensitivity equations. For implementation
an IND or an END approach may be chosen. Each of these methods has its special
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advantages and disadvantages. Unless dictated non-numerical by reasons such as,
e.g., the availability of software, in non-standard applications the method of choice
is strongly problem dependent.

In our case the boundary conditions are given by the simulation and optimi-
sation environment OPTISTM", by the (parameterised) optimal control problem
Egs. (2.4a)—(2.4c), and by the chemical engineering application (cf. Section 2.1:
load-change of a cryogenic air separation plant). Especially the following four
items have to be considered:

a. The model is a very large-scale index-2 DAE system with state and time de-
pendent discontinuities.

b. Inequality constraints are enforced on sampling points within the integration
horizon.

¢. The dimension of the vector of optimisation parameters is typically small in
relation to the size of the state vector.

d. The source code of the (BDF-)integrator within OPTISTM" can be accessed.

From item a we conclude that a tailored implementation for the computation of the
sensitivities is required. Items b and ¢ imply that the sensitivities may be needed
at many points along the integration horizon but that only a limited number of
parameters has to be considered. Finally, direct access to the integrator source
code (item d) allows development of a robust and efficient IND method. Therefore,
our method of choice ([Kron 98], [EKKS 99]) is the integration of the sensitivity
DAE of the model by differentiation of the integrator in a staggered direct method
implementation (cf. [LiPe 99]) as proposed in, e.g., [Dunk 84] for ODEs, and by
[CaSt 85] and [LeKr 85| in the DAE case.

2.4.3.a The BDF Integrator Method

IND directly refers to the integrator method used. Therefore we consider the
parameterised optimal control problem Egs. (2.4a)-(2.4c) and focus on the model
DAE initial value problem Eq. (2.4c)

z(t;p) = f(t,2(t;p),y(t;p), p,signq) ; t € [toj, te,],
0=g(t z(t;p),y(t;p),p,signq), (2.9)
~ini ~ ~ 5
0=k (to;, Z(tos;P),Y(to;P), Z(to,5;P), P) -

Given a fixed set of parameters p, OPTISIM" [Burr 93] integrates the model
equations using a method based on backward difference formulas (BDF), cf., e.g.,
[Gear 71], [BGH 72], [HoLi 83], [L6Pe 86], [PeLo 86], [ByHi 87], [HW 91], [DeBo 94],
[BCP 96]. BDF methods are implicit linear multi-step methods with variable order
and variable step-size suitable for the numerical solution of index-1 DAEs. With a
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modified error control criterion they can also be used for the direct integration of
semi-explicit index-2 DAEs [BCP 96]. [MaTi 94], [Tisc 95] discuss feasibility and
stability of BDF when applied to a class of linear implicit DAEs of tractability
index two. In [M&Ti 97] the results of [Tisc 95] are specified for DAEs arising
from charge-oriented modified nodal analysis of electrical circuits. By a pertur-
bation analysis [Arno 95] arrives at sharper error bounds than were presented in
[Tisc 95] and provides additional theoretical justification for the modified error
control criterion for index-2 DAEs.

In the n'" integration step of a BDF method the interpolating polynomial of
the k£ — 1 previously computed points (Z,—k+1,Yp_g11)s ---» (&n,¥Y,) and of the
next point (Z,41,Y,,1) is formally constructed. The new point (Zy41,Y, 1) is
determined by the condition that the interpolating polynomial has to fulfil the DAE
at t,11. By extrapolation of the interpolating polynomial of (Z, k,¥Y,_r)s -- -

~ o~ . . ~ ~ 2 pred .
(Zn,y,) for ty41, estimates (predictors) wﬁf‘f, ygr_f_’(li, and &, , are obtained. The

fized leading coefficient BDF method results in the nonlinear system of equations

~ N N N . pred (07 2PN ~pred
0= f(tn-f—lawn—l—layn—}-lapa Slgnqn) —Lpi1 + h—(mn-i—l - "BZTQ 3

n+1 (210)
0= g(tn—Fla a:\n-l—la §n+1apa Slgnan) ) an = a(tn; "/D\na ’y\nap) .

which must be solved numerically for Z,,1 and ¥, ;. The leading coefficient
ay € R depends on the order k of the method. hp41 = t,41 — t, is the step-size of
the current integration step.

The corrector system Eq. (2.10) is solved by a modified Newton algorithm.
The initial guess is provided by the evaluation of the BDF predictor polynomial
at the new time step

a0l . apred ~[0] | ~pred
wn—|—1 T mn—l—l’ yn+1 T In+1l -

In order to increase the domain of convergence a damped Newton iteration is

performed; m = 1,2, ..., denotes the current iterate:
> > ~ -~ ~.pred ~ ~pred
it Fe Ty| |88™ I @@ - )| | )
9z g5 | |AY ]

~[m—+1 ~ ~
el B Az
mt1]| = | Afm] +c | O0<ce<1.
Yn+1 Ynt1 Ay

In each step of the Newton iteration the linear system Eq. (2.11) is solved by a
hierarchical algorithm efficiently applying modern direct sparse matrix techniques
to the large, sparse, and unstructured system matrix [ELBK 97]

D = ’l:-u‘l-fl\-l_fﬁ {@ .
9z gy
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The treatment of discontinuities is based on the discontinuity locking technique
as described in Section 1.3.2, cf. Figure 1.1 on page 19. During the solution of the
corrector system Eq. (2.10) the switching functions keep their fixed value g,, from
the start of the integration step, i.e., switching is suppressed. After convergence
of the corrector iteration the switching functions are evaluated at the new point
(@] 1 gL +1)7. If at least one switching function changes its sign

Signa(tna ﬁna gna p) 7é Signa(tn+la §n+1a /y\n—|—17 p)

the passage of a discontinuity is asserted. In this case the discontinuity is located
by inverse interpolation and integration is restarted at this point. In the context of
integration with BDF methods the restart may be restricted to cutting down the
order of the integrator to one (implicit Euler’s method). This is a very simple and
in most practical cases successful technique; however, from the numerical point
of view consistent initialisation is necessary in order to arrive at reliable results.
Consistent initialisation is in itself a very complex and difficult task which will be
discussed in depth within Chapter 3.

2.4.3.b IND: Differentiation of the Integrator

In the sequel we assume that the integration step from %, to ¢,4+1 has been com-
pleted without passing a discontinuity; the discontinuous case is subject to inves-
tigation in Chapter 4.

Total differentiation of the corrector system Eq. (2.10) with respect to the
parameters p yields the linear system of equations

~ ~ ~ N [a7% d
0= fﬁpn—kl + f;i]o'n—f—l + fp - ppred + h +1 (pn—|—1 - png) ’
)

0= gﬁpn+1 + §§0n+1 + /g\p’

or

~

. d k. pred
D |:pn+1:| _ fp _ (ppl‘e A+ h:+1 pn—|—1)] , (212)

On+1 9p

where
p=p(t;p) = [%Zp)] € R " and o = o(t;p) := [_‘9?7(%?)] c R X1p

denote the sensitivity matrices.

On the other hand, within an interval where signq is constant the sensitivity
equations related to the original DAE Eq. (2.9) read as

0— % {[f(t,g(t;p),@(t;p),p,signa)—a*c(t;p)”
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:[fap +fgo +fp —b] _ (2.13)
gzp +930 +9p ip

Application of the BDF scheme to the sensitivity equations Eq. (2.13) again results
in the linear system Eq. (2.12). In both cases, the initial values for the sensitivities
are obtained by differentiation of the initial values of the original DAE-IVP

d (-~ini N . R
=% {k (toaj’w(toaj;p)ay(tO,j;p),m(t()’j;p),p)}

tO,j P p

[ ko R Ry 4[R2 Ry RS (214

tO,j P
Here we have treated the more general case, taking into account a possible para-
metric dependence of the initial time % ;.

Based on these observations (and given that our assumptions on the existence
of the sensitivities specified in Section 1.4 hold) the sensitivity matrices can be
computed after each integration step for the state variable trajectories by (direct)
solution of Eq. (2.12) (staggered direct method). This step is computationally cheap
since (an approximation of) the matrix D is already available in decomposed form
in the modified Newton iteration Eq. (2.11). Moreover, by the equivalence noted
above this method corresponds to the (separate) integration of the sensitivity
equations with the same step-sizes and order sequence as used for the original
DAE which is important in the context of IND.

According to [Feeh 98] there is uncertainty about whether truncation error
control must be maintained on both the states and the sensitivities. On the one
hand, without truncation error control computation of the sensitivities is signifi-
cantly cheaper and the algorithm is easier to implement than its error controlled
counterpart. On the other hand, without a truncation error test the integrator may
miss features of the dynamics of the sensitivities. Due to the increased reliability
[Feeh 98] recommends the latter choice.

As one part of this work we have extended our sensitivity computation algo-
rithm ([Kron 98], [EKKS 99]) with an option to include the sensitivities in the
order and step-size selection strategy, see also Section 5.2. The local truncation
error in the sensitivity matrices is estimated basically using the same formulae as
employed for the estimation of the local truncation error in the state variables.
After a successful integration step in the sensitivity matrices a new step-size and
a new order are proposed for the next integration step for the sensitivities. This
proposal is based on the local truncation error estimate for the sensitivity matrices
and uses the same strategy as employed for the integration of the state variables.
Actual order and step-size for the next (combined) integration step in states and
sensitivity matrices are determined as the minimum of the order proposals and the
minimum of the step-size proposals obtained from state variable and sensitivity
error control, respectively. According to our experience the error and step-size
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selection strategy including the sensitivities is often more conservative than the
purely state variable based strategy. However, (in accordance with [Feeh 98]) the
sensitivities appear to be of better quality as in difficult optimal control problems
the SQP algorithm converged faster and the optimality criteria could be fulfilled
more reliably.

2.5 Neighbouring Extremals

Closely associated . . . is that [problem] of ’on-line’ control. Here the con-
straint is a novel one mathematically — one not previously encountered
in scientific research. We are required to render a decision, perhaps sup-
ply a numerical answer, within a specified period of time. It is no longer
a question of devising a computationally feasible algorithm; instead we
must obtain the best approrimation within a specified time.

Bellman [Bellm 71], Section 14.5

Basically the direct optimal control algorithm in Section 2.4 in connection with
an appropriate state estimator is sufficient for setting up a “pure” moving horizon
MPC scheme as described in Algorithm 2 on page 40. However, at present for larger
processes the time consumed by the state estimation (step 3 in Algorithm 2) and by
the computation of the open-loop optimal control on the moving horizon (step 4 in
Algorithm 2) is prohibitively long in relation to the process time constants, i.e., the
minimum possible control horizon determined by the maximum possible repetition
frequency is too large. In other words, due to disturbances the open-loop optimal
control policy becomes increasingly inappropriate as the real process dynamics
deviate from the model prediction, but a new up-to-date open-loop optimal control
policy cannot be provided in appropriate time.

Therefore the validity of a once expensively calculated open-loop control needs
to be extended by fast updates in order to compensate for the disturbances. In
our context this aim can be achieved by utilising the theory of neighbouring pa-
rameterised extremals.

The method of linearising neighbouring parameterised extremals has been de-
veloped in the 70s and 80s in the context of indirect methods (or boundary value
problems arising from the optimal control of ODE systems, respectively), cf., e.g.,
[BrHo 75], [Kram 85], [LeBr 89], [Pesc 89a], [Pesc 89b], [KuPe 90a], [KuPe 90b].
The main point is that under some conditions the optimal solution of an optimal
control problem smoothly depends on the parameters incorporated in the prob-
lem. Given at least C! smoothness a, first order truncated Taylor’s series expansion
of the optimal controls (and also of the states) around the original (or nominal)
parameter set can be established. I.e., the solution for an optimal control problem
with a modified parameter set can be linearly approximated based on the solution
of the nominal optimal control problem.

The linearisation of neighbouring extremals for parameterised optimal control
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problems derived from large-scale discontinuous index-2 DAE process models (cf.
Egs. (2.2a)—(2.2b) in Section 2.2.3) has not been treated previously.

2.5.1 Solution Differentiability

In [MaPes 94], [MaPes 95] solution differentiability of (infinite dimensional) opti-
mal control problems

Ja) = E(&(tg; ), ™) + /ttffx(ﬁ:(t; m), 4(t; ), w)dt — min! (2.15)

0

subject to

z(t;m) = f@t;m),alt;m),m); tE [totd,

— &(0;m) — k" (m),

‘@), alt;T),m),

with respect to the disturbance parameters w € R"* is examined. Please note that
the model disturbance parameters 7 are not related to the optimisation parameters
p as introduced, e.g., by the direct single shooting method discussed in Section
2.4.2. The optimal control task is to find the control & € R"@ minimising the
objective functional J within the interval in time t € [to, ;] subject to the path

inequality constraints k : Rws+nratne _y R™iic and the final point constraints
l::end : Rretne 5 R™&*d given a nominal disturbance vector w := mg. The
system dynamics £ € R"® is determined by the ODE initial value problem }' :
Rretnatne _y Rre B R 5 RS

Examples for disturbance parameters in the context of chemical engineering
are, e.g., the composition of the feed for petro-chemical plants, or the ambient
temperature in the context of an air separation plant. Also, failure of equipment
may be modelled by disturbance parameters, cf., e.g., Section 6.3.4.

The nominal (or unperturbed) optimal solution
zy(t) =" (t;mo),  Gy(t) := a*(¢;mo),

is defined as the solution of the optimal control problem Eq. (2.15) for the reference
value of the disturbances w = my. Associated with the nominal solution are the
adjoint variables Xj(t) :== A*(t;wp) € R,

Based on the BVP derived from the description of the optimal solution of
problem Eq. (2.15), second order sufficient conditions (SSC) (cf., e.g., [MaP1i 95]),
and a Riccati ODE related to the SSC solution differentiability with respect to
the disturbance parameters around the nominal solution can be shown. E.g.,
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[BiiMa 00] summarise the results in a theorem on solution differentiability for
the optimal control problem Eq. (2.15). This theorem states that under some
technical conditions (including the SSC) the nominal solution Zj(t), Aj(t), @ (t)
can be embedded into a family of optimal solutions &*(¢; ), A* (¢;7), @*(¢; w) of
the perturbed problem Eq. (2.15). Moreover, this family is shown to be piecewise
of class C! for all disturbances 7 in a neighbourhood of the reference parameter
T0-

The theorem on solution differentiability provides the theoretical justification
for the application of neighbouring extremal approaches in order to calculate
near optimal approximations to disturbed (w # () optimal control problems
Eq. (2.15). Given that the conditions of the theorem apply corrections to the
nominal solution can be found by truncated Taylor’s series expansions. E.g., a
first-order correction of the state variable trajectory is obtained by

oxT*(t;mo)

¥ (t;m) = &% (t;m0) + g (

™ — o).

The quantities

o™ (t;my) Ou*(t;mo) OX*(t; 7o)
q 22 \» 70
omr omw an ow
are the sensitivity differentials of the solution and of the adjoint variables with

respect to the vector of disturbance parameters m at the nominal solution. The
consecutive question is on how to obtain the sensitivity differentials.

2.5.2 BVP-based Methods for ODE Systems

[MaPes 91], [MaPes 93], [MaPes 94], [MaPes 95] show that the sensitivity differ-
entials 0(-)/0m satisfy a linear inhomogeneous boundary value problem (LBVP).
According to the theory of variational calculus the optimal solution of Eq. (2.15)
(for any fixed, but otherwise arbitrary value of =) satisfies necessary conditions
which can be reformulated as a BVP. Consider this BVP at the nominal value of
the disturbance, @ = m. Then total differentiation of the BVP for the nominal
solution with respect to the disturbance parameters leads to the desired LBVP. A
recent discussion of this approach can be found in [MaAu 01].

The BVP-based approach has already been used, e.g., in [Pesc 89al, [Pesc 89b]
as a basic ingredient of the repeated correction method. In extension of the re-
peated correction method [KuWe 99] have lately proposed to calculate an update
of the nominal path in addition to the near optimal approximation of the optimal
solution.
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2.5.3 Sensitivity of Parameterised ODE Optimal Con-
trol Problems

In [BiMa 98], [BiiMa 00], [BiiMa 01b] perturbed optimal control problems of the
type Eq. (2.15) with a possibly free final time ¢y € Ry are considered (for ease of
notation we restrict to fixed final time). [BiiMa 01b] admit a slightly more general
objective as well as general nonlinear boundary constraints instead of the separated
boundary constraints in the optimal control problem Eq. (2.15). Especially, the
initial state may be subject to optimisation.

In contrast to the previous Section 2.5.2 starting point is the NLP obtained by
parameterisation of the controls in the optimal control problem Eq. (2.15). The
ODE-IVP is discretised by the implicit Euler’s method on a mesh g < t; < -+ <
ty = t;. Additionally, the Lagrange term in the objective function is approximated
by a Riemann sum on the same mesh. The NLP can then be denoted as

j(paﬂ-) :E(a_}'N(p,ﬂ'),tN,W)
Rl _ 2.16
+ Y (tv1 — tv) A& (p, ), ty, ) — min! (2.16)
v=0 P
subject to
Ozéu(paﬂ-); 1<v<r,
0<G,(p,m);r+1<v<mg.

p € R contains the optimisation parameters, i.e., the shape parameters for the
parameterised control functions @ (t; 7w) ~ u(t, p; ) (see Section 2.4.2), and even-
tually the unknown initial state. z,(p,n) := &(t,;p,7), v =0,..., N, are values
of the state variables on the mesh. (_}’“(p,w), u=1,...,mg, are a collection of
both point equality and inequality constraints; the explicit dependency from state
and control variables is dropped as both are identified with their parameterised

and discretised counterparts.

The parametric sensitivities 0p* () /07 of the optimal solution p*(=) of Eq. (2.16)
are obtained applying the sensitivity analysis for NLPs discussed in [Fiac 83].
Starting point is the Lagrangian function

E(p,[l,,ﬂ') = j(p,ﬂ') + p’T' G’(paﬂ-)

associated to the NLP Eq. (2.16). g € R™¢ are the Lagrangian multipliers. Now
let [pg, pg) be the solution of the optimisation problem Eq. (2.16) for the nominal
value m = m( of the disturbances. Further let G® be the vector of all active
constraints G, (p,w) = 0, v = 1,...,mg, and let 5® be the vector of associated
multipliers. Then, under some conditions (including strong second order sufficient
conditions for NLPs), cf., e.g., [Fiac 83], [BiMa 0la], the nominal solution can
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be embedded into a C! family of solutions [p*(m), @* ()], with the first order
sensitivities given by

—1

* 9 _ 1T 2 =
AT - [%Ga] oo (2.17)
%ﬂa iéa 0 . aiéa‘ p* p’* .
Tl op fr%,p,o, T ﬂ_(()), 0>
Remark 2.11:
Eq. (2.17) is obtained by total differentiation of the KKT-conditions with respect to the
disturbances 7 [BiiMa 01a]. O

If Eq. (2.16) is solved by SQP methods it can be assumed that the constraint
Jacobian 0G(p}, mo)/0p with respect to the optimisation parameters is provided
by the user. The Jacobian of the constraints with respect to the disturbance pa-
rameters G (p}, my)/Om can be obtained in the same way as the Jacobian with re-
spect to the optimisation parameters. Additionally, the Hessian of the Lagrangian
O?L(p§, n§, mo)/0p* and 0%L(p}, iaf, wo)/OpOm are required. Unfortunately, the
approximate Hessian 92L/0p? generated by the SQP method cannot be used due
to its lack of accuracy in case of BFGS updates [BiiMa 0la]. Therefore, [BiMa 98]
propose to compute the Hessian explicitly after the NLP has been solved, either by
solution of an ODE [Biisk 98] or by approximation via finite differences [Biisk 99].
Similarly, 82L(p}, p§, o) /OpOm has to be obtained by finite difference approxi-
mations.

Now assume that the sensitivity matrices du(p§,mo)/0p, 0%, (p§,™0)/0P,
0J (py, mo)/0p, Ou(pg, mo)/0m, 0z, (p§, m)/Om, and 8T (P}, mo)/Om have been
obtained, e.g., by sensitivity analysis of the (discretised) ODE-IVP. Furthermore,
assume that the actual values & of the disturbances are known from direct mea-
surement or from an estimation (cf. Section 2.3.2.d, dynamic data reconciliation).
Then first order updates to the nominal parameterised open-loop optimal control
are given by, e.g.,

altp(mim) = altpim) + |58 4 S| (mom), (s
™0
(o' (), m) = aulpimo) + | S (mom), (2180)
B B ™0
J(p*(w), ™) = T (p§, ™0) + [86—‘; . 8;: + g—i] v (w —m), and  (2.18c)
™o
pm) = pi+ | (o). (2.184)
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2.6 A Linearisation of the Direct Shooting
NLP

2.6.1 The Disturbed Optimal Control Problem

At first we extend our basic optimal control problem specified in Definition 2.1 so
as to incorporate a priori unknown disturbances which are characteristic in online
application. In order to avoid excessive notation we reuse the symbols already
introduced in the previous sections.

Definition 2.4 (Disturbed Optimal Control Problem)
Let there be a dynamical process described by a DAFE including a parameterised
disturbance model

&(t;m) = f(t,z(t;7),y(t;m), u(t), signg(t, z(t; ), y (&), u(t), 7),w), (2.19)
0=g(t,z(t;m), y(t; ), u(t),signq(t, x(t; 7), y(t; ), u(t), w), ), (2.19b)

where f : Rlfmetnytnutmgtnz _, Rre and g : RUF"etnytnutmetnz _, Ry
together with the switching functions q : RITn=tnytnutne _ RMa degcribe the
possibly discontinuous dynamics. 7 € ng is the vector of disturbance parameters.
Standard model parameters are included in the vector of external controls u : R —
R™ as the special constant case.

Given a fixed vector of disturbance parameters 7, an interval in time [to ;, ¢ ;] C
R, an objective function J : C) — R in Mayer form (represented by E : R! " *"y —
R), path inequality const;ramts c: ]RH'”“‘ Trytnutne _y RMe  point inequality con-
straints k:;f : RiAnetnytnutne _y R7RE =1 s Mogic, and initial conditions

kil Ritnetnytnetnetne _y RMein the disturbed optimal control problem is to
find optimal controls w(xy € Cy(R,R"™*) such that

Twm)] = E(tej, @(teg; w),y(te;; 7)) — min! (2.20)

U()
subject to

( ) U( (t) Slgnqa ) le [tO,jatf,j]a
:g(tam(t;ﬂ-)’y( ) )’u (t)’SIgn‘L )7
(t; )

0

0>c

0> kl;(tu,a: tu;ﬂ'),y(tﬂ,ﬂ'),u(ﬂ.)( u),w); p=1 . myc,
0 = k™ (to, @(to i m), y(tos; ), &(to,j; ), ) (to,g), ) -

Similar to Section 2.4.2 we employ the direct single shooting technique in order
to discretise the infinite dimensional optimal control problem Eq. (2.20). The
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resulting NLP reads as

j[p] = E(tf,ja"/n\(tf,j;p,ﬂ)a'g(tf,j;p,ﬂ-)) — Inp}n' (2213‘)

subject to

~

0 Z E(T]‘L’cam(T;’t’c;paﬂ)a/y\(T]H’c;paﬂ-)apaﬂ-); u = 11 T ana

I - (2.21b)
0 Z k’/_; (tua"B(tu;paﬂ-)ay(tu;paﬂ-)apaﬂ-) y b= 17 e amkic ’
and
ﬁ(t;p,ﬂ') = f(t,fc\(t;p,n),'fj(t;p,r),p, Signaaﬂ-); te [tO,jatf,j] )
0=g(,z(tp, ), y(t;p, ), p,signg,m), (2.21c¢)

~ini

0=k (to,jaE(to,j;P,W)a@\(tO,j;PaW)aﬁ(to,j;P,ﬂ'),Paﬂ') .

2.6.2 A New Correction Method

Similar to the optimisation problem Eq. (2.16) the solution of the discretised
optimal control problem Egs. (2.21a)—(2.21c) depends on the disturbances, i.e.,
p* =p*(m).

Assuming that the mapping w — p*(7r) is differentiable the method described
in Section 2.5.3 can be applied to Egs. (2.21a)—(2.21c). Once dp*(7)/0m has been
generated corrected optimisation parameters are obtained according to Eq. (2.18d)
in first order approximation. Unfortunately, computation of a part of the derivative
information required for the generation of the sensitivity information dp*(m)/0m
based on Eq. (2.17) is costly for large-scale problems, cf. Section 2.5.3. Therefore,
we propose a new optimisation based disturbance rejection technique which takes
into account the requirements of our special problem setting.

Remark 2.12:

In Section 2.5.1 — Section 2.5.3 we have presented differentiability conditions for the map-
ping ™ — p*(7) and methods for the computation of the first order derivatives Op*(7) /0.
However, the theoretical results have been obtained for optimal control problems with ODE
models and not for higher index DAEs as in our case. Thus these theoretical results can
only be applied with care. O

Our main idea is that the predominant goal in the load-change problem consists
in the fulfilment of the (nonlinear) constraints, e.g., in order to ensure a safe load-

change for an air separation plant. Therefore, especially the constraints ¢ and kin
the disturbed parameterised optimal control problem Egs. (2.21a)—(2.21c) have to
be considered. Optimality with respect to the objective function is advantageous,
but it is not as strictly required.

Assume that the optimal solution pj = p*(m¢) of Egs. (2.21a)-(2.21c) cor-
responding to the nominal disturbance w = 7y is known. If a small deviation
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A7 € R' from the nominal case is introduced, i.e., # = o + A7, then in first
order approximation the corrected optimisation parameters are given by

p*(mo + Am) = py + Ap, (2.22)

where

Ap := apT(:O)Aﬂ-, Ap € R .

Similarly, a linearised estimate for the values of the constraints Eq. (2.21b) subject
to the same disturbance is given by

E(T;’c,ﬁ( ]“’ ;P (mo + Am), ™ + Am),

@\(Tf’c;P*(Wo + Am),m+ Aw),p*(mo + An), m + Aw) = [E()] e

]

po;ﬂ-O
dce(+) oz oz 36() oy oy
A —Am | ==A A
* [ o :|TJ‘W: [6 p+8 :| g +[ oy op p+a m ju’c
Pa;ﬂ'o Pa,ﬂ'o p(])ﬂ-() p(])ﬂ-O
dc() Jc()
Ay pu=1,...,M; 2.2
p857r0 PBJ"O
and

/\.

kif(tlw Z(ty;p* (7o + Am), ™ + Am),
@\(tu;P*(ﬂ'o + Am),m+ Aw),p*(mo + An),m + Am) = [k:()] tu

PSJ"O
ok,()| o,  om ok, ()| [om, 0w
pl 9T A 9% Ax Pl NECHN 9Y A
L ap Pt or"" | T | oy [ap Pt 52T
t*i Py, b P,
D570 P70
8k\ic( ) ak\ic( )
—FE 2 L Ap+ K AT p=1,...,myic. (2.23b)
op |, om |,
m m
pz()a"ro p();a"ro

Now assume that the optimiser p* is independent from the disturbances 7r. Then
the right hand sides of Eqs. (2.23a)—(2.23b) can be interpreted as the linearisation
of the constraints Eq. (2.21b) around [(p§)?, T] in the direction of the sufficiently
small but otherwise arbitrary vector [Ap’, AxT|l ¢ R 7= e,

oc [0z oz
e+ LN ap+ A
[c*'aw [ap P om ”]
oc [oy 8y oc de .

Pasﬂ'o
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e(rf*%,&(1/°% pp + Ap, m + Am), (71" pg + Ap, 7 + AT), pj + Ap, 7 + Am);
p=1,...,M;, (2.24a)

and

~ic ak\ic T T

k" oz | Op P+ %Aﬂ-
ai‘:\ic 8@\ 8@\ 5 kic 5 le
—FL1=ZA —A —~EA —~EA =
+ Oy [Bp p+8ﬂ' ﬂ-] + Op p+ o ”
P50

~

ky, (ty, @ (t; D + Ap, 7 + AT, §(13 0% + Ap, 7 + A7), pl + Ap, 7 + A7) ;
p=1,...,mc. (2.24b)
Since our primary interest is in the feasibility of the constraints of the disturbed

NLP Egs. (2.21a)—(2.21c) we disregard the original objective Eq. (2.21a) and state
the new optimisation problem

~ np Ap 2
J[Ap] = Zl ( ,,Ap> — mAlpn! (2.25a)
subject to
~ dcox dedy O
e — | =2 TR AT
ik [8w87r+8y67r+87r]7]’-" ™=

P§T0 Dy»T0
[aaaas ge gy | ¢

deox  Oc o Apru=1,...,M;, (2.25b
8w8p+8y8p+8p:|'rf’ p; [ j ( )

p:)yﬂ'(]
~ic ok, oz Ok, oy Ok, |
ki, — |ttt | AT 2>
p%,m) or O Oy Om  Om ”
D3>0
BEic % 8ﬁic 8@ aEic
L=y B B L Apsp=1,. . mpge. (2,25
m
payﬂ-o
where w,? € R, \{0}, v = 1,...,np, are weighting factors, e.g., whP =1+
‘pay|, v =1,...,np. As above (cf. Eq. (2.22)) the corrected parameters are

given by p§ + Ap. The optimisation problem formulated in Egs. (2.25a)—(2.25¢)
is a convex linearly constrained quadratic programming problem (QP) of moderate
size which can be solved very efficiently. Objective and constraint evaluations
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reduce to simple multiplication and addition of precalculated information. Here,
precalculated means that the parametric sensitivity information with respect to py
is already computed during the synthesis of the nominal open-loop optimal control,
and that the parametric sensitivities of the nominal optimal control with respect to
7o can be obtained by straightforward sensitivity analysis, e.g., immediately after
computation of the nominal trajectory. Thus the solution of this QP provides
a real-time capable short-cut method for the generation of updates Ap to an
open-loop optimal set of parameters p; with the aim to preserve feasibility of the
constraints. The progress of time in the real-time application has to be accounted
for by restriction of the linearised point constraints in Egs. (2.25b)—(2.25¢c) to
those which have not been passed at the present time 2118l j.e. to 7€ > gactual
p=1,...,M;, and t,, p =1,..., myic, respectively.

The proposed update algorithm is no longer based on the theory of neigh-
bouring extremals as it drops the dependency of the optimal set of optimisation
parameters from the disturbances present in the original NLP Egs. (2.21a)—(2.21c).
The price to be paid for this simplification is that the adapted set of optimisa-
tion parameters obtained via Egs. (2.25a)—(2.25¢c) in general looses its optimality
properties with respect to Egs. (2.21a)-(2.21¢). On the other hand, the proposed
method is computationally feasible even for larger problems in an MPC framework
as the computation of the sensitivities dp(m)/0m is not required. Additionally, the
problem of establishing differentiability for the mapping 7 — p*(7) induced by
Egs. (2.21a)—(2.21c) is avoided.

By construction a controller based on Eqs. (2.25a)(2.25¢) is passive unless a
violation of the (linearised) constraints is predicted. However, trajectory tracking
control behaviour may be incorporated by using the augmented objective

N Np Ap 2
Fan =y (55)
v=1 wy
2
0z 0z
Ammt o~ 1] |2
+ Z Z 2, (v) — |:zli + o Aﬂ-:| fmmt |: op Ap:| gmmt
v= 1’ Mmmt, M= 1 * %
tmmt c [tO y ,tft]] Do 70 Py,T0
(2.26)

instead of Eq. (2.25a). With this modified formulation the controller tracks the
nominal trajectory for a subset of the state variables 2 C {1, ..., Zn Y1,- -+, Yn, I

z € R"= given by the values Z z(y) "¢ at the sample times tomt e [t i, te], v =

1,...,7mmt. The values zfm)nt are obtained by simulation during the computation

of the nominal trajectory. w, € Ry \{0}, v = 1,...,n,, are weighting factors.
The advantage of this modification is that less deviation from the open-loop op-
timal solution improves the linear prediction based on the first order sensitivity
information.

The objective Eq. (2.26) has the same structure as the objective function used,
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e.g., in QDMC, cf. [MoLe 91]. From the LMPC point of view the penalty on the
optimisation parameters is equivalent to penalising the control moves of the new
controller. Thus in effect this penalty improves the robustness of the MPC-type
control scheme [BiRa 91|, [MeRa 97].

We emphasise that the algorithm introduced in this section is not intended as
a stand-alone controller but is designed as a part of our overall control concept.
The controller relies on data computed during and immediately after the solution
of the full open-loop optimal control problem. Especially, it requires the reference
trajectory and the parametric sensitivity information for this reference trajectory.
Moreover, the algorithm is restricted to a sufficiently small neighbourhood of the
nominal solution due to the inherent limitations of the linear approximations em-
ployed.

2.6.3 Comparison with Related Work

Linearisation approaches to NMPC have already been mentioned in Section 2.3.2.c.
Either they are employed in order to extend LMPC methods to the nonlinear
case, or they are used in order to simplify the NMPC task such that the online
problem becomes numerically tractable, e.g., in order to avoid the necessity for a
fast solution of a difficult NLP under consideration of nonlinear system dynamics.
The extended Newton-type controller summarised in [LBEM 90], [BiRa 91] is one
of these linearisation based approaches. In the course of our investigations we found
that the technique introduced in Section 2.6.2 above is related to this controller.

Originally, the extended Newton-type control approach of [BiRa 91] is based
on the Newton-type control law which has been proposed by [EMP 86] in order
to extend the linear internal model control (IMC) method to the nonlinear case.
[LiBi 88] formulate a QP based on this control law which allows them to incor-
porate state and control constraints into the controller. Starting point is the first
order approximation of the system outputs around a nominal trajectory using sen-
sitivity information. The QP then proposes a correction to the nominal controls.
Additionally, a line-search is included which on the one hand guarantees conver-
gence to the setpoint of the controller and on the other hand often extends its
stability region [BiRa 91]. In [LiBi 89] this one-step algorithm (i.e., both predic-
tion and control horizon cover one time step) is extended to an MPC-like multistep
algorithm. Finally, disturbances are addressed in [LiBi 90]. Several stability prop-
erties of this method can be shown.

The standard problem considered is the regulator task with state and control
constraints. It can be denoted as [LiBi 89]

te
Tlu] = /t 9(t) — o dt —> i (2.27)
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subject to (V¢ € [to, tf])

(t) = f(2(t),u(?),
y(t) = g(z(t)),

z(to) = xo,

where in standard control theory notation & € R are the system states, y € R
are the system outputs, and u € R™ are the system inputs. f : R% 7% — R de-
scribes the system dynamics while g : R** — R"¥ is the system output map. Sim-
ple lower and upper bounds for the system outputs, for the controls, as well as for
the control changes are specified by ™, y"P* € R™  and u™", u"P*, 4!V" 4"
R™=. The initial system state o € R"* as well as the constant setpoint y,, € R"v
have to be given. The system inputs are restricted to the class of piecewise constant
controls with a fixed sampling interval.

The control task is solved within a moving horizon framework; however, in
order to ease notation we drop indices for the respective moving horizon step.
Assume that a nominal control trajectory @ and a corresponding nominal state
output trajectory g for the current prediction horizon are given. Then the task
is to obtain corrections Aw to the nominal control, i.e., the actual control is then
given by u = u+Awu. As the piecewise constant controls are parameterised by their
values at the beginning of the respective sampling intervals parametric sensitivities
of the system outputs with respect to the controls can be defined straightforwardly.
Based on these sensitivities [LiBi 89] set up the QP

j[Au] :zi:)

2
— min! (2.28)
Au

gTH-l - ysp
subject to (n =1,...,u)

I
~n+1 _
yn—|— — yn—|—1 + ZO_LH—IAUV’
v=1

ylwr < ,?J\n-i-l < yupr’

ulwr < u™ < uupr’,ulwr < Au” < ,aupr’

corresponding to the optimal control problem Eq. (2.27) in discrete time formula-
tion with a fixed sampling interval (e.g., y” = y(t,), t, = to+hv, v =0,1,2,..., u).
The matrices o”!, v =1,...,u, n =1,...,u, contain the sensitivity information
for the system outputs with respect to the controls. y" ", n = 1,...,pu, is then

~n+1
the linearised approximation to the system outputs. 4 € N denotes the number of



2.6.3 Comparison with Related Work 77

sampling intervals used as prediction horizon. For a more detailed explanation of
the notation we refer to, e.g., [LiBi 89]. The QP Eq. (2.28) is one of the central
parts of Algorithm 3, cf., e.g., [LiBi 89].

Algorithm 3 (Multistep, Newton-Type Controller)
1. Initialise.

2. Set the control output of the previous control move as the nominal control for
the entire prediction horizon. Compute the corresponding nominal system
output as well as the sensitivities.

3. (a) Solve the QP Eq. (2.28) to obtain a (Newton-)correction Aw.

(b) Perform a line-search to obtain a (Newton-)step-size A €)0, 1] such that

2
=1 ‘ gt — Ysp|| decreases sufficiently.

4. Update the nominal controls u + AAu — u.

If the difference to the previous iteration is below a given threshold employ
% — u as control and goto step 5

Otherwise, relinearise (i.e., obtain new sensitivities) and go back to step 3.

5. Implement the control on the control horizon, i.e., the first sampling interval
considered, advance the horizons and restart with step 1.

Our technique developed in Section 2.6.2 and Algorithm 3 correspond in em-
ploying a first order approximation to the system dynamics based on sensitivity
functions. The main difference is in the generation of the next control move. Here,
our proposal does not contain the Newton-type iteration implemented in the steps
3 and 4 of Algorithm 3 in order to obtain the final controls. However, as pointed
out in [LiBi 89], [BiRa 91] this iteration need not be made until full convergence;
even a single step including the line-search can be sufficient. In this case the main
algorithmic difference in the two approaches reduces to the line-search. Another
difference is our approximation to the influence of disturbances based on the para-
metric sensitivities of the states with respect to the disturbance parameters.

We consider the similarities between both techniques an interesting point as
these two approaches have evolved starting from rather different origins. On the
one hand, the extended Newton-type approach [BiRa 91] was intended as an ex-
tension to an optimisation-free linear control law. On the other hand, our method
discussed in Section 2.6.2 has been originally derived from the neighbouring ex-
tremals technique as a second level short-cut alternative to full NMPC.
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Chapter 3

Consistent Initial Conditions

Hearing much and selecting what is good and following it;
seeing much and keeping it in memory:
— this is the second style of knowledge.

Confucius: Analects (7,27)

3.1 Review of Previous Work

A considerable amount of research concerning DAEs has been spent in the de-
velopment of algorithms for computing consistent initial conditions. Some of this
research will be discussed in this section.

One of our intentions connected with the broad review provided in this section
is to point out that in general the calculation of consistent initial conditions is a
demanding task, especially for higher index DAEs (index > 2) of larger scale. Ac-
cording to [Marq 91] no satisfactory answer to the consistent initialisation problem
was available in the early 1990’s. Thus our second intention is to demonstrate that
although one decade of research has passed since the statement of [Marq 91] a final
and fully general method for the solution of the consistent initialisation problem
is still pending. Finally, we employ some of the ideas collected in this section for
the development of our own tailored algorithm in the subsequent Section 3.2.

3.1.1 Solution of the Consistency Equations

[CaMo 94], [CKY 96], [CMZ 96] develop a method for the integration of a broad
class of DAEs Eq. (1.1a) of finite, but otherwise (in principle) arbitrary index based
on the integration of the derivative array equations Eq. (1.5) by multistep methods.
The numerical computation of consistent initial conditions is addressed especially
in [CKY 96]. The DAE is assumed to be available in symbolic form, which al-
lows the construction of the derivative array equations by formula manipulation
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programs such as MAPLE[J. A further possibility mentioned in [CaMo 94] is the
application of automatic differentiation programs such as ADOL-C [GJU 96].

Given the index ¢4 of a DAE F (Eq. (1.1a)) consistent initial conditions are
calculated according to Definition 1.12 and Definition 1.13 as a solution of the
consistency equations

Fo(t,6(0.60)| _, =0,
(60,60, 60)| _, =0,

(3.1)
Fi t€90), 60, @) _ =0,
KM E(0.€0)],, =0,

where F(-++) = d"F(t,&(t),&(t))/dt* and €W (t) := dF€(t)/dt*. The values
W) = ¢ (4) ‘t:to’ p=0,...,tq+1, are then the (independent) unknowns. Initial
conditions k'™ (Eq. (1.1b)) are not necessarily required.

As the structure of the DAE is not further investigated system Eq. (3.1) may
be determined, overdetermined, or underdetermined according to k™. In order to
address this problem special iterative solution methods for nonlinear systems have
been considered in [CKY 96]. They range from plain, damped, or truncated Gau$-
Newton schemes where the linear systems are solved in a generalised sense (appli-
cation of the Moore-Penrose pseudo-inverse generated by singular value decompo-
sition), over steepest descend residual minimisation to the Levenberg-Marquardt
method. The sequential linear programming approach proposed by [GoBi 99] (cf.
Section 3.1.2) is also mentioned.

All these numerical methods for the solution of Eq. (3.1) are numerically expen-
sive, especially for larger problems. Therefore, [CKY 96] restrict the applicability
of their approach to initialisation problems of moderate size. Additionally, we see
that the absence of a structural investigation of the DAE — which appears to be an
advantage — can lead to somewhat arbitrary results as the problem of assignment
of the dynamic degrees of freedom is not addressed. Arbitrary means that the re-
sulting consistent initial conditions are not determined by known properties of the
DAE, but by the initial guess and by the convergence behaviour of the algorithm
employed for the solution of the nonlinear system of equations Eq. (3.1).

3.1.2 An SLP-Formulation for the Solution of the Con-
sistency Equations

As seen in Section 3.1.1 the direct solution of the consistency equations Eq. (3.1)
is a difficult task which requires the application of numerically expensive solvers
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for rank-deficient problems. As an alternative [GoBi 99] propose to formulate the
consistency equations as an NLP that can be treated using nonlinear optimisation
methods. Similar to Section 3.1.1 they do not need to know the number of dynamic
degrees of freedom. Additionally, the requirements that have to be imposed on
the quality of the user given transition conditions can be relaxed.

In the sequel we consider the DAE

0=F(t,xz(t),y(t),z(t)), (3.2)

F : Ritnetnytne _ Rratny  of differential index tq and its derivative array
equations

F(t,z(t),y(t), (1))

s Ft,z(t),y(1), &(t))
(3.3)
Commonly, (cf., e.g., Section 3.1.4, Section 3.1.5, Section 3.1.11, and the discussion
in Section 3.1.13) the user is asked for appropriate initial conditions kini fixing
the dynamic degrees of freedom of the DAE Eq. (3.2). Then consistent initial
conditions are determined by the (numerically) exactly solution of the consistency
equations composed of the derivative array equations Eq. (3.3) together with the
initial conditions, e.g., Eq. (1.1b).
[GoBi 99] start from a different point of view: Given conditions k™ speci-
fying the initial state they calculate consistent initial conditions that satisfy the
derivative array equations and these specifications as exact as possible. Applied to

Eqg. (3.2) or Eq. (3.3), respectively, this idea leads to the optimisation formulation
Eq. (3.4):

My ini
Y w6, — min_ ! (3.4)
=1 :l:,...,:l:(bd+1);
sy d); 8
subject to
= 1
O = de(t7 m’ R ’m(Ld+ )7y’ R 7y(Ld)) 7
-0, <k (z,y,T,x0,Yg, o) < 0y, v=1,..., myini,
0<4,, v=1,..., Mgini,
where w, € R \{0}, v = 1,...,mni, are weights. kM oy = 1,...,Myini, are

relations of the type “z—zp” each of them fixing a certain variable or its derivative.
The values given in the corresponding mii elements of the vectors xg, y,, and
o are the desired initial values. Additionally, box constraints for the optimisation
variables, especially for x, . .. ,z(tatl) and Y,... ,y(Ld), can be specified.

By assumption it may not not be possible to satisfy all initial conditions k™,
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v = 1,...,myii. Therefore the objective of the NLP Eq. (3.4) is to minimise
the weighted sum of the infeasibilities 4, € Ry, v = 1,...,myni, of the initial
conditions. However, this minimisation of the weighted 1-norm of the violation of
the initial conditions k™ is the main drawback of the formulation of the consistent
initialisation problem given by Eq. (3.4) as the number of variables actually set
equal to their values specified by k™ at the numerically obtained solution of the
optimisation problem cannot be explicitly controlled [GoBi 99].

On the other hand, if the number of dynamic degrees of freedom n44¢ is known
it appears advantageous to enforce exactly nqqr of the initial conditions k™ (given
that k'™ contains a subset of suitable initial conditions). This idea leads to the
mixed-integer nonlinear programming problem (MINLP)

My ini

E w,b, — min !
v=1 @,..,xltdth);

Y5y d); 6,0
subject to
0 = E‘Ld(t’ m’ A ’w(Ld+1)7y’ A ’y(Ld)) ?
_611 g ki/ni(waya¢a$0ay07;b0) S 61/7 v :]-a"'amkini ’
0<6, < Mu(l—)\,,), v=1,...,myini,
My ini
0=naar— Y A,
v=1
A,,E{O,l}, V:1,...,mkini,
with the real optimisation variables z, ...,z y ... yta) §, v =1,... mym,
and the binary variables A, v = 1,...,mgini. M,,, v =1,...,myini, are large pos-

itive numbers (method of big-M constraints, cf., e.g., [Kels 95]). However, the
solution of MINLPs is nontrivial and computationally demanding. The idea of
[GoBi 99] is to consider the approzimated (or relaxed) problem Eq. (3.5):

My ini

Z wy6, — min ! (3.5)
x,...,x{tdt1);

v=1 3eey 3
y""’y(Ld); S!A

subject to

O = ﬁ‘bd(t’m" . 7m(Ld+1)ay7--- 7y(Ld))7

-0, < kf,“i(w, Y, &, 0, Yo, Lo) < Oy, v=1,... My,
0=46,—pF-log(1+exp(—(A, —9d,)/B)), v=L,..., myni,
mkini

0=naar— Y Av,
v=1
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0<A <1, v=1,...,Myini,
OSSU’ V:1,---7mkini,
where A, € [0;1], v = 1,...,myni, are continuous substitutes for the binary {0,1}-

variables. 8 € R;\{0} is a parameter used for the smooth approximation of the
max-function, which is approached for g — 0:

Ay —6,) +6-log(1+exp(—(A, —6,)/5)) ’3—_)9 max {0, (A, —d,)} .

This relation is applied in order to gradually enforce complementary conditions
A0, =0, v =1,..., myini, present in the MINLP by

0=X,-0,0=(A, —d,)+ — Ay =max{0,(A, —d,)} — A,

This technique can be used for the computation of consistent initial conditions
of a DAE at both, the initial point ¢g, and after a discontinuity. In the latter case
[GoBi 99] examine the automatic determination of a set of variables which can be
assigned continuity conditions across the discontinuity in order to obtain appropri-
ate transition conditions. Especially, they note that the assumption of continuity
in all differential variables « is not always true. More specifically, in the case of
discontinuous forcing functions (i.e., input variables, or from the optimal control
point of view control variables) [GoBi 99] show that only those variables can be
assumed to be continuous whose UODEs are independent from any derivative of
the discontinuous input. Their further examinations regarding transition condi-
tions at discontinuities are restricted to step-discontinuities in forcing functions of
linear DAEs. For this special case they develop two methods for the automatic
generation of transition conditions. The first method is based on the analysis of
the Jacobian of the derivative array equations. The second method uses sensitiv-
ity information from an additional sequential linear programming problem (SLP).
Only the latter method can be safely applied to nonlinear problems.

[CKY 96] (cf. Section 3.1.1) mention the SLP approach as proposed in an ear-
lier article related to [GoBi 99]. [CKY 96] employ a GauB-Newton variant for two
reasons. On the one hand, they intend to use the same data for the computation
of consistent initial conditions as is used in their integrator algorithm for higher
index DAEs. On the other hand, they consider the Gaufl-Newton solver as the
more robust method.

3.1.3 Approximations to the Consistency Equations

For the construction of the consistency equations Eq. (3.1) (or more precisely, for
the construction of the derivative array equations), higher order total time deriva-
tives of the DAE are required. If the DAE is avaliable in symbolic form then
the derivatives can be generated very efficiently, cf., e.g., [Feeh 98]. On the other
hand, if the equations are given as executable routines automatic code differen-
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tiation tools such as ADIFOR [BCCGH 92], ADOL-F [GrSh 96], or ADOL-C
[GJU 96] may be applicable. E.g., [CVSB 01] employ ADOL-C in this context.
However, the two approaches mentioned above are not always suitable. Symbolic
manipulations are cancelled out if the equations are not available in symbolic form.
Automatic differentiation of the program code may not be applicable due to lack of
additional resources for implementation as it may require significant reorganisation
of large programs. These two conditions can apply to real-life applications where
the DAE is formed numerically by very complex simulation tools. Then numerical
differentiation provides a remedy for the calculation of the required time deriva-
tives. But this approach can be computationally expensive and bears numerical
difficulties. Therefore, in [Leim 88], [LPG 91] a refined technique for the efficient
and reliable numerical approximation of the required derivatives is developed. This
method is discussed in the sequel.

In order to simplify notation we define E(t) := [t,&(t)7, &(t)T]" € R¥e+l,
Then the general DAE initial value problem Eqgs. (1.1a)—(1. 1b) reads as

te [t01tf] CR,

The primary idea in [LPG 91] is to choose points 21, ..., =), in state space which
are truncated Taylor’s series expansions of the solution E(t) at to + c1h,...,t0 +
exh, o € RA\{0}, v =1,..., s, h € Ry\{0}, and then build linear combinations
of F(E,), v = 1,..., ), in such a way that certain higher order terms in the
Taylor’s series expansion of F(E(ty)) are annihilated. The restriction to positive
¢y is imposed as due to the time order of the problem forward differencing may
be allowed only. These considerations lead to the family of approximations for the
E*™® order total time derivative of F(E(t)) at tg

As 2
Fnl th — cl/h t|—|
DIF = o {§ o, F (Eo-l-cyh._.o+( 2|) = ( M) =§ﬁ”)
v=1 '

where E(()“) = d“E(t)/dt“|t:t0, p = 1,...,X. X¢ is the order of the Taylor’s

series expansion of Z(t), and o, € R, v = 1,..., A, are coefficients that have
to be selected appropriately (see Eq. (3.8) below). Defining ¢y := 0 and «p :=
— 3% v, Eq. (3.6) can be formulated more concisely as
A At
— K SN — (cyh)¥
k —_
v=0 pn=0

The approximation properties of the family Dﬁf are characterised by the following
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theorem [LPG 91]:

Theorem 3.1 (Truncation Error of Derivative Approximation)

Let F : R'= — R™F, 2 : R — R*=. Suppose \; > k. If Z is \; + 1 times
differentiable in a neighbourhood of t = ty and F is C°*! in a neighbourhood of
E(to) for some p > \¢, then the truncation error of Eq. (3.6), as an approximation
to the k' derivative, satisfies

d“F(E(t))

DEF - | =on
provided that p > k+1—1, and
A
- 1y p=k,
Za,,(c,,)“:{ p=1,...k+1—1. (3.8)
ppr 0; p#k,

The maximum attainable order of approximation / is specified below in Theorem
3.2. Beforehand, the existence of the approximations introduced in Theorem 3.1
has to be shown. This means that the existence of appropriate coefficients a,,,v =
1,...,As, determined by Eq. (3.8) has to be guaranteed [LPG 91]:

Lemma 3.1 (Existence of the Expansion Coefficients)

Let cy,co,...,cy, be A distinct, positive real numbers. For v =k,k +1,... let e},
be the k' standard basis vector in R” and define o := [, ..., ay,]T € R* and
C1 C2 . Chg
. (c1)? (2)? ... (en)? .
(c1)” (e2)” .. (en)”

Then the system
Mo = e},

has a solution if and only if v < Ag.

For ¢, =0,...,As, As = k,..., 7, [Leim 88] gives the corresponding coefficients «,
determined by Eq. (3.8) providing the maximum order of approximation in the k
= 15 to k = 3" total time derivative for Eq. (3.7). In Table 3.1 the coefficients
for the 15 total time derivative are enlisted as they will be used in Section 3.2.3
for setting up the derivative array equations.

Finally, we are interested in the maximum order of an approximation that can
be expected from Eq. (3.6) [LPG 91]:

Theorem 3.2 (Maximum Attainable Order of Approximation)
Let E, F be as in Theorem 3.1, then the maximum attainable order of the k"
derivative approximation Eq. (3.6) ismin{p —k + 1, \s — k + 1}.
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Table 3.1: Coefficients for approximation of 15¢ order total time derivative pro-
viding the maximum order of approximation with ¢, = 0,..., A,
As = k,...,7, according to [Leim 88|.

As g o s s ay as ag ay
1 -1 1

2 | -3/2 | 2| -1)2

3 -11/6 3| -3/2 | 1/3

4 -25/12 4 -3 4/3 | -1/4

5 || -137/60 | 5 -5 10/3 | -5/4 | 1/5

6 -49/20 6 |-15/2 | 20/3 | -15/4 | 6/5 | -1/6

7 || -363/140 | 7 | -21/2 | 35/3 | -35/4 | 21/5 | -7/6 | 1/7

After approximation of the consistency equations the problem of solving this
nonlinear system of equations still remains. As already noted in Section 3.1.1
and Section 3.1.2 the full system of consistency equations Eq. (3.1) — here set up
using the numerical approximation specified in Eq. (3.6) — seen as one nonlinear
system of equations in the state variables and their (higher order) derivatives is
a rank-deficient problem. Moreover, inappropriate transition conditions given by
the user can lead to an unsolvable system. The additional difficulty introduced by
the numerical approximation of the derivative array equations is that the resulting
system may not be solvable even if a symbolically derived system of consistency
equations owns a well-defined solution. Therefore, [LPG 91] propose to solve the
approximated consistency equations in a least-squares sense.

Remark 3.1:

For some special cases [LPG 91] directly derive reductions to full-column rank problems
which are easier to solve. The construction of a full rank system of reduced consistency
equations for semi-explicit index-2 DAEs is one of the core steps in our algorithm described
in Section 3.2. O

3.1.4 Semi-Explicit Index-2 DAEs

[Grit 90], [GPS 95] address optimal control of semi-explicit index-2 DAEs arising
from chemical engineering. In order to solve the optimal control problem a di-
rect shooting method is employed where the control functions are approximated
by parametrised basis functions on a control mesh. Although no implicitly de-
fined discontinuities are considered the piecewise structure of the controls causes
a consistent initialisation problem at every node of the control mesh.

Remark 3.2:
As we have already noted in Section 2.4.2.a, [Gerd 01] has shown that these consistent
initialisation problems can be avoided if sufficiently smooth controls are chosen. O
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In this section we summarise the analysis given in [GPS 95] as it elaborates
some properties of semi-explicit index-2 DAEs. For ease of notation we suppress
the additional argument p in all functions representing the vector of optimisation
parameters. Now consider the semi-explicit index-2 DAE

0= f(t,z(t),y(t),z(t), (3.9a)
0=g(t,z(t),y(t), (3.9b)
0 = k™ (to, z(to), y(to), 2(t0)) , (3.9¢)

with the differential equations f € C? (]RH'"m Tyt Rl ), the algebraic equations
g € C% (R*m=+ny Rnv), and appropriate initial conditions k'™ € C! (Ri+me+nytne
R"adt). The number of dynamic degrees of freedom nggr at the initial time g is
assumed to be known as well as the differential index of the DAE.

As the DAE is semi-explicit by assumption, we have det([0f/0z]) # 0 along
the solution. Additionally, det([0g/dy]) = 0 holds along the solution trajectory
as otherwise Egs. (3.92)—(3.9b) represent an index-1 problem (the case of a locally
changing index is not considered). Thus due to the restriction to index-2 problems
the derivative array equations

0:
! } (3.10a)
0=g,
0= 1054 80y 08
b . o0 (3.10b)
0=75*+3 m—l—ayy,
0= (G5 + G5 e+ (5:55) u+ (53) + ) &+ Su+ 5,
O:(%%—g)+(%g—g)m+(gga)y+agw+ayy,
(3.10¢)

uniquely determine & and gy as a function of @, y, and ¢ according to Definition
1.9. In Egs. (3.10a)—(3.10c) the arguments of f(t,z(t),y(t),z(t)), g(t, z(t), y(t)),
x(t), y(t), and of their derivatives have been omitted for the sake of brevity as
will be in the sequel.

As det([0f /0x]) # 0, & can be determined from f = 0 in Eq. (3.10a). Thus
by definition the initialisation problem is solved when an appropriate value of ¢
is available. Let rg < my be the rank of the matrix [0g/dy] € R"»*™v. Then it
is possible to find a Gaussian elimination L = L(t,z,y, &), L : R1Ttetrytne
R("e +ny)*(netny)  regular and lower-triangular, and a partitioning g € R's, z €
R™ ~"s of the algebraic variables y such that

or or) [fe fy] [Fe fy f3] )me
L- (;3 3_2 =10 gy| =10 g5 gz| }rg ) (3.11)
oy 0 0 0 0 0 }ny_rg
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where [fz] and [gg] are unit upper-triangular. Thus [gg] is of full rank r4. Using
[L] transformed functions are defined by

ry

f ! of I 0 of
J f x of Jy 0 0F
g ::L-[g s |Gg| =L- (3_2 , |gy| =L %g_g -
3 Se ox g;l ot 9y

Please note that this notation is not compatible with the notation employed in
the remainder of this treatise, e.g., the function denoted with the symbol f, is in
general not equal to the partial derivative 0f /0x

oL [f 201 or (1], [%
_%'[Q]M'[%g]_%'[gh el

§logledle
0l QI !

as in general 0L/0x # 0. Thus the functions representing the transformed deriva-
tives are not equal to the derivatives of the transformed functions.

Using this newly defined functions multiplication of Eqgs. (3.10a)—(3.10c) with
[L] from the left gives

0=Ff, (3.12a)
0=g, (3.12b)
0=3, (3.12¢)
0= g; + gz + gyya (3.12€)
0= s8¢ + sz, (3.12f)
0= Fi+For + 19 + (FatFa)o+ Py +Fa¥, (3.12g)
0= g +go& +gy9 +  GoF  +Gy¥, (3.12h)
0= 8 +38,& +3,y + 82, (3.12i)

as [8y] = 0 everywhere. [GPS 95] show the following properties of the transformed
system (and thus of the original DAE):

a) As Egs. (3.9a)—(3.9b) form an index-2 DAE g¢(#;) must be uniquely determined
by Egs. (3.12d)—(3.12e) and Eq. (3.12i). A sufficient condition is

det [ [0 g, | | #0 Vte [to,td. (3.13)
s 5,

In the sequel it is assumed that Eq. (3.13) holds.

b) The initial conditions k™ specified in Eq. (3.9¢) have to determine &(to), (to),
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and y(t9) locally unique together with Egs. (3.12a)—(3.12c) and Eq. (3.12f).
Therefore the corresponding Jacobian has to be of full rank, i.e.,

f:i: f:z: fy f:z: fy f:z:

0 9. gy 0 g, | 9

Sz 51,; 5;/ 0 0 Sz
oK™  9k™ Q™ oK™ oK™ | o™

o oz oy 1y, o oy oz to

Under assumption Eq. (3.13) the upper left part of the matrix on the right hand
side has full rank ng + ny and s, is of full rank ny — rg. Thus, the n_umber of
dynamic degrees of freedom that can (and have to) be specified by k™ is

nddt = (2nz + ny) — (ne +ny + (ny —rg)) = na — (ny — 1) .
If the initial conditions k™ are chosen such that % = 0 and
then the matrix on the right hand side of Eq. (3.14) has an upper right block
triangular structure as indicated by the horizontal and vertical lines. In this
case only the lower right block of this block triangular matrix requires further
analysis. The most simple choice is to fix components of the state vector x(to)
by equations kj;" (to, @ (to), y(to), &(to)), s = 1,.. ., naar, of the type

8kini = 0

Ly (1) (tO) — Low(u) — 0, (3'15)

where v : {1,...,n4qt} — {1,...,nz} is an injective mapping. The mapping v
has to be defined appropriately, i.e., in a way that the regularity condition

det([ So(t, @, Y, &) Lto) £0 (3.16)

%kini(ta z,Y, .’D)
holds. This condition can be easily checked.

The transition conditions connecting the stages (the restrictions of the dynam-
ical system to the subintervals of the prediction horizon introduced by the
control mesh) depend on the physical properties of the system being modelled.
Similar to Eq. (3.15) transition conditions of the form

kit 2 (t,), 2 (t,)) =0; n=1,2,... (3.17)

are chosen where £~ (t,,) = limy »,, #(t) and & (¢,,) = limp, «(t). E.g., conti-
nuity in a subset of the differential variables may be demanded (see the discus-
sion in Section 3.1.13.a). Together with Eq. (3.12c) these transition conditions
have to determine ™ (¢,) uniquely. Thus

Sz +,;c+ , + ’¢+
det ([ aiéki?iéf)ﬁ(tgf)m(tg?)]t:tn) 70; n=12.., (318
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has to hold (cf. Eq. (3.16)) at each switching point ¢.

In Algorithm 4 we summarise the computation of a set of consistent initial con-
ditions &(t), x(t), and y(t) for semi-explicit index-2 DAEs based on the results
discussed in this section. It can be used at the start (¢ = #9) or at a switching
point (t = ¢}, n = 1,2,...). For the latter case in step 4 the initial conditions
k'™ (.) have to be replaced by the transition conditions k™ (-).

Algorithm 4 (Consistent Initial Conditions, Index-2 DAE)
1. Build the derivative array equations Eqs. (3.10a)—(3.10c).

2. Compute the Gaussian elimination [L] according to Eq. (3.11).

3. Generate the (nonlinearly) transformed system of derivative array equations
Egs. (3.12a)—(3.12c), Eq. (3.12f).

4. Solve the square and full rank reduced consistency equations at t = ty (or,
with minor modifications of notation, at t = t', n = 1,2,...), which is set
up using Egs. (3.12a)—(3.12c), Eq. (3.12f)

0= F(t,x(t),y(t),&(t)),
0=g(t =(t),y(t), (1),
0= é(t,:z:(t),y(t) "B(t)) ’

in the unknowns (t), y(t), and ©(t). Appropriately specified initial / tran-
sition conditions k'™ have to be available for each consistent initialisation
problem, e.g., as specified in Eqs. (3.15)—(3.16) or Egs. (3.17)—(3.18).

5. Optionally, solve Eqs. (3.12d)—(3.12¢), Eq. (3.12i) for &(t) and y(t).

Core of Algorithm 4 is the calculation of the Gaussian elimination [L] and of the
corresponding partitioning of the algebraic variables in step 2 in order to reveal
the hidden constraints Eq. (3.12f). This calculation is based on the numerical
values of the Jacobian of the original DAE. Thus, the result [L] can be sensitive
to round-off errors in the Jacobian of the original DAE, and it directly depends
on the estimated start values for x, y, and . Additionally, the index of the DAE
has to be known a priori.

3.1.5 The Algorithm of Pantelides

One of the major problems encountered in Section 3.1.1, Section 3.1.2, and Section
3.1.3 is that indiscriminate differentiation of the entire DAE in accordance with
the definition of the derivative array equations (Definition 1.8 and Eq. (1.5)) in
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general leads to a system of rank-deficient consistency equations. In order to solve
such a system special, computationally expensive algorithms have to be employed.

The alternative approach is to determine subsets of equations in a DAE that
need to be differentiated in order to obtain a minimal, full rank system of consis-
tency equations. Given appropriately specified transition conditions this system
can then be solved by standard numerical methods. We call this (full rank) system
the reduced consistency equations. Accordingly, we introduce the reduced derivative
array equations as the set of functions that are present in the reduced consistency
equations as total time differentials of the original DAE equations.

In the previous Section 3.1.4 reduced consistency equations have been derived
for the special case of a semi-explicit index-2 DAE (cf. Algorithm 4). The approach
is based on numerical properties of the DAE (basically, on a Gaussian elimination)
and requires a priori knowledge of the index. In contrast, [Pant 88a] proposes a
technique which applies to a large class of DAE systems of practical interest. The
Algorithm of Pantelides is a structurally oriented method which solely requires
data that can be directly obtained from the original DAE. Therefore it is suitable
for general, large-scale problems as arising in our industrial application.

Again, we distinguish differential variables  and algebraic variables y, rewrit-
ing Egs. (1.1a)—(1.1b) as

Fl(t’ .’D(t), y(t)’ w(t))

: —0; € [to,t] CR, (3.19a)
an—}-ny (t7 $(t), y(t)7 w(t))
k™ (to, z(t0), y(to), (o)) =0, (3.19Db)
where F,, : RIF2m=4my 3 R =1,...,n5+ny, and k™ : RIF20=F7y 3 RMgini

The aim is to find a set of consistent initial conditions [x(tg), y(to), Z(to)]-

Remark 3.3:
In Section 2.4.3.a we have discussed the widely used BDF integrator method. When
starting from lowest order, i.e., with an implicit Euler step, only in x, y, and & consistent
values need to be provided in order to allow for a smooth start of the integration while g
can be neglected in the first step. Moreover, ¥ may be obtained given consistent values for
x, y, and & and the information required to set up the reduced derivative array equations,
cf., e.g., Eq. (4.42) in Section 4.3.3.a. 0

[Pant 88a] starts with the observation that not every subset of equations of
a DAE actually gives new constraints upon differentiation. In order to see this
consider an arbitrary nonempty subset of my equations of the DAE (3.19a)

(b# {Fla"'apmﬁ} C {F17“‘7an+ny} )
containing a subset of the state variables

T = {z_Bl,...,in;c}C{mla"'awnm}’ and
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z:={21,...,2p,} C {wl,...,mnm,yl,...,yny} .

Le., z is the vector of the highest order time derivatives of all original state variables
present. This set of functions defines a multi-dimensional function

F(t,&,2) = [Fi,..., Fpn, ] (t,7, %),

F : R'ftmatnz 5 R™F  In the sequel it is assumed that the Jacobian of F at
with respect to & and 2z has full row rank mg:

rank([ g] to, ) =Mmpg.
(to),Z(to)

Total differentiation of F (&, z,t) with respect to time ¢ not only gives a set of new
equations, but also introduces new variables z that have not been present in the
DAE Eq. (3.19a) before

Sl

do . 0= _ -, _ . 0
aF(t,m,z) =_—F(t,z,2)+ —F(t,z,z) T+ 9

F(t,z,z)-2=0; (3.20)
the equality to zero is due to Eq. (3.20) being part of the derivative array equations
of the DAE Eq. (3.19a). But if

rank ([%] to, ) =mg,
Z(to),2(to)

then the new equations can be satisfied for any choice of {x(ty),y(to), Z(t0)} as
by the implicit function theorem it is possible to solve for a corresponding value
of z. Thus no additional constraints on & or 2z have been created. However, it
is exactly the additional constraints we are looking for as they set up the hidden
constraints. In other words, detection of hidden constraints means to locate all
subsets of equations that impose new constraints upon differentiation. According
to the previous considerations this is equivalent to the determination of all subsets
of equations F' satisfying

rank ([%] to, ( )) <Mmp. (3.21)
to

:E(to),z

The difficulty inherent in this criterion is that all nonempty subsets F' of the DAE
have to be examined, which is a combinatorial problem. Thus the criterion of
Eq. (3.21) cannot be applied in practice (apart from small scale DAE systems).

At this point the idea of [Pant 88a] is to employ a necessary condition for a set
of equations to have property Eq. (3.21) as a (weak) substitute. This necessary
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condition is
nz < Mg, (3.22)

as

Q|
NI|'1j\

rank ([ ]to, ) < AP Lonk ([%—5] to, ) <mg,
Z(to),2(to) Z(to),2(to)

i.e., the number of the variables which occur in their highest order time derivative
in a set of functionally independent equations has to be smaller than the number
of equations considered. Eq. (3.22) gives rise to [Pant 88a]

Definition 3.1 (Structural Singularity of Sets of Equations)
e A (functionally independent) subset of equations F that satisfies criterion
Eq. (3.22) is called structurally singular with respect to the variable subset
z (F and z as defined above).

e A structurally singular subset of equations is called minimally structurally
singular (MSS) if none of its proper subsets is structurally singular.

e A system of equations is called structurally singular with respect to a certain
set of variables if it contains a structurally singular subset with respect to
this set of variables.

The advantage of criterion Eq. (3.22) is that it allows the application of efficient
algorithms originating from combinatorics. Basis is

Theorem 3.3 (Systems of Distinct Representatives)
Let V.= {V1,V,,...,Vp,} be a set of objects and S = {S1,S52,...,5,} a set of
subsets of V.

Then each element of S can be assigned a different element of V if and only if
every collection of k(< n) elements of S contains at least k distinct elements of V.

In the context of the consistent initialisation problem we have the following inter-
pretation of V' and S:

o Let z:=[21,...,Zngtny )" = [®1,. . Tngs Y1s--- ,yny]T. The variables z,
are the members V, € V, v =1,...,ngp + ny.

e Each equation F, u = 1,...,n5 + ny, is associated with a set S, € S
containing the elements of V' assigned to the variables occurring in this

equation.

In this nomenclature criterion Eq. (3.22) defining minimally structurally singular
sets of equations is satisfied for all subsets of those elements in S that do not fulfil
the necessary and sufficient condition for an assignment stated in Theorem 3.3.
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Remark 3.4:
The variables z1,...,x,, do not enter the investigations. ¢
Assignments are advantageously constructed by graph-theoretical methods.
Here, such an algorithm is employed for the detection of minimally singular sub-
sets. At first, a bipartite graph consisting of E-nodes and V-nodes is defined by
the following identification:

e E-node p < S, < F,
e V-nodev + V, & z,,
e edge (u,v) exists if V,, € S, i.e, if equation p contains variable v.

For the further discussion more concepts from graph-theory are required, cf., e.g.
[Pant 88al:

Definition 3.2 ((Partial/Complete) Assignment, Augmenting Path)
e An assignment is a set of edges (u,v) such that no node u or v appears in
more than one edge in the set.

e FEdges in an assignment are called matching edges.
e A node is exposed if it does not appear in any matching edge.

e An augmenting path is a path with exposed nodes at both ends and alter-
nating nonmatching and matching edges between them.

e An assignment is complete if it leaves no E-node exposed; otherwise it is
called a partial assignment.

A complete assignment can be constructed starting from a partial assignment
(trivially the empty set) and then successively adding new edges to the partial
assignment by the construction of an augmenting path from an exposed E-node to
an exposed V-node. If the search for an augmenting path is successful then the new
assignment can be obtained by reassignment. In the reassignment the matching
edges in the augmenting path are set as the nonmatching edges of the new assign-
ment. The matching edges in the new assignment are given by the nonmatching
edges in the augmenting path. In this way the assignment is enhanced by an ad-
ditional edge. An efficient algorithm for the construction of augmenting paths has
been proposed by [Duff 81]. We will refer to this algorithm as AUGMENTPATH.
Remark 3.5:
Algorithms for obtaining a mazimum transversal [Duff 81] are a common tool for the

treatment of sparse matrices. An implementation of AUGMENTPATH is found in the HSL
routine MC21 [AEA 93]. O

The connection between (in)complete assignments and minimally singular sub-
sets is given by [Pant 88al:
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Lemma 3.2 (Augmenting Paths & Minimally Structurally Singular Subsets)
If AUGMENTPATH cannot find an augmenting path, then the set of equations
represented by all E-nodes visited in the search is structurally singular with respect
to all variables {&1, . .., &n, } and {y,,...,y,, } contained in that set of equations.

Lemma 3.2 provides the basis for Pantelides’ Algorithm. Given a procedure
AUGMENTPATH for the construction of augmenting paths the entire algorithm can
be formulated as in Algorithm 5.

Algorithm 5 (Algorithm of Pantelides (outline))
1. Make initialisations.

2. Start with an empty assignment.
3. Loop over all E-nodes (i.e., equations):

(a) Delete all V nodes (and their edges) corresponding to variables which
total time derivatives are present in the current system of equations
represented by the E- and V-nodes.

(b) Search for an augmenting path emanating from the actual E-node.
(c) If AUGMENTPATH failed, then

i. Differentiate all equations with respect to time that have been
visited during the search for an augmenting path.

ii. Add the new equations and time derivatives of variables intro-
duced in step 3(¢)i to the current system of equations, i.e., add
FE-nodes, V-nodes, and edges.

iii. Set that F-node as actual E-node which was generated by differ-
entiation of the actual FE-node.

iv. Continue with 3a.

In the course of Algorithm 5 all equations of the reduced derivative array equations
are examined as root of an augmenting path. In this way all minimally structurally
subsets of equations can be detected. Step 3(c)iii initiates a depth-first search.
Termination of Algorithm 5 is not given a priori due to the loop 3a — 3(c)iv which
is only left by condition 3c if an augmenting path is found in step 3b. Indeed,
termination of the algorithm can be guaranteed for well-posed DAEs only:

Theorem 3.4 (Termination of the Algorithm of Pantelides)

The Algorithm of Pantelides terminates if and only if the reduced derivative ar-
ray equations are structurally nonsingular. Furthermore, if the reduced derivative
array equations are structurally singular, then the DAE system examined is struc-
turally inconsistent.

Structural inconsistency of a DAE is specified in the following Definition 3.3.
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Definition 3.3 (Structurally Inconsistent DAE)

A DAE system Eq. (3.19a) is said to be structurally inconsistent if it can become
structurally singular with respect to all occurring variables by the addition of the
time differentials of a (possibly empty) subset of its equations.

An important feature of the algorithm as proposed by Pantelides is that step
3(c)i is not executed symbolically. Instead, structurally nonlinear differentiation
is employed (cf. Definition 1.19). Consequently, the only input required is the
pattern of the Jacobian of the DAE system Eq. (3.19a)

oF, oF, 6E1

pa't B )
aan‘F“y 6an+"y 8F"m+ny
ox dy oz

2(t0) (t0) (o)

which defines the edges in the initial bipartite graph.

Remark 3.6:
Strictly speaking only the Jacobian with respect to & and y is required. All V-nodes (and
their incident edges) corresponding to variables & are deleted in step 3a before the search
for an augmenting path is initiated for the first time. See also Remark 3.4. ¢

In the sequel f, is used as a symbol for any equation of the original DAE or any
of the additional equations created in the course of the algorithm. Analogously,
&, is a symbol for any variable in the original system or for any new variable
arising. Thus initially f, = F, p=1,...,ng+ny =: my and § := [T, yT, &7,
ng = 2ng + ny holds. Apart from the bipartite graph describing the occurrence
of the highest order derivatives of the variables in the derivative array equations,
Pantelides’ Algorithm uses an equation association list EAL € N™f and a variable

association list VAL € N*. The pu'" element of these vectors is defined as

) df ) de¢
Ciff = e cifg, =S

EAL(M) _ v; 1 fl/ ) dt and VAL(M) — v 1 gu ) dt
0; otherwise, 0; otherwise,

pointing to the corresponding derived equation or variable, respectively. In the
course of the algorithm my and ng increase. Upon termination Pantelides’ Al-
gorithm returns in EAL the information required to set up the reduced system of
derivative array equations together with its size my. Furthermore, VAL contains
the variables present in this system and their differential dependencies, and the
number of all variables n¢ in the reduced derivative array equations is available.
In common there are more variables than equations in the reduced deriva-
tive equations, i.e., they constitute an underdetermined system of equations with
nddaf = ng — mg dynamic degrees of freedom (cf. Definition 1.14). Unfortunately,
Pantelides’ Algorithm cannot determine which subset of ngqr of the variables in
the reduced system of derivative array equations may be specified by additional
ng4f equations in order to arrive at a square system of consistency equations. For
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a discussion of this topic we refer to Section 3.1.13.

Pantelides’ Algorithm has been designed for the detection of a reduced system
of derivative array equations that can be used for the computation of consistent
initial conditions [z, y, ] for the DAE Egs. (3.192)—(3.19b). With some care taken
for special cases Pantelides’ Algorithm can also be used to determine the structural
index (cf. Definition 1.20) of the DAE [Unge 90]. From the theoretical point of
view we are in general interested in the differential index of the DAE. Again some
care is required if Pantelides’ Algorithm is employed to assess the differential index,
as there are cases in which the structural (differential) index and the differential
index differ (cf. the discussion in Section 1.2).

Remark 3.7:

[Otte 95], [Otte 96] obtains the differential-algebraic index by a slight modification of the
definition of the differential index. Especially, he considers x, y, and x instead of x, y,
&, and y (cf. Definition 1.7). Thus by construction Pantelides’ Algorithm is more directly
related to the differential-algebraic index than to the differential index. However, the
differential-algebraic index suffers from theoretical shortcomings that limit its applicability,
e.g., the differential-algebraic index is not invariant against state transformations [Otte 02].

0

Pantelides’ Algorithm has been implemented in the FORTRAN code PALG
[Unge 90], [UnMa 91]. Its sparse version SPALG [UKM 95] is especially suited
for the analysis of the very large-scale DAEs which are the subject of our interest.
Indeed, SPALG is a core ingredient of our algorithm for consistent initialisation
(cf. Section 3.2.1). The extensions PALGU and SPALGU additionally trace the
derivatives of external inputs (controls) in the reduced derivative array equations
[Kron 02].

3.1.6 Dummy Derivatives

The structural information obtained from Pantelides’ Algorithm (cf. Section 3.1.5)
can be used in two different ways for the construction of a DAE with an index of
at most one, starting from a DAE with higher (structural) index [MaS6 93]:

1. Replace each equation by its highest order total derivative with respect to
time as requested from Pantelides’ Algorithm. By construction the resulting
system is a determined system of index less or equal one (in the index-0 case
an UODE of the original DAE has been constructed). This approach is
proposed in the original paper [Pant 88a.

The main drawback of this method is that during an integration the replaced
algebraic constraints are only satisfied implicitly via their time derivatives.
Therefore the numerical integration of the new system in general suffers
from drift effects which are inevitably introduced by discretisation round-off
errors. The problem is that these round-off errors lead to a gradual deviation
from the solution manifold of the original DAE. In order to avoid such effects
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stabilisation techniques or projection methods can to be applied, cf., e.g.,
[CaMo 95].

2. Use the entire system of reduced derivative array equations as new index
< 1 DAE, i.e., in contrast to approach 1 keep all lower time derivatives of
all equations. In this way the index reduced DAE explicitly contains all
constraints of the original DAE.

However, the reduced system of derivative array equations forms an overde-
termined dynamical system. Therefore special projection techniques are
required for their numerical integration.

In order to combine the advantages of both techniques, i.e., determinacy and
preservation of the solution manifold, [MaS6 92], [MaS6 93], and independently
[CeEl 93] introduce the dummy derivative method. Similar to method 2 above in
a first step Pantelides’ Algorithm is employed in order to investigate the reduced
derivative array equations. In a second step a subset of the time derivatives of state
variables is substituted by (or reinterpreted as) dummy algebraic variables, result-
ing in a determined system. In practice the selection of the dummy derivatives
has to be monitored and adapted dynamically during the course of an integration
(dummy derivative pivoting).

From the consistent initialisation point of view the index-1 DAE derived by the
dummy derivative method is equivalent to the original reduced system of derivative
array equations, apart from two minor differences:

e [MaS6 93] check for unnecessary differentiations demanded from Pantelides’
Algorithm that lead to index-0 systems in some cases.

e Some of the former state derivatives become algebraic variables.

As these differences are not relevant in our context we skip a more detailed dis-
cussion of the dummy derivative algorithm.

[Feeh 98] applies the method of dummy derivatives as a means for deriving
index-1 DAEs in order to integrate higher index DAEs. The availability of the
index reduced system further allows him to apply his algorithm for the transfer
of sensitivities at discontinuities in index-1 DAEs also in the context of higher
index DAEs (cf. Section 4.1.4.a). In his implementation into the simulation and
optimisation package ABACUSS [Feeh 98] executes the necessary differentiations
symbolically using automatic differentiation techniques.

3.1.7 Hybrid Methods

The generation of the derivative array equations is a major obstacle for every
algorithm based on the solution of the consistency equations unless the higher order
time derivatives can be obtained symbolically. As we have seen in Section 3.1.3
the technique proposed by [LPG 91] is suitable for the numerical approximation of
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the higher order time derivatives in a very general setting. However, this special
approach exhibits some drawbacks:

1. The index of the DAE has to be known.
2. The user has to provide appropriate transition conditions.

3. In general, the solution of the resulting overdetermined rank-deficient non-
linear system of equations is difficult and numerically expensive.

As a partial remedy [KMG 92] propose to analyse the structural properties of
a DAE by Pantelides’ Algorithm at first. Based on this structural information a
square system of reduced consistency equations is constructed that can be solved
for consistent initial conditions. Similar to [LPG 91] the numerical approximation
of the total time derivatives is performed by the formulae of [Leim 88] (cf. Section
3.1.3). Thus the combined structural/numerical approach solves problems 1 and
3 which are present in [LPG 91].

[KMG 92] have tested this hybrid technique on smaller index-2 and index-3
systems, in [Kron 02] the application to smaller index-1 and index-2 systems is
discussed.

In Section 3.2 we develop a tailored algorithm for the consistent initialisation
of large scale semi-explicit index-2 DAEs extending this technique. Especially, in
Section 3.2.4 we develop an algorithm which automatically generates appropriate
transition conditions addressing problem 2 noted above.

3.1.8 Elimination and Substitution Methods

In Section 1.1 we have introduced Algorithm 1 which computes the differential
index of a DAE. On its way the UODE of the DAE is generated as well as the
hidden constraints. Using this information the corresponding extended system
of the DAE can be built. Together with an appropriate set of transition condi-
tions consistent initial conditions can then be computed according to Definition
1.11 [UKM 95]. This approach originates from a method proposed by [Gear 88].
[BBMP 90] interpret the method in a different way and develop an algorithm for
linear constant coefficient DAEs. [Moe 95] extends the algorithm of [BBMP 90] to
the nonlinear case. In parallel to [BBMP 90] in [Unge 90], [UnMa 91], [UKM 95]
an algorithm for the analysis of linear-implicit DAEs based on Gear’s approach is
developed. This algorithm is further extended in [KMG 97].

After the UODE of the DAE and the hidden equations have been generated,
[Gear 88] considers the corresponding extended system as the new dynamical sys-
tem in order to avoid the otherwise inevitable drift effects that make integration
of the plain UODE prohibitive (but: the UODE contains the full dynamics of the
original DAE and thus is algebraically equivalent to it; drift is a purely numerical
effect). The drawback is in the overdeterminacy of the corresponding extended
system (as a dynamical system). Therefore, [Gear 88] introduces additional slack
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variables. In contrast, [BBMP 90] successively replace differential equations by the
hidden constraints finally ending up with an index-1 DAE. This system is equiva-
lent to the original DAE with the same consistent initial conditions and the same
number of dynamic degrees of freedom.

In order to demonstrate the fundamental difference of this approach to Pan-
telides” Algorithm we consider Algorithm 6 as given in [UKM 95]:

Algorithm 6 (Index Reduction: Elimination and Substitution)
Let there be a DAE F(t,£(t),&(t)), t € [to,t] C R, with & € R* and F :
R1+nf+nf - Rre

1. Initialise
1:=0,
~ (0 ~
( : =F, g( _57 ng ‘= ng, Nddf = Mg,
X0 =g, FD = 0.

2. Determine the size of the subspace carrying the system dynamics
p(®) = rank [ﬂigil , é(i) € ]R"?) ,
and adapt the counteraf”or the number of dynamic degrees of freedom
TNddf — Tddf — (n?) — p@).

3. Partition

g e, 9" _ g = ()
(W e 20 ,y(z))) Vt,6.8"), 29,99y = "),
such that

det ([31‘ (L. & 0.40) D #£0,

with 20 ¢ ReD 40 ¢ R”fs” —u®
-

permutation matrix P € ]R"i

) ()

(i ; . G
) f(z) e v () ¢ R , and the

4. Obtain explicit expressmns for &%)
by solving 7 (t,€,&9, 90 for &@ = ¢ (¢, &, 50)
and append this expression to the collection of UODEs
. (i ) ) = (4)
X0 = O, Y) ) = f@—”(t,e,e ),
to obtain

XV =[50, 60 20]" 1) = F (1€, 59, §0).

5. Generate the new collection ofl UODEs by substitution of
2@ = ¢ (¢, ¢ 40 into F (¢,€, 50, §0)
Ieading to
X9 = [ab(o),...,dc(i_l),gb(i)]T (t) = FO(t,¢,4D).
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6. If u(» = ng) then terminate as both UODE and the hidden equations have
been completely detected. The differential index of the DAE is 1q = 1.

7. In order to obtain tbe hidden equations substitute
8@ = g0 (t,&,5) into g (1, €,&,§0),
giving®

Gt € =0.

8. Differentiate the new hidden equations G (t,€) = 0 with respect to time,
giving
_ 9698 | 6D (1) (1) | 9D (18) . (i
0:="%>+"xa X+ Wy(”.

9. Eliminate the already known differentials X ) by substituting the UODEs

X(i) (t) = FO (t,{,y(i)) into the result of step 8. This gives a new set of

P 6, 59) = 0.

10. Prepare the next loop by

£ L 0, 0 0, it

11. Restart from step 2.

Remark 3.8:
After termination of Algorithm 6 the hidden equations are given by the equations

0=G(t¢) :=[GO,...,60=1]" (¢,¢).

0
In difference to Pantelides’ Algorithm (Algorithm 5) Gear’s Approach explicitly
generates all UODEs and hidden equations. On the one hand, it solves for the
differential variables (steps 2-4) and eliminates the known time differentials in
order reveal the UODEs (step 5) as well as the hidden equations (step 7). On the
other hand, it eliminates the known time differentials in the first total derivatives
with respect to time of the hidden equations (step 9) thus avoiding the generation
of higher order time derivatives of the state variables. In the general (nonlinear)
case step 4 can lead to difficulties in practical application as it is based on the
implicit function theorem which holds only locally. However, if the DAE is of
linear implicit type (as is the case with the chemical engineering applications of
our interest) step 4 reduces to the inversion of a regular matrix which can always
be performed [UKM 95].

© Substitution of & in §'9 results in 0 = g (¢, &, @ (¢, &,9),9?). However it can
be shown that this equation does not explicitly depend on g ([Unge 90], Proposition
2.1.1), i.e., 3G /8y = 0.
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In [Unge 90], [UnMa 91], [UKM 95| the implementation of a structural ver-
sion of Algorithm 6 (ALGO) suitable for linear-implicit DAEs is described. This
approach overcomes the difficulties connected to symbolical/numerical rank de-
termination and construction of a suitable partitioning in steps 2—-3, at the price
of the limitations of structural calculus discussed in Section 1.2. An interesting
point is that — although Algorithm 5 and Algorithm 6 are conceptually different
— it can be shown that their structural counterparts SPALG (or PALG) and
ALGO return the same (structural) index as well as the same number of degrees
of freedom if provided with the same data. In [KMG 97] ALGO is further ex-
tended for non-autonomous DAEs. Their algorithm ALGOU provides additional
information about the derivatives of the external inputs (controls) present in the
corresponding extended system.

A drawback of Gear’s approach is that a sparse version of ALGO is possible
in principle, but difficult to implement [UKM 95]. However, in our opinion a
sparse version of ALGO may not be suitable for application to practical problems
as in the elimination and substitution steps sparsity is in general not preserved.
Pantelides’ Algorithm can be implemented in sparse form without fundamental
difficulties (SPALG, [UKM 95]). Thus in the context of our application Pantelides’
Algorithm is the method of choice as large-scale systems of DAEs have to be
examined.

3.1.9 Projector Based Techniques

Based on the notion of the tractability index ([Marz 89], [Marz 90], [Marz 92],
[Mérz 97]) several authors have developed methods for the consistent initialisation
of index-2 tractable DAEs, see, e.g., [Hans 92|, [Lamo 97], [EsLa 99], [Este 00]. In
the sequel we follow [EsLa 99] who consider quasi-linear index-2 DAEs

F(t,£(1),£(1) = A(t, £(t)) - £(t) + £(2,€(2)) = 0; 1 € [to, 1], (3.23a)
Pini(t0,€(t0)) - [£(t0) — &o] =0, (3.23b)

where A : R — ReXme and f : R — R%. P;(t,§) € R%X"% is a
projector selecting those state variables & which are chosen as the dynamic degrees
of freedom; it will be defined below. £, € R™ are appropriate user given transition
conditions.

To start with, we define the matrices

Ao(t,€) = %F(t,s,é) — A1E),

Balt,€.8) = e F(t.6.) = 3¢ AL + 52 7(0.6).

In the DAE case given the coefficient matrix Ao(¢,€)(= A(t, £)) is singular. Addi-
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tionally the following assumptions on A( are made:
ker (Ag(t,&)) = constant, im (A(¢,£&)) = constant . (3.24)
Now define the space Ny := ker (Ao(t,£)), let Qo be a (constant) projector on Ny
VE € R™ : Ao(t,€)Qo€ =0, [Qo]® =Qo,
let Py := Id — Q, and let Wy be a constant projector along im (Ag(&,t))
V€ € im (Ag(t,€)) : Wo€ =0, [Wo]* = Wp.

Le., P, filters the differential variables, whereas W) if multiplied from the left gives
the algebraic constraints, nullifying all differential contributions in Eq. (3.23a).
Furthermore, the space

Solt, €) = {é € B Wo o £ (1,8 = o}
= {& e R - WoBo(t, €, ) = 0}

is introduced. With these prerequisites at hand index-1 tractability can be defined
in adaptation of [EsLa 99]:

Definition 3.4 (Index-1 Tractability)
If Ay(t, &) is singular, then Eq. (3.23a) has tractability index-1 if and only if

NO N SO(tag) = {0} )
or, equivalently, if and only if

Al (t7 ga 6) = AO (t7 5) + BO(ta ga g)QO is HOHSngll]&I'.

Suppose that both Ay(t,&) and A;(t,&, &) are singular, ie., Eq. (3.23a) does not
fulfil the conditions for index-1 tractability. In this case, define

Bl(t7 Ea E) = BO(ta sa &)PO .
Then, assuming that both

ker(A;(t,€,€)) and im(4;(t,&,€)) are independent of £, (3.25)

the considerations of above can be repeated with Nj(t,&) := ker(A4;(t,¢,£)), a
projector Ql (taé.) on Nl (t7£)7 Pl (tag) = 1Id — Ql(tag)a a projector Wl (taé.) along
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im (A1 (t,g,é)), and the space

S1(1,€,€) == {& € R - Wi (1, €) B (1, £,6) =0} .

Similar to the notion of index-1 tractability (Definition 3.4) index-2 tractability is
then introduced by

Definition 3.5 (Index-2 Tractability)

If Ao(t,€) is singular, and if Eq. (3.23a) is not tractable with index 1, and if
dim (No N So(t,€)) is constant, then Eq. (3.23a) has tractability index 2 if and
only if

N1(t,£) N Sl(t,g,é) = {O} )

or, equivalently, if and only if

AQ(ta £a £) = Al (ta 65 E) + Bl (ta Ea £)Q1(ta 6) is nonsingu]ar.

Remark 3.9:
For quasi-linear and semi-explicit DAEs with the property that differentiation of the al-
gebraic part gives a transferable DAE, i.e, a DAE for which the index-reduced system is
uniformly of index-1, index-2 tractability is essentially equivalent to a differential index of
2 [Miirz 89). 0
Remark 3.10:
The previous definitions for index-1 and index-2 tractability indicate a recursive nature
of the tractability index. A general recursive definition of index-y, tractability, ¢, € N, is
given in [Mérz 92] for linear DAEs. 0
It can be shown that the tractability index is independent from the special
choice of the projectors. [EsLa 99] choose Q1(t, &) as the canonical projector onto
Ni(t, &) along S1(t, &, &) which has the properties

Ql(tag) = Ql(tag)AZ_I(t’g’g)Bl(tag’g) ) and
NoN SO(t,g) =im (QOQl(ta 5)) ?é {0} .

In [EsLa 99] consistent initial conditions in the sense of Definition 1.15 for a
DAE Eq. (3.23a) with tractability index 2 are obtained by

1. generation of an equivalent index-1 system,

2. appropriate selection of a subset of the state variables £ that are assigned
user given values,

3. and solution of the resulting full rank system of nonlinear equations.

The first two steps of this method are based on the projectors introduced in the
analysis above. In the sequel it is assumed that it is possible to find a suitable
projector Wi(t, &) such that im(W;(¢,€)) = constant. This is the case, e.g., for
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Hessenberg systems and for systems Eq. (3.23a) arising from the modelling of elec-
tric circuits using Modified Nodal Analysis (MNA). Further the constant diagonal
matrix Iy, is introduced as

T ] = 1; if we{l,...,ne}:[Wi(t€)],, #0,
Wlpon = 0; otherwise.

Iy, is used to select those equations that are to be differentiated with respect
to time, whereas Wi describes how to combine the differentiated equations (by
construction, Wi (t, &) Iy, = Wi(t,€)). It should be noted that the dependency of
Iy, from (¢, &) has been dropped. Then, under the additional assumptions that

% [ WoF (£, 6(1),€(1))]  exists, (3.26a)
0 OIw, Wof)(t,€) 5, 9w, Wof)(t, )
r {5 (100 [P ¢ ATTREE )
C{NoNSy(t, &)}, and (3.26b)
VE c R . 8([P0P1(t>§é] i [£ - 50]) . [Id _ POQl(t,E)] . E- -0 >
POPI(t7 5)% = Oa (3260)
the system
0=
F(t,§, )
PyPy(t,€)] - [€— €&
nAlie-e o
Wilt,) - [2 0D ) 4 At Wores)] o
:i::ii!(to)y

with ¢ = Poé, represents a DAE of tractability index 1 equivalent to a given
index-2 tractable DAE Eq. (3.23a) at t = 1.

Remark 3.11:
In Eq. (3.23b) the projector Py;(t, &) selecting the dynamic degrees of freedom was inter-
mediately introduced. In Eq. (3.27) it is specified as Py,;(t, &) := Py Py (t, ). 0

Theorem 3.5 shows that the nonlinear system of equations Eq. (3.27) in the
unknowns &€(tp) and & (ty) can be solved for consistent initial conditions [EsLa 99]:

Theorem 3.5 (Regularity of Projected Consistency Equations)
Let the assumptions Eq. (3.24), Eq. (3.25), and Egs. (3.26a)—(3.26¢) be valid. Then
the system Eq. (3.27) has a full rank Jacobian in a neighbourhood of a solution.

Eqg. (3.24) and Eq. (3.25) are dependency conditions, Eq. (3.26a) is a smoothness
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condition. Eq. (3.26b) can be shown to hold for linear time-dependent and Hes-
senberg systems as well as for a class of DAE models arising from Modified Nodal
Analysis. Eq. (3.26c) is fulfilled, e.g., if [PyP;(t,&)] is constant or purely time-
dependent, or if [PyQ1(t, £)] is constant (given for MNA), or for some mechanical
systems.

By the special choice W1(t,&) = A2(t,§,£)P0Q1(t,£)A2_1(t,E,é) [EsLa 99]
transform Eq. (3.27) into the nonlinear system of equations

0={F(t,£,:i:)} —to (3.28)

gzg(to),

z=&(to)

0= {[P0P1 (t,6)] - [€ — &)+

Pt o+ 4,060 G0N poua)| o L @)
-

System Eqgs. (3.28)-(3.29) is solved by a Newton-type algorithm with an inexact
Jacobian dropping the dependencies of the projectors PyP;(t,£), PyQ1(t, €), and
Ao(t, &, ). The projectors can be calculated by Householder decomposition (QR)
or by Singular Value Decomposition (SVD). [EsLa 99] employ the first method
due to computational costs. Still the expensive generation of the projectors re-
stricts this technique to small systems or systems where the projectors can be
obtained analytically [HaLa 01]. [HaLa 01] implement a modified version of the
method. Their implementation addresses DAEs arising from the discretisation of
PDEs by the method of lines. On the one hand, this means that sparse matrix
techniques have to be employed due to the problem dimensions (as an example
problem [HaLa 01] initialise a DAE with 5029 variables). On the other hand, spe-
cial properties of these systems resulting from PDE discretisation can be utilised.

Based on the projector technique [Este 99b] proposes an algorithm tailored
for the computation of consistent initial values for a class of DAEs arising from
MNA. Her algorithm employs a topological analysis of the electrical network as
described in [Este 99a). [Este 99b] also addresses the problem of an appropriate
choice of the value of the vector £ of initial conditions. For the special application
treated the values are assumed to be given either as the DC operating point of the
electrical network or as (the state vector part of) a solution of the DAE before a
discontinuity.

In [Este 00] a two-step method for the computation of consistent initial condi-
tions motivated by the projector technique is proposed. In a first step an interme-
diate value for the initial conditions is computed which fulfils the explicitly given
DAE only. In a second step this value is modified such that a set of consistent
initial conditions is obtained, i.e., a set which also satisfies the hidden constraints.
As a main advantage of this method the determination of a set of appropriate
dynamic degrees of freedom (here corresponding to [PyP;(t,€)] - [€ — &p]) is not
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required. At the same time, user given specifications for the initial values in the
differential variables are observed exactly in as many components as possible. A
drawback of this method is that special assumptions on the structure of the DAE
have to be fulfilled.

3.1.10 The Back-Tracing Method

In this section we consider a numerical method that can be used to obtain “nu-
merically consistent initial conditions” without explicit determination of the con-
sistency equations and of the dynamic degrees of freedom. It is based on a special
property of BDF integration codes, a class of implicit linear multi-step integrators
(cf., e.g., [Gear T1], [DeBo 94|, and the discussion in Section 2.4.3.a). Given initial
conditions that are not too bad the BDF integrator may arrive at the solution
manifold within several integration steps. Then integration proceeds in a normal
way. The idea of the back-tracing method proposed by [SEYE 81] is to revert the
direction of integration after the solution manifold has been reached until arriving
at the initial time again. In this way consistent initial conditions can be obtained
that are related to the numerically computed trajectory.

[SEYE 81] examine linear constant coefficient DAEs of the form

AE(t) + BE() +ult) =0; ¢ € [to, ], (3.30a)
€(to) = &0 (3.30b)

where € € R*, and A,B € R%*™ . 4 : R — R™ is assumed to be sufficiently
smooth. If A is singular the IVP Egs. (3.30a)—(3.30b) does not own a solution for
general £, € R™ due to the algebraic components of the DAE (in case of a regular
matrix A Eq. (3.30a) is an ODE). Vectors £, for which a solution of the IVP exists
are called admissible initial conditions [SEYE 81].

Definition 3.6 (Admissible Initial Conditions)

An initial condition £(tg) = €, € R™ Eq. (3.30b) is said to be admissible if and
only if a unique solution &€(t) for Eq. (3.30a) exists (in [to, to + €[, € > 0) such that
&(to) = &o-

Gear’s k-step method applied to Eq. (3.30a) reads as

k
(A+hBoB) &, = (Z auAén_y> — hfou(tn) , (3.31)
v=1
where £, v = 0,1,2,..., are the numerical approximations to the solution tra-

jectory at t,, v = 0,1,2,.... The coefficients Sy and «,, v = 1,...,k are given



3.1.10 The Back-Tracing Method 107

A

&o P direction of integration
\‘c&&
£,

1 '\,

2. solution manifold

X(&q.h.1)

Figure 3.1: The back-tracing function (sketch), cf. Definition 3.7.

k -1 k
,805: (Z%) andau::(_l)u-l-lﬂol;j%(l:),V:l,...,k.

v=1

As shown in [SEYE 81], starting from not too bad (i.e., the integrator must not fail)
but otherwise arbitrary — i.e., even inadmissible — initial values £, rule Eq. (3.31)
applied to DAEs Eq. (3.30a) generates a numerical solution equivalent to some
admissible initial condition é;) after sufficiently many integration steps. This result
is summarised in Theorem 3.6.

Theorem 3.6 (Gear’s k-Step Method on Index-iq Linear DAEs)
Suppose Z C R™ is the set of admissible initial conditions for Eq. (3.30a). With
a fixed step-size h € Ry let €,,(&,) € R%, n = 1,2,..., be the approximation
obtained for &(nh) by Gear’s k-step method) defined in Eq. (3.31) with the
initial condition &(tp) = &, &, € R"%.

Then there exists a uniqueé;) € T such that €,(&,) = En(a)) forn > (1q—1)k+
1, where 14 is the nil-potency of Eq. (3.30a) (which is equivalent to the differential
index).

The next step is to compute the actual admissible initial condition .EAO equivalent
to the given initial conditions §,. This can be done using the back-tracing function
introduced in Definition 3.7 (see Figure 3.1):

(i) The theorem is stated under the assumption that the values {&,,...,&,} are generated
using lower-order Gear formulas, i.e., the order of the method to be used is min {k,n}.
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Definition 3.7 (Back-Tracing Function for Linear DAEs)

Let there be a linear constant coefficient DAE Eq. (3.30a) and a number p € N.
Given not too bad, but otherwise arbitrary initial values §;, € R" apply the
backward FEuler method integrating forward

(A+hB) &, = A&, | —hu(tn); n=1,...,p,

and obtain §,, v = 1,...,u. Then write Eu := §,, and apply the forward Euler
method integrating backwards generating §,, v=pu—1,...,0:

(A - hB) gu—n = AZu—n-I—l + hu(tu—n) sn=1,... M-
Then the back-tracing function x is defined by
X(&o> s 1) = & .

In words, the back-tracing function x(&, h, pt) introduced in Definition 3.7 provides
the numerical approximation to the desired admissible initial condition &,. The
last theorem in this paragraph establishes convergence of the back-tracing method
for systems of the type Eq. (3.30a) [SEYE 81]:

Theorem 3.7 (Convergence of the Back-Tracing Method)

Suppose the back-tracing function x (&g, h, ) is applied to Eq. (3.30a). Then for
i > g, and as h approaches zero, x (&, h, 1) approaches a unique admissible initial
condition.

3.1.11 Solution of a BVP

[AmMa 97], [AmMa 98] propose an algorithm for the computation of consistent
initial conditions by the solution of a BVP. In [AmMa 97] the method is applied to
nonlinear semi-explicit index-1 DAEs. [AmMa 98] show convergence for index-2
and index-3 DAEs in Hessenberg form.

The approach is based on the discretisation of the continuous DAE problem
by Generalised BDF (GBDF) [AmMa 94], [BrTr 96], [ISM 98]. Consider the non-
linear DAE initial value problem

F(t, &(t),&(t) =0; t€ [to,tf] CR, (3.32a)
k™ (& (to)) =0, (3.32b)

where & € R* and F : R1T" "¢ — R The initial conditions k'™ : R% — R
given by the user are assumed to be feasible in the sense of guaranteeing existence
and uniqueness of a solution of Egs. (3.32a)—(3.32b). Now let there be a uniform
mesh of s + 1 points with step-size h € R \{0}, ie., t, = to + vh € [to, ],
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v =0,...,s. Then the DAE evaluated at the mesh points gives the conditions

F(t,,&(ty), €(t))
k™ (€ (to))

Taken together, Egs. (3.32a)—(3.32b) and Eqgs. (3.33a)(3.33b) set up an overdeter-
mined multipoint boundary value problem (MPBVP) on [tg, o+ sh]. By construc-
tion this MPBVP is uniquely solvable if the IVP Eqgs. (3.32a)—(3.32b) is uniquely
solvable on [tg,to + sh], and it owns the same solution trajectory as the IVP on
this interval.

0; v=0,...,s, (3.33a)
0. (3.33b)

Let the numerical approximations to the discretised state variable trajectory
and its time derivative on the grid be denoted as €, = £(t,) and &, = £(t,),
v=0,...,s, respectively. Further let k; := |k/2] + 1 and kg := k — k;. Then the
k-step GBDF is set up by the initial additional methods

k
. 1 v
guzﬁzag)gu; v=1,...,k—1,
n=0
by the final additional methods

k
. 1
£, =— aug,,_kﬁ_u; v=ky...,s —kr,
hu:O

and by the main method

k

. 1 _

gy:EE :al(tu s+k)£s_k+“; y:s—kzF—}—l,...,S.
u=0

A table of the coefficients « is given in [BrTr 96] for £ = 1,...,10 (GBDF pos-
sess suitable stability for ¥ < 9 [AmMa 98]). Using these GBDF the MPBVP
Egs. (3.32a)—(3.32b), Egs. (3.33a)—(3.33b) on [to, o + sh] is discretised as

v - k™ (&) + F(to, &, %0)

F(tl,:&,él) _0 (3.34)

F(ts, €, €,)

Le, the fixed distance between the constraint node points of the MPBVP is chosen
as the step length of the GBDF method, and the initial condition is enforced by
a linear combination with the value of the DAE at the initial point. [AmMa 98]
propose a choice of the real-valued constant v € R\ {0} which facilitates the
solution of Eq. (3.34). Furthermore, they propose an error-based strategy for the
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automatic selection of the step-size h and of the order k£ of the method. In order
to achieve convergence for an index t4-DAE the order must be greater then ¢q — 2.

After solution of the nonlinear system of equations Eq. (3.34) £, and éo provide
numerically consistent initial values.

3.1.12 Other Methods

Finally we mention some other methods which can be used in order to generate
consistent initial conditions. As in Section 3.1.10 and Section 3.1.11 the term
consistent initial conditions may be used in a way which differs from Definition
1.12.

The well-known BDF integrator code DASSL — which is basically designed for
index-1 systems — uses a small implicit Euler step in order to arrive at (numer-
ically) consistent initial conditions [BCP 96]. A drawback is that the consistent
initial values are not obtained at the initial time ¢y but for a point in time £y + hjy;
close to it [LiPe 99]. The back-tracing method discussed in Section 3.1.10 over-
comes this drawback at an increased computational cost. In [KMG 92], [Kron 02]
improvements to the initial Euler step method of DASSL are proposed, includ-
ing a modified initial step size selection strategy, an adapted corrector iteration
scheme, and back-tracing.

In order to obtain improved results [Kron 02] proposes to employ extrapola-
tion of the initial values obtained with the modified DASSL Euler-step. In the
back-extrapolation approach several modified initial Euler-steps with different step-
length are made. The initial conditions are then approximated by a linear combi-
nation of the results of these Euler-steps. The coefficients of the linear combination
are chosen such that certain step-size dependent error terms are cancelled.

Since version 2.0 DASPK [BHP 94], the successor of DASSL, can generate
consistent initial conditions for index-1 DAEs by the solution of the (reduced)
consistency equations [BHP 98], [LiPe 99]. The nonlinear system of equations is
solved by a modified Newton algorithm with linesearch backtracking. From version
3.0 on DASPK can also compute consistent initial conditions for Hessenberg index-
2 DAEs in a way similar to the index-1 case if the original algebraic equations
are already satisfied [LiPe 99]. If necessary, a predictor-corrector type method is
applied. Still the user has to specify the dynamic degrees of freedom (to these
variables initial values prescribed by the user are then assigned) as well as the
index-2 constraints.

[MMG 95] develop a method for the computation of consistent initial condi-
tions in the case of index-1 DAEs with step-discontinuities in the forcing functions
(in our terminology forcing functions are equivalent to the control inputs). They
propose a continuation method as a robust solution technique for the nonlinear
consistency equations. Additionally, they examine the feasibility of continuity
conditions in the differential states.

In [Gerd 01] and in the related paper [GeBii 01] a direct multiple shooting
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method for the numerical solution of optimal control problems with DAE models
is developed. In the direct multiple shooting technique the controls are approx-
imated by parameterised functions. Additionally a mesh (the multiple shooting
nodes) is chosen, splitting the integration interval into multiple shooting intervals.
On each multiple shooting interval a new DAE-IVP is defined. The initial con-
ditions for the DAE-IVPs at the multiple shooting nodes are then optimisation
variables in the resulting NLP, cf. Section 2.4.1. The point is that the initial con-
ditions proposed by the optimiser during the course of the solution of the NLP
are in general not consistent. For semi-explicit index-2 DAEs [Gerd 01] develop a
projection-type method based on the sequential solution of an NLP by SQP and
on the solution of an index-1 system (derived from the DAE) by a Newton-type
method in order to obtain consistent initial conditions. This two-step approach
differs significantly from the method discussed in Section 3.1.2 where all state vari-
ables are determined simultaneously within an SLP. For implicit DAEs of higher
index [Gerd 01] combines the projection approach with a (virtual) discretisation
of the initial integration step by an appropriate Runge-Kutta method. In this
way approximations to consistent initial conditions for the differential variables
at the multiple-shooting nodes can be generated. Finally, [Gerd 01] proposes a
relaxation approach for the multiple-shooting method if the model DAE is semi-
explicit. In this approach bias terms are introduced to the DAEs on the multiple
shooting intervals such that arbitrary initial conditions are consistent initial con-
ditions for the relaxed DAE systems. Additionally, equality conditions are added
to the multiple-shooting NLP which enforce vanishing bias terms at the solution
of the NLP.

[Albe 99], [AFS 00] propose a perturbation analysis approach in order to cal-
culate consistent initial conditions for DAEs originating from mechanical systems
(due to their origin from Lagrange’s equation of motion [Albe 99] terms such sys-
tems Lagrangian DAEs (LDAEs)). The semi-symbolic method requires a start
value which already lies on the constraint manifold, e.g., a steady-state, and com-
putes the requested set of initial values for the actual initialisation problem inter-
preting it as a related perturbed problem. If the desired point is too far from the
initial point several intermediate steps may be made. The two main ingredients
of the algorithm are the replacement of nonlinear functions by truncated Taylor’s
series expansions in the perturbation parameter, and the expression of the solution
of a singular linear system of differential equations

AE(t) + BE(t) +u(t) =0,

£ € R%, A B c R%*™ 4 : R — R% with a regular matriz pencil) [\A—B], A €
C, by means of the Drazin inverse™) of A. [Albe 99] provides an implementation

(i) A matrix pencil [\A — B], A, B € R%*™_ )\ € C, is called regular if det([\A — B]) is
not identically zero as a function of A [BCP 96].
(iV)For the definition of the Drazin inverse of a matrix we refer to [Albe 99].



112 3.1 Review of Previous Work

as a MAPLE[J program.

A fundamentally different approach for the integration of DAEs with discon-
tinuous forcing functions is to avoid the difficult computation of consistent initial
conditions in the first place by smoothening the discontinuous input. An exami-
nation made by [KMG 97| seems to cancel out such an approach. [ViBi 01] assert
to having arrived at more promising results. There, a more refined approximation
than in [KMG 97] is employed. Additionally the DAE itself is replaced at the
discontinuity by a “similar” system which originally is at steady-state. The latter
is based on the assumption that the dynamics of a system may be approximated
by the response of a related system (originally at steady-state) to a discontinuous
perturbation. [Kron 02] recommends smoothening as a viable alternative to rig-
orous consistent initialisation, especially if the latter approach is too expensive in
numerical execution or algorithmic implementation.

3.1.13 Specification of Transition Conditions

In several algorithms discussed above a central problem has not been treated. It
is the automatic generation of appropriate transition conditions. For small DAEs
a sophisticated user may be in the situation to provide the required transition
conditions. In the context of larger systems or models generated by simulation
tools the specification of appropriate transition conditions is generally a difficult
task. In the case of automatically generated models, e.g., in common already the
physical meaning of the various computer-aided derived equations and variables
in the system is unclear to the user. Thus depending on the problem setting user
interaction may be inefficient, or it may be actually impossible.

3.1.13.a General Work

Currently a general, reliable, and theoretically well-founded method for the deter-
mination of transition conditions is still missing [BAFG 98] especially for higher
index DAEs although there has been considerable research on this topic. (Partial)
solutions have been reported in some special cases.
If at the point of initialisation ¢ = t4;s. the transition conditions employed are
of the form
0= z(tj’isc) —zg,

where z € R is a state variable or the first derivative of a state variable with
respect to time, and with a parameter zg € R, e.g., a constant value or — in case
of continuity conditions — the value of the variable z(tj;,.) immediately before
the initialisation, then we call the problem of determining appropriate transition
conditions the assignment problem. This expression is motivated by the direct
equivalence of the choice of transition conditions with the assignment of the dy-
namic degrees of freedom. The term, however, is not to be mixed with the term
assignment used in graph-theory, cf. Definition 3.2 in Section 3.1.5.
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In chemical engineering physical insight can be employed to narrow down the
search for the transition conditions. The general rule is that transition condi-
tions should be used to preserve continuity of differential variables. On the one
hand, conserved (or integral) quantities, e.g., mass or enthalpy, are modelled by
differential states. On the other hand, quantities directly related to the conserved
quantities are in general represented by differential states [BaPk 97]. We have
already encountered a restriction in the choice of the degrees of freedom to the
differential states in Section 3.1.4 (cf. Eq. (3.17)) when discussing the results of
[GPS 95]. However, there no deeper reasons for the applicability of this restriction
are given. A similar strategy is used in the projector based algorithm reviewed in
Section 3.1.9 in the context of electrical circuits.

But the assumption of continuity in the differential states may not hold for
impulsive changes in, e.g., mass or enthalpy [VSP 94a]. Additionally in the case
of higher index DAEs the number of dynamic degrees of freedom is smaller than
the number of differential variables. While the first point can be wutilised for the
specification of the transition conditions (see our algorithm in Section 3.2.4), the
second point in the general case leads to non-uniqueness of the assignment problem
which makes this problem difficult to solve. However there are classes of DAEs for
which the assignment problem can be solved uniquely.

In [MMG 95] linear-implicit index-1 DAEs with discontinuous control inputs
are considered. Depending on the structure of the DAEs several cases are identified
where the assignment problem can be solved (at least partially) uniquely.

[BrPa 92] consider the same class of problems. For discontinuous control inputs
they introduce the genuine initial value of a DAE which, however, may not exist.
On the other hand, they give a sufficient condition for its existence based on
the existence of potentials. These potentials also directly specify the transition
conditions for the differential states. The drawback of this approach is that the
potentials have to be known, i.e., the assignment problem is primarily shifted to
the detection of suitable potentials. [BrPa 92] show that if the genuine initial
value exists and if no integrating factors are present then these initial values can
be obtained by replacing the jump in the controls by an integration along a smooth
virtual transition in the controls.

For linear time invariant DAEs of arbitrary index [BaGa 00] show that the
consistent initialisation problem, and thus the assignment problem, is always fully
and uniquely determined. Based on this result they propose two algorithms for
consistent initialisation. The first one is based on the canonical form of the linear
DAE, the second one is based on Pantelides’ Algorithm.

[BaPk 97] show that in the case of higher index DAE for which the family
of equivalent index-1 DAEs obtained by the dummy derivative method exactly
contains one member also the assignment problem can be solved uniquely.

In Section 3.1.2 the a priori selection of a specific set of transition conditions
is avoided by the formulation of the consistent initialisation problem as an NLP
[GoBi 99]. Given a set of possible transition conditions the choice of the final set
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of transition conditions is left to the NLP solver. For linear implicit DAEs with
discontinuous forcing functions [BaGa 00] favour the solution of an overdetermined
initialisation problem using the approach of [GoBi 99]. There the (possibly index
reduced equivalent) index-1 DAE is solved together with the known state transfer
functions and all possible continuity conditions for the states. The analysis of
[GoBi 99] regarding discontinuities is restricted to the special case of jump discon-
tinuities in forcing functions. Other scenarios, e.g., changes in the structure of the
DAE, are not explicitly considered.

3.1.13.b A Structural Approach

Pantelides’ Algorithm, — or, more precisely, subroutine AUGMENTPATH — can be
employed to check a given set of transition conditions for consistency with a sys-
tem of reduced derivative array equations. If AUGMENTPATH cannot find an aug-
menting path for at least one of the E-nodes in the combined system of reduced
derivative array equations and transition conditions, then this combined system is
structurally singular. In this case the set of transition conditions is not adequate
[Pant 88a].

Thus if only a relatively small set of potential transition conditions is consid-
ered, e.g., by restriction to continuity in the differential state variables, Pantelides’
Algorithm can be employed to set up a procedure for the determination of a suit-
able set of variables that may be assigned arbitrary initial values based on complete
enumeration and test of all possible combinations of potential transition condi-
tions. In the notation of Section 3.1.5 such a procedure has to enumerate every
combination of ngqs variables out of the n, candidates for continuity at the point
of initialisation in the set {@1,...,2,,}. The admissibility of a set of transition
conditions is then checked by application of AUGMENTPATH to the corresponding
system of consistency equations. In case of an admissible set of transition condi-
tions the procedure may terminate if an additional test shows that the system of
consistency equations is not only structurally regular, but also numerically solv-
able. In the worst case all possible combinations of transition conditions have to
be checked. However, already for medium size DAEs such a method is computa-
tionally infeasible due to the combinatorial complexity of the problem.

Example 5:

For ngy = 200 and ngar = 195 in the worst case (792) ~ 2.5 - 10° combinations of
transition conditions have to be considered. ¢

As a possible remedy [Pant 88a] mentions an algorithm originally developed
by [Sarg 78] for the analysis of large-scale computing problems with a network
structure. Applied to the consistent initialisation problem it can provide a criterion
for which of the variables in the reduced system of derivative array equations are
possible candidates for assignment (note that time derivatives of state variables are
independent variables for the consistent initialisation problem, cf., e.g., Definition
1.12). Consider a general underdetermined system of m algebraic equations in
n variables, m < m. Assuming that the algebraic equations are (functionally)
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Figure 3.2: Block lower triangularisation (sketch).
The columns are differently shaded in order to indicate the permu-
tation of the matrix (due to the limited graphics the rows are not
differently shaded).

independent, there are n — m degrees of freedom. The question is which of the
variables may be specified in order to obtain a full rank system. Starting point
is the structure of the Jacobian of the algebraic system of equations. [Sarg 78]
proposes to add n—m hypothetical equations, each of them containing all variables.
From the structural point of view this is equivalent to the addition of n — m
full rows (with an entry in each column) to the Jacobian. The main step is a
block-triangularisation of the square n x n system [Tarj 72] leading to a lower left
block-triangular matrix.
Remark 3.12:

HSL routine MC23 [AEA 93] provides an implementation of a block lower triangularisa-
tion (BLT) algorithm for square, unsymmetric, and possibly structurally singular matrices
(or for the matrix patterns, respectively). [PoFa 90] describe a more general algorithm
which also computes a block lower triangularisation for rectangular matrices based on the
Dulmage and Mendelsohn decomposition. O

Variables corresponding to the columns of the rightmost lower diagonal block
are then candidates for specification as all other variables can be assumed to be
determined, see Figure 3.2. In general, this block will contain more variables than
there are degrees of freedom. I.e., in general the assignment problem cannot be
finally solved by the method of [Sarg 78]. At this point specific knowledge about
the problem modelled has to be used for the final choice of the set of transition
conditions.

A drawback of the block triangularisation technique is the dependency of the
result on the initial ordering of the rows and of the columns in the system Jacobian.
Ie., the sequence of equations and variables in the DAE can affect the choice of the
dynamic degrees of freedom. Additionally the method is sensitive to soft zeros (cf.
Section 1.2) which can lead to a choice of dynamic degrees of freedom generating
a structurally regular, but numerically non-regular system of reduced consistency
equations.
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3.2 Algorithm for the Calculation of Consis-
tent Initial Conditions

Mostly Harmless

D. Adams: The Hitchhiker’s Guide to the Galaxy

In the sequel we consider the consistent initialisation of semi-explicit index-2
DAEs of the special form

0= f(txz(t),y(t) —z(t), (3.35a)
0=g(t,z(t),y(t), (3.35b)

where f : Rifnetny 5 RP= and g : R14™e 7w 5 R™. The only information
available on the system Eqgs. (3.35a)—(3.35b) are

e the problem dimensions ng, ny,

e the value of the right hand side at a given point [t, z,y, ],

e the corresponding value of the Jacobians [%], [%], [%—{], and [g—f}], [g—g],
g

[E]’ as well as their patterns(¥),

e problem dependent a priori knowledge from chemical engineering on the
applicability of some of the differential variables {&1,...,&,,} as dynamic
degrees of freedom (see, e.g., Example 6 on page 131),

e and an in general inconsistent vector [0, x(0),y(0),&(0)] of variables origi-
nating from some other initial value computations (at the initial point of a
simulation: 6 = t() or from a previous dynamical simulation (typically, the
value of the discretised solution vector at the left hand side of a switching
point: 6 = t3; ). Without loss of generality we consider § = tqisc as the
point at which consistent initialisation is required.

The DAEs we are aiming at are highly nonlinear and of very large scale (i.e,
ng +ny = 0(10%),...,0(10%)). In common these DAEs are only defined on a
certain subset of R'=T"w*n=(5 [g y &]) due to physical reasons and modelling
assumptions.

(v) Analytical expressions for the Jacobians with respect to time have been added by the
Linde AG into OPTISIM" as a means to improve the consistent initialisation algorithm;
they are not required for the plain integration of the DAE process models. As explicit
time dependence can be restricted to a small number of unit models the additional effort
required is small in relation to the improvements obtained.
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3.2.1 Application of the Algorithm of Pantelides

The first step of our algorithm is the analysis of structural properties of Egs. (3.35a)—
(3.35b) by Pantelides’ Algorithm (cf. Section 3.1.5). We employ its sparse imple-
mentation SPALG [UKM 95].

One of the fundamental pieces of information returned from Pantelides’ Algo-
rithm is the differential index ¢q of the DAE. More precisely, it returns its structural
counterpart ts. At this point we have to assume that ¢ = tq for the problems con-
sidered (cf. the discussion at the end of Section 1.2 and Remark 3.13 below). The
generation of the index information renders an a priori index assumption unnec-
essary. Instead, we distinguish three alternatives depending on ¢q:

1. If tg <1 we can set the number of dynamic degrees of freedom as ngqr = ng
and continue with the specification of the transition conditions in Section
3.2.4.

2. If 1qg > 2 we have to terminate with an error. This is, however, no restriction
to the applicability of our algorithm for the calculation of consistent initial
conditions in the context of the simulation environment OPTISIM".

In OPTISIM" a BDF algorithm is used for the integration of the dynamic
model Egs. (3.35a)—(3.35b) [EKKS 99|, cf. Section 2.4.3.a. It is known that
the BDF method is suitable for the direct integration of semi-explicit index-
2 DAEs if the local error estimation formula is adapted. In general, the
BDF method is not applicable to the integration of semi-explicit DAEs with
tg > 2 [BCP 96]. Thus if tq > 2 is detected it is even advisable to terminate.

3. If 1,y = 2 we continue right here.

Remark 3.13:
A problem with SPALG as well as with any other structural algorithm is the influence of
soft zeros on the results. We have observed cases in which SPALG returned a structural
index lower than the differential index simply because of a special unit generating unnec-
essary soft zero entries in the sparse Jacobian of the DAE, i.e., entries in the Jacobian that
are identically zero, in contrast to entries which are only locally zero. See also Example 1
on page 13. 0

At this point we have assured that the DAE Eqgs. (3.35a)—(3.35b) is of in-
dex 2, i.e., Pantelides’ Algorithm terminates with the result that at least one
of the algebraic equations 0 = g,(¢,&,y), p = 1,...,ny, in Eq. (3.35b) has to
be differentiated exactly once totally with respect to time in order to obtain a
system of reduced consistency equations for the determination of consistent val-
ues for [x,y, ], introducing time differentials of some of the algebraic variables
{y1,---,Yy, }- Furthermore, none of the differential equations Eq. (3.35a) is to be
differentiated. As a consequence no time derivative with order greater than one of
any variable is to be considered.

We now examine the system of reduced derivative array equations in closer de-
tail. Without restriction of generality suppose that the initial equation association
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list (EAL) corresponding to Egs. (3.35a)—(3.35b) is assigned as

fl(taway) - "1.:1 s EAL(l)a RN fnm(tamay) - mnm s EAL(?’I,;I,),
g.(t,z,y) <> EAL(1 +ng), ..., 9n, (t,T,y) <> EAL(ny + ng) .

Similarly, the initial variable association list (VAL) is assumed to be assigned as

x1 <> VAL(1), ceuy Xp, <> VAL(ng),
Y1 < VAL(L+ng), ..., yp, < VAL(ny +ng).

Pantelides’ Algorithm requests the total differentiation of some of the algebraic
equations {0 = g¢,...,0 = gny} with respect to time, giving rise to new equations
and corresponding additional entries in the equation association list

EAL(1 + (ny + ng)),- .. ,EAL(mz + (ny + ng)),
with the number of additional equations given by
ms := card {1 < p < ny ‘ Fve{l,...,ny}: EAL(v + ng) = p+ (na +1ny)} .

Furthermore, it adds entries to the variable association list corresponding to the
highest derivatives encountered in the reduced derivative arrays, i.e., {&1,...,&p, }
and a subset of {¢,... ,yny}, in

VAL(1 + (ng + ny)),. .., VAL(ng + nz + (ng + ny)) ,

where n3 is the number of algebraic variables which time derivatives are created
by differentiation of algebraic equations. For simplification we can assume without
loss of generality that the derivatives {&1,..., &y, } are assigned to VAL(1 + (ng +
Ny)); - -, VAL(ng + (ng + ny)). Then nz is defined by

nz = card {1 < p < ny | Fe{l,...,ny}: VAL(v + ng) = p + (2ng +ny) } -

For ease of notation we introduce the real-valued injective mappings P¢ : {1,...,mz} —
{1,...,ny} and PV : {1,...,n3} = {1,...,ny} by

P(u) = {0 € {1 ymy} | EAL(Y + 1) = i+ (ma + 1)}
P(u) ={ve{l,....ny} |VAL(v+ng) = p+ (2ng +ny)} .

Le., P¢(-) points to the algebraic equations which are to be differentiated and PV(-)
points to the algebraic variables for which first order time derivatives are intro-

duced in the reduﬁd derivative array equations. Further let P¢ : {1, ... sy — Mz} —
{1,...,ny} and PV : {1,...,ny —nz} = {1,...,ny} be two real-valued injective
mappings such that

{Pe(u)ip=1,...,ny —mz} ={1,...,ny } \ {P(0);p =1,...,mnz}, and

P ()i =1, ymy =z} = {1y \{P (Wi = 1, s}
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After these preparations we introduce the vectors
Ypv(1) Ypv(r)
=z, Y:= s and 2z := ;
YPv(ny—ns) Ypv(ns)
reR%e =R yec R =Rw "2 z c R*. Using these new variables, their

relations to the original variables {z,y, &}, and the information from Pantelides’
Algorithm, we define the functions

Ft,& 9,2,2) = ft,z,y) — &,
gﬁ(l)(t,w,y) gpe(l)(t,w,y)
9(t,2,9,2) = : , and 3(t,2,%) := : ,
gﬁ("y_mi)(t’m’y) gPe(mg)(taway)

where } : RiAnetnytnztns _, RMf = Rre g : RITetngtn: _ RMs = Rw "
and §: RItnatnz 5 R™s

Remark 3.14:
The function § cannot depend on §:

The subset 2 of y contains all originally algebraic variables for which derivatives 2
are introduced in the reduced derivative array equations. 4 is the complement of Z in y.
Thus, no element of y can enter 8 as by the total differentiation of 8 with respect to time
the first order time derivatives of all arguments of § are accessed, cf. Eq. (3.36d) below. ¢

Altogether, the reduced derivative array equations of the semi-explicit index-2
DAE Egs. (3 35a)— (3 35b) resulting from Pantelides’ Algorithm in the variables

0= g(t .. 5) (3.36b)
0= 5(t 2), (3.36¢)
0= %<~ %,%) ) (t,2,2) 3—;@,@,2) z g—Z(t 2,2)-%.  (3.36d)

is

32 ] %] -me o

[%] [%Z] [%3] . ’ (3.37)
2] o (2] o o
[% d_ﬂ 0 [a% d_ﬂ [%] [%] t,8,9,2,2,2

Here, Id,, is the identity in R"#, and 0 are zero matrices of appropriate dimension.
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Remark 3.15:
SPALG returns a slightly different characterisation of the reduced derivative array equa-
tions derived by Pantelides’ Algorithm than the one we have described above. In order to
be independent from a specific implementation of Pantelides’ Algorithm we stick to the
notation of [Pant 88a]. See also Section 3.1.5. O

3.2.2 A Regularity Assumption on the Index-1 Sub-
system

Consider the reduced system of derivative array equations Egs. (3.36a)—(3.36d) ob-
tained from Pantelides’ Algorithm in the previous Section 3.2.1. Then by dropping
Eq. (3.36¢) an index-1 DAE can be formulated which is analytically equivalent to
the index-2 DAE Egs. (3.35a)—(3.35b) ([Pant 88a], cf. the discussion in Section
3.1.5 of this treatise):

O = }'(t,i,@,i’,?c) ’ (338&)

0=g(t2,9,2), (3.38b)
05, . . o8,  _ . . 0%,  _ .

0= E(tamaz) %(t,w,z) -+ g(t,m,z) -z, (3.38¢)

Due to the structural criteria applied in Pantelides’ Algorithm the following struc-
tural property holds for the Jacobian of Egs. (3.38a)—(3.38¢) with respect to the
highest order derivatives ¥y, &,z of the variables present in this system:

9%
%] -m,, 0
rank | pat [aa;p] 0 0 =ng+ng+nz. (3.39)
Y
08,1 [y
0[] [%lliapzaz

However, as we intend to develop a numerical algorithm for the consistent initial-
isation of higher index DAEs based on Pantelides’ Algorithm we have to make
the assumption that this matrix is also numerically regular in a sufficiently large
neighbourhood of the consistent initial conditions, i.e,

af.] _

[ ¢ ] M, 0

det [%%n] 0 0 70, (3.40)
0 [52] [52] 18,0, 5,,%

which is stronger than the guaranteed property Eq. (3.39).

Remark 3.16:
This rank condition is better known for DAEs of the form 0 = F(¢,z(t),y(t), z(t)), F :
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Rt 7 +ny+na _y RNa+ny.

rank ([[g—g] [%J]t@,y,@) L g+ 1y (3.41)

Eq. (3.41) is a sufficient condition for the system either to be an ODE (index-0 DAE) or
an index-1 DAE. This condition is commonly used in order to restrict to problems of this
class (e.g., [GPS 95], [GFB 99]). 0

Reordering in Eq. (3.40) gives

%] (%] o

A3
det| | 0 —Hdn, [%] £0. (3.42)
0 0 ["’—gn] »
O 11 t.3,5,2,2,2

From Eq. (3.42) we conclude that [08,/0z] is of full column rank(); this reflects
that z has to be determined by Eq. (3.38c). Especially we have

mz > Nz . (3.43)
Additionally, Eq. (3.42) necessitates
mz < ng+nz : (3.44)

Assume mgz > nz + nz. Then the first mg rows [[08,/0Z] [08,/0%] 0] of the ma-
trix in Eq. (3.42) are necessarily linearly dependent, in contradiction to Eq. (3.42);
this linear dependency further implies that the equations 8 C g (Eq. (3.36¢)) are
functionally dependent, i.e., that already the DAE system Egs. (3.35a)—(3.35b) is
ill-posed.
Remark 3.17:

As will be discussed in Section 3.2.4, ny — nqar = mz — nz dynamic degrees of freedom
are fixed by the algebraic constraints causing the higher index. The special case mz = 0
indicates either an ODE or an index-1 DAE; mz = nz > 0 indicates that Pantelides’

Algorithm unnecessarily has requested differentiations, attempting to turn an index-1
DAE into an ODE. O

3.2.3 Setting Up the Reduced Derivative Array Equa-
tions

In the next step we set up the reduced derivative array equations Egs. (3.36a)—
(3.36d) and their Jacobian Eq. (3.37). Assuming that no symbolic manipulations
can be performed the reliable and fast generation of both the total time derivative
as well as of the Jacobian of Eq. (3.36d) is the main issue.

() 4 € R**¥ has full column rank v < {¢ € R” \ {0} | AC =0} =0
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3.2.3.a Full Approximation According to Leimkuhler

At first we consider full numerical approximation of ds(t, £(t), 2(¢)) /dt. Recall the
family of approximations Eq. (3.7)

(DfF] (&0,...,50) = L5507 (35 Wz ) L

k !

h v=0 u=0 p
which we have already discussed in Section 3.1.3. Here, E® = dtE(t)/dtH,
p=1,..., A, is the value of the state vector and its (higher order) time derivatives

at a fixed point in time £, Ay € N is the number of samples taken for linear
combination, and A; € N is the number of terms considered for the Taylor’s series
expansion of the state vector trajectories at the point of differentiation.

Directly applied to s we obtain an approximation of its first total time deriva-
tive as

(D3] (1,3, 20 g0 300y .=

A At At
1 ~ . ()" . (cyh)! .
- ays | t+cuh, FAC 2w

By Theorem 3.1 it is sufficient to use A\; = 1 as we are approximating the 15 total
time derivative:

As
[D}3] (%, 2,%,%) = % {Z a3 (t+ch, @+ (ch)z, 2 + (cyh)%)} . (3.45)

v=0

Few algebraic transformations show that the partial Jacobians of [D} 3](t, &, 2, z,%)
with respect to the variables [z, Z, Z, Z] are given by

ODNE) . .. (0B .
I % ] (t,.’L‘,Z,.’D,Z) _Dh (%(tawaz)) ’ (3 46&)
ODs) .. (05, . _
i o5 ] (t,a;,z,w,z) _Dh (%(taw,‘z)) ) (3 46b)
- 1~ [ As ~
-3(1975!;3- (t,&,2,%,2) = _Uz::o a,,c,,g—; (t+coh, &+ (cyh)T, 2 + (cyh),%)] ,
(3.46¢)

D1~ [ As ~

[Bafs] (t,z,z,2,2) = Za,,c,, g; (t+ch, &+ (cyh)@, 2 + (cuh)z,)
z
Lv=0
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Remark 3.18:
As ¢g := 0 the contribution for » = 0 to the sums in Eq. (3.46c) and Eq. (3.46d) vanishes.
0

Finally, we have to specify the number of samples As. Given a sufficiently
smooth DAE Theorem 3.2 shows that the maximum attainable order of approx-
imation for a first total derivative is Ags — 1+ 1 = A, We use Ay = 3 stages.
Furthermore, we use equidistant displacements ¢, = v, v = 0,..., Xg, i.e., the
coefficients «,,, v =0, ..., Aq, are as specified in Table 3.1 on page 85.

3.2.3.b Algorithmic Amendments to Leimkuhler’s Approximations

In our numerical tests we have found that the proper selection of the disturbance
parameter h — which is not connected to any other quantity used in a DAE inte-
grator — is of major importance for the success of the overall algorithm. However,
in the original publications [Leim 88], [LPG 91] no rule has been developed for an
appropriate choice of this parameter.

One problem that we have seen originates from Eq. (3.45) only admitting one
fixed value h for all variables. For demonstration, we use an example function
n(¢), n € CL(R™ ,R™), and a trajectory ¢ : t — ((t), ¢ € CH(R,R™):

Leimkuhler’s approximation to the first total time derivative along ((t) for
M =11s

As
[Din] (¢,€) = % {Zaun (C + (cuh)é)} . (3.47)
v=0

From a numerical point of view it is necessary that the disturbance (c,,h)é w b=
1,...,ne,v=0,..., A, in each component of the argument of 7 is not dropped due
to round-off errors as otherwise the result of the finite difference approximation
can be without meaning. E.g., in the very simple case of 7({) := ¢ € R with
Cto) :=1.0-108, ¢(tg) :==1.0-1073, ¢, = O(1), v =1,..., A, and b := 1.0 - 10~*
the result of D}Ln| 4, I single precision arithmetics is 0 instead of 1.0-1073(= ¢(to))-
Such a result can severely harm the solution of the approximated consistency
equations.

Additionally, for a numerically evaluated function 7 the disturbance in the
argument must be sufficiently large in order to obtain variations in the function
values that are not lost due to round-off.

As an ad-hoc measurement we split the vector ¢ in several components and
compute the difference approximation in each component separately:

Let w = [wi,...,wn,]T € R% contain samples of the estimated range in all
components of ¢, including a neutral sample wyp = 1, 8 € {1,...,n,}. n, should
be of moderate size, e.g., w := [1.0-10*,1.0-10°,1.0-1072,1.0-107%,1.0-107?,1.0-
10712]T. Further let dmin € Ry \{0} be the desired relative disturbance in each
component, €.g., dmin ‘= +/€mach, Where €maa, is the machine precision. Then we
define the disjoint decomposition € ®---®Q,,, of {1,...,n¢} for a given standard
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disturbance parameter h € R, according to the following Algorithm 7:

Algorithm 7 (Decomposition of Variables for Numerical Differentiation)
1. Initialise
Qui=0,u=1,...,n4.

2. For eachv =1,...,n¢:

¢,
u=0.

< €mach  then

(a) if

¢yl < Omin - max(|¢,],1.0)  then

p:=20
(c) else
W= min{,u €{l,....,nu}: ih
end if

(d) Q= Q,U{v}.

(b) elseif —h

¢

Z 5min - max(lCul ’ 10)}

Step 2a is employed in order to avoid overscaling in case of very small values of
|¢|. Rule 2b becomes active when |¢| is extremely small in relation to [¢,]. In
both cases the corresponding variable is added to the neutral set €2y, i.e., in effect
it is dropped. Step 2c¢ contains the main rule. The max-operator in the terms
max(|¢,|,1.0) guarantees that the minimum absolute disturbance is of order dmin

for a small value of a component ¢, v € {1,...,n¢}.
Remark 3.19:
We ignore the factors ¢,, v = 1,...,As, in Leimkuhler’s approximation as they can be
chosen to be of order unity. O
Remark 3.20:

The decomposition of the variables can be utilised in order to avoid problems due to the
violation of a priori known bounds on the disturbed variables. In a critical case the variable
is assigned to a subdivision with a smaller disturbance. This is of special importance for
models of chemical engineering processes where physical bounds on the variables have to be
considered. Otherwise the evaluation of the model equations that are to be differentiated
may not be possible at the disturbed points (e.g., the square root of a negative number is
not defined in R). O

Using the decomposition of the vector ¢ according to Algorithm 7 we split the
approximation formula Eq. (3.47) introducing the modified approximation D} to
the approximated pseudo-derivative operator D}L

[Din] (6,) = Z e {i oy (c + cuwﬁupﬂé) } : (3.48)

n=1 v=0
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where P# € R%¢*™ 1 =1,...,n,, are diagonal matrices
1, veQ
Pt = diag(wl,..., @l ); wh:=S" K cv=1,...,n¢.
8 g) v {O; otherwise R

The partial derivatives required for the construction of the Jacobian of the ap-
proximated consistency equations are then given by

[ . R AN h 9
D (c,<)=2%{2 e (e c)}=[ il o,

pu=1
(3.49a)
(9 pial (e me, [ & b
i) €. =3 Za,,cy (c+cu—P ¢) (3.49)
- - pu=

The drawback of Eq. (3.48) and Eqs. (3.49a)—(3.49b) is the increased number of
function and Jacobian evaluations required for an evaluation of the residual of the
reduced consistency equations and of its Jacobian, respectively.

According to our experience frequently the computational effort can be reduced
by skipping empty sets {Q,,u =1,...,7n,|Q, = 0}. This amounts to a simple
modification of the outer summations in Eq. (3.48) and Egs. (3.49a)—(3.49b) as

Nw
E ... m E
p=1 p=1,...,ny

0,0

By splitting the variables in Eq. (3.48) we can achieve a suitable ratio of the
disturbance to the undisturbed function arguments. However, the approximation
formulae still lack of an error adapted choice of the disturbance parameter h. This
is one of the main deficiencies of Leimkuhler’s developments. Therefore, we now
develop a basic error control suitable for our needs.

Consider the terms of the outer sum on the right hand side of Eq. (3.48). For
we{l,...,n,} and fixed but otherwise arbitrary ¢ and C we define the functions

s B
G)li(hli) =Wy {Z ay’ (C + C,,w—uPuC) } )
v=1 H

®,: R — R™. Note that the summation now starts with 1, instead of 0 before
(the 0" term contains the undisturbed function evaluation). Then differentiation
with respect to h, at h, = 0 gives

de L To h -
e =[S [ crateme)) ]

v=1

hyu=0
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= ﬁl ey [@(c)] pr¢ P LY [g—z«;)] Pre. (3.50)

For the error controlled approximation of the derivatives d®,/dh,(0) algorithms
are known, e.g., HSL routine TD12 [AEA 93] which implements the results of
[CPR 74] and [CuRe 74]. TD12 attempts to select the disturbance used for build-
ing the finite differences such that a suitable ratio between round-off error and
truncation error is achieved [CuRe 74], cf. Remark 3.21 below. The resulting opti-
mal disturbance is then at the same time a suitable choice for h;, in Leimkuhler’s
approximation. Finally,

dn(¢) [on s < [on ;. Eq. (3.50) <\ d®
N ETK; -3 )] e L > o,

so that summation of the terms d®,/dh,(0), u = 1,...,n,, obtained from error
controlled finite differences by TD12 provides an error controlled approximation

of dn(¢)/dt.

Remark 3.21:
It is essential to define suitable upper and lower bounds for the disturbances h, or hy, p =
1,...,n,, respectively. Otherwise the influence of single entries in the residual which can
be evaluated with lower precision only adversely affect overall precision and performance
of the method. As our version of TD12 did not support user specified lower bounds on
the disturbance we extended it with such a feature.

Additionally, we found that in some tests with problems from our area of applica-
tion the performance of the disturbance selection strategy employed in TD12 was poor.
Therefore, we modified the error estimates proposed in [CuRe 74] which are the basis for
the disturbance adaptation. Especially we included a parameter describing the precision
of the function evaluation as this source of numerical error has not been considered there.

At first we examine the error estimation strategy of TD12 when it is applied to
generate ©),(0) := d@®,,/dh,(0); the current value of the disturbance parameter is h > 0.
In TD12 for each component function [@L (O)]V, v =1,...,my, of the derivative @L(O) €
R™~ the truncation error is estimated by the difference between the first and second order
difference approximation to the first order derivative

©,(0) = ©u(=h) _Ou(h) — 9“(_h)] . (3.51)

lerreye], = ‘ [ _— — 57

The round-off errors are estimated according to

lerrpnal, = emTaCh{O.S . (|[®u(h)]u| + |[®“(—h)]y|)+

max { | [e;wd(o)]

(oo,

?
v

}-|0+h|}, v=1,...,my,
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where

®2wd(0) — w) and GEWd(O) =

0,(0) —O,u(=h)
—n

denote the first order forward and backward difference quotients. Based on the ratios

oy = [erTrc],, / [€rTnd], 5 [€rTnd], > O, (3.52)
lerrere), ; otherwise,

TD12 determines the disturbance parameter h. The strategy is to keep the maximum of
all k,, within a certain range. [CuRe 74] consider

10< max {x,} <1000

v=1,...,my

as acceptable. Due to the choice of the maximum ratio the disturbance parameter is
determined by the most nonlinear component function [CuRe 74].

In the context of our application according to our experience the ratios k, do not take
into account properly the error in the function evaluations. Taking into account the limited
function precision in the formulae used for truncation and round-off error estimation we

obtain 5
lerrire], + =5

tus (14 2 ferra), )

€mach

f= , (3.53)

where €gct > €mach is the absolute error in the function evaluations [GMW 95]. As a side
effect complications in the special case of a vanishing value of [err;qq], in Eq. (3.52) are
avoided. The new estimate Eq. (3.53) can be regarded as a blend between the estimate
utilised by TD12 and the estimate proposed by [GMSW 83], [GMW 95] who consider the
ratio

1 L 46f¢t

- n2[[@}(0)]

v

Ry

A simple reformulation of Eq. (3.51) shows that [err..], ~ (h/2) - ‘[@Z(O)]V‘ Therefore,
in our notation

lerrere),
2€fct

h

Ky =

3.2.3.c Partial Application of Leimkuhler’s Approximations

In this section we consider a second method for the evaluation of the reduced
derivative array equations and of their Jacobian. Short inspection of the beginning

of Section 3.2 shows that we have access to all data required for a direct evaluation

of
d 0s 0s . 08 .
—3(t,2,2) = —(t,&,2)+ —(t,%,2) -2+ —(t,&,2) - 2. .b4
G082 = TULEE) + o (08,5) b+ o (68,2)E. (350
The overall cost for setting up the reduced derivative array equations using Eq. (3.54)
instead of, e.g., Eq. (3.45), reduces to a single evaluation of the Jacobian and of
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the residual of the DAE.
A partially approzimated Jacobian of d3(t, &, 2)/dt can then be found in

a%- (%é(t,ﬁc,i)): (t,&,%) ~ D}, (g—;(t,ﬁz,é)) : (3.55a)
a% (%é(t,:ﬁ,z)>: (t,#,2) ~ D}, (g—z(t,@,z)> , (3.55b)
2 (G500 o= Zuss, 580
:a% (%é(t’i"i)): (t,2,2) = g—i (t,,2) . (3.55d)

The approximation of the Jacobians in Egs. (3.55a)—(3.55b) by Leimkuhler’s for-
mulae is based on

o (ds) _d(98) . 0 (d3)_d (03
ox \dt) dt\oz)’ oz \dt) dt\oz)’
which holds if 3 is at least of class C? with respect to its arguments ¢, &, and .
Remark 3.22:

The solution of the reduced consistency equations based on Eq. (3.54) by a Newton method
using the partial Jacobians Eqs. (3.55a)—(3.55d) represents a quasi-Newton method. ¢

3.2.3.d Economic Evaluation of Model Residual and Jacobian

By default the underlying simulator OPTISIM" provides the right hand side
f(t,x,y) and g(t,x,y), and the Jacobian of the DAE as a whole. Le., every unit
in the flowsheet is evaluated. However, in the context of consistent initialisation
nearly all function and Jacobian evaluations are needed for setting up Leimkuh-
ler’s approximations to the total time differentials of the subset § of the algebraic
equations Eq. (3.45) and their Jacobian Egs. (3.46a)—(3.46d) if using the full ap-
proximation. The same holds for setting up the approximated parts Egs. (3.55a)—
(3.55b) of the Jacobian of Eq. (3.54) by Leimkuhler’s approach in the partial
approximation mode. The number of residual and Jacobian evaluations required
for Leimkuhler’s approximations is further increased by our extensions proposed
in Section 3.2.3.b, i.e., by the splitting of the variables and by the error control.

In order to avoid unnecessary and time consuming evaluations of the residual
or of the Jacobian for units in the flowsheet we analyse flowsheet and DAE, and
set up a list containing the units that generate §. This list is passed on to the
unit evaluation management routine within OPTISIM" which then only evaluates
units that are members of the list.

In our experience for problems from application the number of units in this
list is small in relation to the entire flowsheet. Thus considerable savings can be
achieved by this additional algorithmic effort. The speedup is especially attributed
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to the exclusion of units expensive in evaluation, e.g., heat exchangers.

3.2.4 Specification of Transition Conditions

Unus sed leo.

One, but (it is) a lion.

(The lioness to the vizen who boasted about her having
many cubs when the lioness only had one.)

Translated from Aesop (Fabulae 194)

In Section 3.2.1 a non-redundant system of reduced derivative array equations
Egs. (3.36a)—(3.36d) has been detected. As discussed in the previous Section 3.2.3
the differentiated equations Eq. (3.36d) can be numerically approximated accord-
ing to Leimkuhler’s approach as denoted in, e.g., Eq. (3.45). If the Jacobian of
the algebraic equations Eq. (3.36¢) is available their total differentials with respect
to time can also be evaluated directly. In order to distinguish between algebraic
formulation and numerical evaluation we refer in this case to Eq. (3.54) which
actually only restates Eq. (3.36d). Egs. (3.36a)-(3.36c) together with Eq. (3.45)
or Eq. (3.54) set up an (in general) underdetermined system of

m}+mg+2m§ = Ng + Ny +mz
equations in

2ng +ng +2nz = 2ng +ny +nz
unknowns. In order to arrive at a square system the remaining

Eq. (3.44) Eq. (3.43)
0 < Nddf = Nz + Nz — M3 < Ng

dynamic degrees of freedom have to be specified by additional functionally in-
dependent equations, i.e., problem specific initial or transition conditions kE‘i,
w=1,...,n4qf, have to be added as already discussed in Section 3.1.13.

Even if we restrict to continuity conditions in the differential states — which
will be the basis for our method below — the number of

)
Ng + Nz — M3

possible DOF-assignments may be very high already in the case of medium-scale
systems, cf. Example 5 on page 114. Thus the main obstacle is in the combinatorial
complexity of the problem. Of course, in general neither all possible assignments
of the dynamic degrees of freedom are admissible in the sense of generating a
regular system of reduced consistency equations, nor will all of the admissible sets
be desirable from the application point of view. Therefore our strategy in the
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sequel is to cut down the number of potential combinations as far as possible with
limited numerical effort, and then make a unique choice in a final computationally
more expensive step.

3.2.4.a Choice of the Type of Transition Conditions

According to the discussion in Section 3.1.13.a regarding the simulation of chemical
engineering problems described by hybrid DAE models it is in this context reason-
able to restrict to transition conditions"!) enforcing continuity in an appropriately
chosen subset of the differential variables of the model DAE. As the subject of our
interest are semi-explicit DAEs originating from chemical engineering applications
we stick to this approach.

A set of transition conditions of this type can be described by a set of pairwise
different indices K = {K1,..., Ky 4} C {1,...,nz} and equations

K @, (), @i, (1) = B () — i, () = 0 1= 1, mgar. (3:56)

The conditions formulated in Eq. (3.56) are based on the assumption that each
variable 5:;; , w=1,...,n44f, in the dynamical system after the discontinuity ex-
"

actly corresponds to its counterpart Ty, in the system before the discontinuity.
However, in general a variable ‘EZ’“ may be used to express something different

from what is described by w}ﬂ. Consider, e.g., the case that some equations in the
dynamical system are replaced at a discontinuity. Then the meaning of auxiliary
variables in the system after the discontinuity may be entirely different from the
meaning of their counterparts in the DAE before the discontinuity. Also, a differ-
ential variable :i:}}u may correspond to an algebraic variable y,, v € {1,...,ny}, in
the system before the switching event. Such a situation arises if, e.g., an algebraic
condition 0 = y;, — const; is replaced by an ODE :i'}}u = consta, :f:}}u (tn) =y, (tn)
(an example is the usage of quasi steady-state conditions as initial conditions, cf.
Remark 4.12 on page 162). We call the former case a change in the physical mean-
ing of a variable, while we call the latter a change in the mathematical type of a
variable. Under the assumption that the dimension of the state space is constant
while the number of differential and algebraic states may vary, i.e.,

nw+ + ny+ == nw— + ny— 3

there are five cases to be distinguished for each of the entries of the state variable
vector & := [[z*]",[y*]"]" in the system after the discontinuity:

vi)In order to avoid the ambiguity in the term dnitial conditions (which is often used
for both, the initial value of variables of a DAE and the equations required to define
these values) we use the term transition conditions also for the specification of the initial
conditions at ¢y in the sequel.
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i. In the most simple case the entry keeps both its mathematical type and its
physical meaning.

ii. An algebraic variable keeps its mathematical type but changes its physical
meaning. By construction, this does not influence Eq. (3.56).

iii. A differential variable keeps its mathematical type but changes its physical
meaning. Depending on the specific model a continuity condition Eq. (3.56)
may or may not be appropriate.

iv. A differential variable becomes an algebraic variable. Then Eq. (3.56) does
not apply.

v. An algebraic variable becomes a differential variable. In this case a continuity
condition Eq. (3.56) is doubtful.

Items i, ii, and iv are clear, and item iii can be solved by deeper insight into
the background of the model. Only case v is ambiguous. Therefore, as long as a
differential variable of type v need not be assigned as a dynamic degree of freedom
in order to obtain a uniquely solvable set of reduced consistency equations it should
be excluded from the DOF-assignment.

In summary, transition conditions of the form

kifi(i‘}u(tn),if(e(u)(tn)) = i},,(tn) - £}s(u)(tn) =0 p=1,...,ngar, (3.57)
are required in order to handle the general case, where ¢~ := [[z~]",[y~]"]", and
K&(u): {1,...,ngar} = {1, ng- ng- +1,...,ng +ny-}

is an appropriately defined injective mapping.

3.2.4.b Utilisation of Modelling Level Knowledge

In the previous discussion we have restricted the transition conditions to continuity
in a subset of the differential state variables. In the next step we incorporate
model specific background knowledge in order to obtain a priori statements for
a reasonable choice of the transition conditions. This is desirable from both the
application point of view as well as from the algorithmic point of view.

However, such information cannot be recovered from the DAE Eqgs. (3.35a)—
(3.35b) generated by the simulation environment as the numerical representation
of a process. At this point we have to utilise detail knowledge on the modelling
of the plant itself — or, more precisely — knowledge on the modelling of the single
units.

Example 6:

Consider the one-dimensional model of a heat ezchanger (see Figure 3.3), where a
hot stream transfers energy to a second, cold stream. The streams are separated
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streaml ——» l o} Vi - Ti.hy —

metal : { Tm, hm

stream2 «+— To, hy V2 a2 T -
x=0 X=L

Figure 3.3: Heat exchanger (sketch) [ELBK 97].

through the heat exchanger material. Assuming that the streams exchange their
heat with the exchanger material only, that the stream velocities v; and v remain
constant, and that the heat transport in axial direction is neglectable the heat
exchanger can be modelled by the system of hyperbolic PDEs [ELBK 97] (Vi)

10k Oh

10hy _ Ohy

gﬁ T oz aofa(Ty — Tr) , (3.59)
Ohm

o a1 (11 — T) + o (T — Th) ,

0 = hstream (T1, P1, 21) — hy,
0= hstream(T2, PZ, z2) — ho ;
0= hmetal(Tm) - hm;

3.60

3.61
3.62

)
)
)
3.63)

(
(
(
(

where hj o(z,t) are the enthalpy flowrates, T} 2(z, t) are the temperatures, Py o(z,t)
are the pressures, and (the vectors) zj2(z,t) are the compositions of the two
streams. hm(z,t) is the enthalpy per unit length, and T (z,t) is the tempera-
ture of the exchanger material. The heat transfer coefficients of the streams with
the exchanger wall are given by o, (7,,P,,2,), v = 1,2, and §2; 2 describes the
respective heat transfer per unit length.

Leaving the numerical details to, e.g., [ELBK 97|, the PDE system is approxi-
mated using the method of lines, i.e., the heat exchanger is discretised by a spatial
grid. The result is a system of coupled ODEs and algebraic constraints, i.e., a
DAE. In the context of this section it is of interest that the metal enthalpies at
the grid points within the heat exchanger are differential variables. By (simple)
physical reasoning it is clear that these enthalpies have to remain constant across
discontinuities unless there is a possibility to transfer heat directly to the heat
exchanger material. O

Example 6 demonstrates the knowledge required and the type of statements
that can be made:

Vi) Tn order to keep consistency with the chemical engineering literature we temporarily
overload symbols which may already be used in a different context.
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1. The underlying models have to be known in detail.
2. Physical reasoning has to be applied.

3. The statements are restricted to differential states which are necessarily
continuous across a discontinuity (i.e, statements of the form v € K), inde-
pendent from the type of discontinuity.

Items 1 and 2 imply that statements on the specification of the transition con-
ditions require very basic knowledge. In application this information has to be
provided in extension to the pure model DAE. These preparations require consid-
erable effort. However, we want to emphasise that according to our experience
otherwise a fully automated determination of a reasonable set of dynamic degrees
of freedom is unacceptably time consuming in the case of high dimensional models.
Additionally note that the assignment of the DOF has to be performed every time
a consistent initialisation problem is to be solved, while the a priori classification
of the possible dynamic degrees of freedom need to be done only once. Item 3
expresses that we do not see a means for the ezclusion of a differential variable
a priori from the set of dynamic degrees of freedom (i.e, statements of the type
v ¢ K).

For the sake of efficiency in our code the set of transition conditions specified by
the considerations above is taken as inalterable. This means that these transition
conditions have to be selected carefully in order to avoid a failure of the overall
algorithm.

A basically similar, but complementary way of thought is reported by [BBR 01].
There, in the context of modelling languages for hybrid dynamical systems the ad-
ditional unknown declarator for variables is proposed. This declarator gives the
modeller the possibility to specify variables as dependent variables in the a general
system of equations. In the context of the reduced system of consistency equa-
tions such variables are then excluded from the set of dynamic degrees of freedom.
Similar to our method [BBR 01] restrict the transition conditions to continuity
conditions in a subset of the differential variables. However, in contrast to our
point of view (see item 3 above) [BBR 01] employ the unknown declarator in
order to specify differential variables as dependent variables, explicitly ezcluding
them from the set of dynamic degrees of freedom. The choice of the (appropriate)
differential states is left to the modeller. Also we directly incorporate modelling
level knowledge in order to bound the choice in the transition conditions. However,
at the same time we consider in the higher index case at least some freedom in
the choice of the DOF according to the actual problem as necessary. The reason is
that in the context of our automatically generated higher index DAE the structure
of the reduced derivative array equations and thus the final set of DOF is beyond
control by the user.

3.2.4.c Analysis of the Structure of the Initialisation Problem

Now consider a fixed, but arbitrary selection of transition conditions Eq. (3.57)
specified by a set K (and by a corresponding mapping K%(u)). For brevity, we
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define h(&,& ) := [k, ... k™ 17(%,£ ). Together with the reduced derivative

T Ngar

array equations Egs. (3.36a)—(3.36d) we obtain the reduced system of consistency
equations

0=f(t,a9,z2,x), (3.64a)
0=g(t&79,z2), (3.64b)
0=3(ta,z2), (3.64c)
03 03 03
= B3+ (B2 4 —(t, &, 2 64
é)t(t,a:,z)Jr%Ot,a:,z) w+az(t’“” )z, (3.64d)
0=h(z,¢), (3.64e)

5] (8] (%] ~me. o

(& ] o o
R . N

(5] 0 [Zw] (5] [5]

| [52] 0 0 0 0 1, z424%

Using a transformation of block row and colum interchange the Jacobian J can be
brought into block triangular form:

det (J(t, 2,9, 2,2,2)) =
[ (5] -l o | [§F][E]
%] o o [ [
detl o [3)[8| (£ (EE] (3.60)
o o o [ [F] [&]
| 0 0 0 0 [52] 112920z

Because of the regularity of the upper left block of the transformed matrix (cf.
Eq. (3.40)) the reduced system of consistency equations Eqgs. (3.64a)—(3.64¢e) has
a regular Jacobian J if and only if

] NE (3.66)
t,&
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which is the same result as already encountered in Eq. (3.16) and Eq. (3.18) in
Section 3.1.4. The dimension of this submatrix mz + ngar = ng +nz is by ng +ny
smaller than the dimension 2n4 +ny +mn3z of the Jacobian J. Thus we have arrived
at a more concise criterion for the assignment of the dynamic degrees of freedom,
especially in the case of a DAE Egs. (3.35a)—(3.35b) with more algebraic than
differential equations (ny > ns), and only few algebraic equations that have to be
differentiated in order to arrive at an index-1 system (ny > nz).

Remark 3.23:
The previous argument is still valid if the transition conditions involve Z. In this case the
entry [Oh/0Z] is no longer a zero-matrix. However, in case of transition conditions in the
algebraic variables § one has [0h/8g] #Z 0, and the transformation of the Jacobian of the
reduced system of consistency equations into block triangular form Eq. (3.65) is no longer
possible. 0

Eq. (3.66) shows several interesting properties of the DOF assignment problem
in view:

1. As [08/0%] is of full column rank (which follows from Eq. (3.42)) the exclu-
sion of z from the set of candidates for assignment as dynamic degrees of
freedom is admissible.

2. Differential variables which cannot be assigned as dynamic degrees of free-
dom are fixed by those algebraic equations generating the higher index.

3. Differential variables which are not present in 8 must be assigned as dynamic
degrees of freedom: Let K be an admissible DOF-assignment. Then

Ywed{l,...,nz}:{pe{l,...,mz} | 05,/0%, #0} =0 =>v € K.

4. Let there be an assignment K of dynamic degrees of freedom. A first test
for the admissibility of K can be performed by a structural check of the
existence of a full maximum transversal ([Duff 81]: MC21 [AEA 93]) in
Eq. (3.66). This is a numerically cheap method to filter sets K representing
ineligible combinations of candidates for assignment as dynamic degrees of
freedom.

3.2.4.d Algorithm

In summary the following steps are performed in order to determine a set of suitable
candidates K for specification as dynamic degrees of freedom:

Algorithm 8 (Specification of Dynamic Degrees of Freedom)

1. Based on considerations concerning the modelling of the units and their
physical nature a subset of the differential variables {Z1, ..., &y} is specified
that must be continuous at the point of consistent initialisation t = tgjsc.
Let K"t ¢ K3l := {1,...,n3} contain the indices of these differential
variables.
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This information is by necessity generated within the unit models.

According to the analysis of Eq. (3.66) all differential variables that are not
contained in 8 have to be specified as dynamic degrees of freedom, unless
they are already considered in K%, The corresponding indices are collected
in the set KStret  fostret ¢ Kaﬂ \ Kunit

, C .

If card (K Unit i KSt) < ngqr the block lower triangularisation method dis-
cussed in Section 3.1.13 is applied to the system composed of the reduced
derivative array equations together with the transition conditions enforcing
continuity in the variables collected in K"t K5t The probe is restricted
to &,, v € Ka]l\ {Kunit W Kstrct}_

In this way, differential variables are cancelled out that have not been pro-
posed for specification up to now, and specification of which will lead to
a structurally singular system of reduced consistency equations. Let their
indices be collected in K5n8,

From the above tests there is (in general) a remainder of indifferent differen-
tial variables &,, v € Kndiff .= fcall\ {funit y [stret y KSing} that cannot
be classified by problem specific knowledge and structural considerations.

Now the following possibilities exist:

(a) If card( KUt W K5 > ngqr, or if card( K"t w K7¢t) = ngqr and if
the corresponding reduced system of consistency equations is singular,
the algorithm terminates with an error as either too many variables
or inappropriate variables have been specified as dynamic degrees of
freedom.

(b) If card(KUnit w KS°t) = n g4 and if the set of corresponding transition
conditions generates a regular system of reduced consistency equations
a suitable set of variables has been assigned as dynamic degrees of
freedom, and the algorithm terminates.

(c) Otherwise, the remaining ngqr — card(K Ut @ K5t) dynamic degrees
of freedom have to be selected from the set of indifferent candidates:

i. If card(K'"4f) < ngqr — card (K™t w KSt) the algorithm termi-
nates with an error as there is no choice for building a regular set
of reduced consistency equations.

ii. Otherwise a heuristic rule is used:
Consider all (ndd{_cC:;g((II((mw cht)) possible systems of reduced con-
sistency equations that can be constructed by selecting the missing
dynamic degrees of freedom from the set of indifferent candidates.
Drop all systems that already structurally violate Eq. (3.66) (see

the discussion there).
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From the remainder select that set of transition conditions which
generates the Jacobian of the reduced consistency equations with
the smallest condition number estimate at the initially given start
values for the consistent initial values.

If even this criterion fails to deliver a unique result take that set
of dynamic degrees of freedom which has been enumerated first.

Apart from step 4(c)ii all steps in Algorithm 8 have either been already treated
above, or their motivation is obvious. Step 4(c)ii is discussed in detail within the

subsequent Section 3.2.4.e.

Remark 3.24:
Problem dependent knowledge is applied in step 1 of Algorithm 8. In the overall algorithm
there is no other step which enforces physically reasonable consistent initial conditions
directly. O

3.2.4.e Condition Estimation

The numerically most difficult step in Algorithm 8 is the condition-based heuristic
in step 4(c)ii:
1. The number of possible sets of transition conditions that has to be examined

card(Kindiﬂ)

nqqr—card(KCumity Kstrct)) such sets.

may be very large: there are (

Remark 3.25:

For bookkeeping purposes we found it easier to look at the complementary combina-
tions of card (K "ty Kstret iy K indiff) _p 4 o¢ out of card (K91 indifferent candidates
that can be dropped, as in our experiments card(K UMt  Kstret  gindiff) _ 40 <
Nddf — Card(Kunit W Kstrct) O

2. The estimation of the condition number for large, sparse, and unstructured
matrices is computationally expensive.

3. The ranking of the Jacobians is to be done before the consistent initial condi-
tions are available. Therefore the condition numbers may not be meaningful
if the start estimate for the initial values is too far from the result.

We use the matrix condition as a means to introduce a half-ordering (K, <) on
the set K of possible sets of candidates specifiable as dynamic degrees of freedom
remaining after steps 1 to 3 in Algorithm 8. The choice of the smallest set in
this ordering is motivated by the assumption that this set results in the system of
reduced consistency equations which can be successfully solved with the highest
probability. The weakness of our heuristic noted in item 3 has to be seen in relation
to the fact that the final numerical solution of the consistent initialisation problem
— which is a high dimensional, nonlinear root-finding problem — fails if the initial
guess is too bad, anyway.

The numerical effort required for the enumerative check of all remaining possi-
ble DOF-configurations in step 4(c)ii of our algorithm represents the main obstacle
for its application. This problem is addressed in two ways:
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1. A structural method (maximum transversal [Duff 81]: MC21 [AEA 93)) is
used in order to filter structurally singular Jacobians, cf. the discussion of
the structural properties of the initialisation problem in Section 3.2.4.c. An
important point is that according to Eq. (3.66) this criterion can be restricted
to a relatively small submatrix of the Jacobian of the consistency equations.
Even more important, this structural method is very fast in comparison to
numerical computations.

2. In case of a feasible set of dynamic degrees of freedom the condition number
of the corresponding Jacobian J has to be computed. This computation
has to be done highly efficiently. Here we utilise that only some columns of
the Jacobian are affected by the differences in the possible assignments of
dynamic degrees of freedom (see below).

As item 1 is clear we restrict our further discussion to item 2. Recall that the
condition number x(J) of a regular matrix J is defined as

() = [T (3.67)

where ||-|| is a matrix norm. It is a measure for the maximum relative error to be
expected in the solution of a linear system of the type JfS = a, given a disturbance
in the system matrix J or in the right hand side « [Stoe 94].

Obviously, direct application of Eq. (3.67) is prohibitive. Therefore several
techniques have been developed in order to obtain an iterative estimate for the
condition number, or at least of its order. Two popular methods are the “LINPACK
estimator” and “Hager’s estimator” [Bjor 96]. In both cases iterative schemes are
employed in order to obtain estimates for the required matrix norms (especially of
|77|)- The LINPACK estimator ([CMSW 79], improved by [OLea 80]) is equiva-
lent to an inverse iteration scheme, while Hager’s estimator for estimating ||-||; or
|-l oo ([Hage 84], improved and implemented in [High 88], with a generalisation in
[High 92], [HiTi 00]) is based on convex optimisation.

We have chosen Hager’s estimator which requires the solution of systems of
the type J 'a = f and J Ta = 8. An implementation of this condition estimator
algorithm can be found in the HSL routine MC45 [AEA 93]. MC45 utilises MC41
[AEA 93] which implements Hager’s estimator with Higham’s improvements.

In our implementation we have replaced the routine for the solution of general
sparse linear systems M A28 [AEA 93] — which is used in the version of MC45
available to us — by the state-of-the-art HSL routine MA48 [AEA 93]. Apart from
an increased performance the new solver offers an additional feature allowing to
specify late columns [DuRe 96]. If it is known that only a subset of the columns
in a matrix changes between several calls of M A48 this subset can be declared
as late columns. These late columns are then handled in a special way such that
previously computed factorisation information can be used, which otherwise must
be dropped and re-computed from scratch.
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As in our problem setting the Jacobians J of the possible systems of consis-
tency equations differ only in the columns representing the partial derivatives with
respect to &, v € K™ this feature can be applied advantageously.

Although we have successfully sped up an existing efficient code for the estima-
tion of condition numbers in our setting we emphasise that the condition number
based criterion in step 4(c)ii of Algorithm 8 is intended as our “final line of de-
fence”. We consider the thorough analysis of the physically necessary transition
conditions to be of utmost importance in order to provide as much data as possible
for step 1 of Algorithm 8.

3.2.5 Solution of the Consistency Equations

The numerical solution of the reduced consistency equations Eqs. (3.64a)—(3.64e)
completes our algorithm for the computation of consistent initial conditions. As
in our problem setting the reduced consistency equations are large, sparse, and
nonlinear efficient iterative multidimensional root finding methods have to be em-
ployed. Additionally, robustness is of special interest as our algorithm is imple-
mented into the OPTISIM" simulation environment which is used in practical
engineering work.

For a general review and discussion of methods for the solution of systems of
nonlinear equations we refer to, e.g., [DeSc 96].

3.2.5.a Initial Guess for the Consistent Initial Conditions

In the case of the OPTISIM" environment there are three possible scenarios in
which the calculation of consistent initial conditions may have to be performed:

1. When a completely new dynamic simulation is started from a quasi steady-
state,

2. when a discontinuity during the integration of a DAE model has to be han-
dled, or

3. when a dynamic simulation is restarted after it has been interrupted by the
user.

In each of these cases the value of the state variable vector before consistent ini-
tialisation is part of a solution of a related simulation problem. Thus, on the one
hand it can be assumed to be physically reasonable. On the other hand, in general
only a part of the dynamical system is directly affected by the change between
t =14 and t = tji'isc. Therefore the vectors [£7,y~,& ,y | in general provide a
suitable initial guess.

In the context of chemical engineering applications the initial guess does not
only have to be chosen appropriately due to purely numerical problems, e.g., lim-
ited convergence areas of iterative root finding methods, or convergence to unde-
sired solutions, but also due to difficulties with the evaluation of the model DAE
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and its Jacobian at intermediate iterates in the course of the iterative solution
of the root-finding problem. If such an intermediate point is too far away from
a physically reasonable point underlying routines for the calculation of physical
properties may be forced to use extreme extrapolation giving even more unphys-
ical results. In the worst case routines based on subordinate iterative processes
may fail completely. Our setting thus provides us at least with a good chance for

finding consistent initial conditions.
Remark 3.26:

In case of simultaneous equation-oriented simulation tools the provision of a sufficiently
reasonable initial guess for a steady-state solution of an entire flowsheet is known as a
major problem (cf. Section 2.2.2). Therefore it would be unreasonable to demand higher
robustness — i.e., the ability to converge to the solution starting from scratch — from an
algorithm designed for the treatment of the even more challenging consistent initialisation
problem. O

3.2.5.b Steps Towards a Solution

As discussed above the start estimate for the consistent initial conditions in com-
mon possesses at least some physical meaning and can be assumed sufficiently close
to the solution of the consistent initialisation problem. Additionally, we try to in-
crease the robustness of the method by taking several steps towards the solution
(some of these steps are optional):

1. In the first optional step a back-tracing algorithm as described in Section
3.1.10 may be employed. In our algorithm back-tracing is applied to the
original index-2 DAE Egs. (3.35a)—(3.35b) before the reduced consistency
equations are formed.

This back-tracing step can be regarded as a homotopy of a system related
to Egs. (3.64a)—(3.64e). However, during back-tracing neither the transition
conditions Eq. (3.64e) specified in Section 3.2.4 are enforced, nor are the
derived equations Eq. (3.64c). Additionally, the back-tracing method is not
guaranteed to terminate successfully, see the numerical examples in Section
6.2.

2. In the second optional step numerical solution methods with special global
convergence properties can be employed in order to get closer to the solution.

(a) A Levenberg-Marquardt algorithm (NS13, [AEA 93]) may be used, or

(b) the feasibility phase option of the SQP solver SNOPT [GMS 97a,
[GMS 97b] may be employed. During the feasibility phase SNOPT
minimises an [;-criterion on the infeasibilities of the nonlinear con-
straints. In our case the nonlinear constraints are given by the residuals
of the reduced consistency equations.

The advantage of SNOPT is its ability to restart and continue auto-
matically if at some point during the solution a residual or Jacobian
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evaluation fails. Furthermore, it is able to return an accurate solution
in case of convergence.

The disadvantage of these residual minimisation methods is that they are
typically inefficient close to the solution. Thus we employ them only as
pre-solvers in case of difficulties with the final solvers of step 3 below.

3. Finally, exact approximations to the consistent initial values are obtained

(a) by a dog-leg method (NS02, [AEA 93]), and/or
(b) by the affine-invariant Newton method NLEQLS [NoWe 91].

According to our experience it is usually sufficient to use NLEQ1S only, which
at the same time returns the most reliable results. The precision obtained by NS02
is inferior to the precision of the results of NLEQ1S. In our larger examples
application of SNOPT as pre-solver in general has shown prohibitive due to high
computational costs. Similarly, we can recommend NS13 for extremely difficult
problems only. Results of our numerical tests are provided in Section 6.2.

Remark 3.27:

The Levenberg-Marquardt and the dog-leg solver routines from the HSL provide a reverse-
communication interface. I.e., most of the major computations such as matrix-vector
products, or the solution of linear systems are in the responsibility of the routine invoking
the respective solver. This is advantageous especially in our case of large and sparse
matrices, or in general for problems with special structure.

A brief discussion of the Levenberg-Marquardt and of the dog-leg method can be found
in [DNR 87], [ChSt 81]. O

Remark 3.28:

For our purposes we have made two major modifications to NLEQ1S. In the first place,
we apply the matrix equilibration strategy for the solution of linear systems described in
Section 3.2.5.d below. Secondly, we have implemented an interface to the sophisticated
sparse linear solver MA48 [AEA 93] which we use instead of the default solver M A28
[AEA 93]. ¢

3.2.5.c Scaling of the Nonlinear System

According to [AEA 93] both, variables and residual functions of the nonlinear
system to be solved should be reasonably well scaled in the case of NS02. In
[ChSt 81] the effects of scaling in the case of the dog-leg method is discussed in
detail.

We apply linear scaling to the consistency equations and to the initial values
in such a way that both the magnitude of the scaled variables and of the scaled
residuals are kept within given bounds. As in the course of the solution both the
residuals in the consistency equations and the iterates of the initial values may
vary by orders in magnitude scaling is adapted if it appears to deteriorate. In such
a case we restart NS13 and NSO2 from the current iterate.
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Scaling is fixed during a solution by SNOPT as restarts severely diminish
its performance. A pathological case is rescaling during a line-search (cf. Section
2.4.2.b).

During the solution with NLEQ1S our scaling algorithm for the nonlinear
system is turned off as this routine already uses tailored scaling mechanisms.

3.2.5.d Solution of Linear Systems

The computation of the Newton direction required by the dog-leg and by the affine-
invariant Newton method is a basic problem. Especially, in our larger examples
the system matrix given by the Jacobian of the reduced consistency equations
turned out to be ill-conditioned. This is a matter of concern as the Jacobians are
at least in parts computed by numerical approximations and thus are subject to
perturbation. E.g., for the example of an air separation plant discussed in Section
6.2.3 the estimated condition is of O(1 - 10'2).
Remark 3.29:

In the beginning of our implementation the Jacobians of the reduced consistency equa-
tions turned out to be extremely ill-conditioned for several examples from application.
E.g., for the example of an air separation plant discussed in Section 6.3.5 the estimated
condition was of O(1 - 10%°). After some analysis this phenomenon could be assigned to
the modelling of a specific unit. The — in itself correct — modelling approach used there
leads to a hidden linear dependency in the Jacobian. Due to an accumulation of numeri-
cal errors this singularity appears as ill-conditioning. However, the most notable point is
that this disadvantageous model by far does not affect standard steady-state and dynamic
simulations as severely as the solution of the reduced consistency equations. ¢

In order to improve the performance of the linear solver we apply row and
column equilibration using MC29 [AEA 93]. In our experiments a restriction on
the size of the scaling factors showed to be advantageous if the restricted scaling
was combined with an additional equilibration of the matrix rows. All scaling
actions are performed using factors that are powers of two, thus avoiding round-
off errors on digital computers using standard IEEE floating point arithmetics.
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Chapter 4

Transfer of Sensitivity
Functions at Discontinuities

Raffiniert ist der Herrgott,
aber boshaft ist er nicht.
(God may be subtle,
but He isn’t plain mean.)

Albert Einstein
(FORTUNE cookie)

4.1 Review of Previous Work
4.1.1 Sensitivity Transfer in Systems of Ordinary Dif-
ferential Equations with Discontinuities

Already [Roze 67] has derived concise sensitivity equations for discontinuous sys-
tems of ODEs of the form

fep) = Fatewpp: {0 TIS (4.12)
&(to; p) = &o(to, P), (4.1b)
to = to(p) (4.1c)

with dependent variables £ € R"¢, parameters p € R"?, the independent variable
t € R, and functions F,, € C! (RH'”f +”P,]R"€), n=1,2,... . It is assumed that
the switching instants ¢, are determined as the isolated roots of the real-valued
switching functions

a4, (tn,€(tn;p),p) =0,
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(t:p) A Fl(t &.p) Fz(t &.p)
\_/\ ut p) —
EO/\. \S*\\\\ O\ -
> (T%) ) = el
t a,( Ep)
Figure 4.1: A discontinuous dynamical system &(t;p) = Fn(t, &(tp),p), n =

1,2,..., and its switching functions q,, (¢, &(¢;p), p).

q, €C! (]RH'”f R ]R), n =1,2,..., and that the values of the dependent variables
€, = lim; ~, &(t;p), and &6 = limpy, €(t;p) at the discontinuities are related
by jump functions

57—;— = hn(tn,Eﬁ,p) )

hy, € Ct (RM™etm» R ), n =1,2,.... Figure 4.1 gives a sketch of such a system.
Within each interval (t,—1;t,), n = 1,2,..., the sensitivities
9€(t; p)
t,p) = i € R xn»
w(t,p) [ op

of the solution &(t;p) of Eq. (4.1a) satisfy the sensitivity equations

;o tn—1 <t <y,

w(t,p) = [aF ]

OF,,
73 ]

wt.p) + |
Op |tp
) P e
where the initial values of the sensitivities corresponding to Egs. (4.1b)—(4.1c) are
given by
Oty d¢,
t =—F(t — . 4.2
w( Oap) 1( 07501p) |:8p:| +[dp ( )

Remark 4.1:
Please note the total derivative in Eq. (4.2). Resolving this derivative we obtain

9
w(to,p) = |~ Fi(to, &5, p) + gfs] . [Z_tp(l] N [a%] '

0

The problem in question are the transition conditions for the sensitivities.
Using the abbreviations

Aw, =w! —w = lim w(t,p —hmwtp
n t Atn

n Netn
AFn = F’;LF - Fr: = tli‘l? Fn+1(ta€( ;p),p) —tl}(l’il Fn(tag(t;p)ap),
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h, = tl}gl h,(t,&(t;p),p),

n

o = li t,&(¢;
@ = lim 4, (t,£(P).p),
the expressions derived by [Roze 67] can be written as

oh; ) Ot
s, ={-ams [ - a ow [ (5]

oh; _ [oh;
+[a§ —Id]-wnJr[ap] . (4.3)

where the sensitivities of the switching times are determined by

[%] _ |Otn Ot
op op," " Opy,
Eq. (4.4) is valid as long as the denominator on the right hand side does not vanish.
This condition is equivalent to the transversality condition dq;, /dt # 0.

oq, ,,— 94y

= — . 4.4
0qn F- + 99, ( )
06 T n ot

Later on the following reformulation of Eq. (4.3) is advantageous:

o - i 3o (3]} 3]

+ [8h; - Id] “w, + [8’15]

o€ Op
=
Oh- 06~  Oh: t,, Oh- 9E~  Oh-
+ _ _t n n | Y n n
“n = { F”[ae o at]} [ap]+{as o " ap]
Bq. (4.0 {F+ [ah; ot ah;]} Mrwy + % [ah; a§—+ah;]
- no " 947 - . 94 '
0 0Ot ot aLg Fo+ % o€ Op op
(4.5)

4.1.2 Sensitivity Transfer of Differential States in Lin-
ear Implicit Index-1 DAEs

[SWS 95] require sensitivity information for discontinuous index-1 DAEs in order
to perform parameter identification in mechanical multibody systems by a direct
multiple shooting algorithm (cf. Section 2.4.1). Their investigations regarding
sensitivities after discontinuities are based on [Kram 85|, [Bock 87] who consider
the ODE case.
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4.1.2.a Formulae for Sensitivities after Discontinuities

In general, modelling of multibody systems in redundant coordinates (according
to the Euler-Lagrange formalism) results in linear implicit index-3 DAEs, cf., e.g.,
[GLG 85|, [ABES 93]. [SWS 95] consider corresponding index-1 DAE systems
which are obtained by replacing the algebraic constraints by their second total
derivatives with respect to time (MBSSIM [ScWi 94]).

Remark 4.2:
In order to avoid drift effects during the numerical integration of the index-1 system the
simulator MBSSIM uses sequential projection onto the first total derivative with respect
to time of the algebraic constraints and onto the undifferentiated algebraic constraints
[ScWi 94]. This is equivalent to the enforcement of the reduced system of derivative
array equations. As an IND algorithm for the computation of the sensitivities is used
this projection has to be considered for the sensitivities, too [SWS 95]. More detailed
information can be found in [Schw 99]. O

Removing all of the special structure inherent in the class of problems treated,
the index-1 DAE IVP can be stated in the notation of this treatise as

0 | F1t,z(t@o,p), y(t w0, p), & (t; 20, p), P); to <t < taisc, (4.6)
Fo(t, z(t;xo,p), y(t; o, p), T(; @0, P), P);  Laisc <t < 1,
0 = ho(x(to), o) = x(to) — o , (4.7)

under the index-1 condition

rank ([% %D = ng + ny in a neighbourhood of the solution; n =1,2,

with the independent variable ¢ € [to,ts] (to,tr € R fixed), differential and alge-
braic states £ € R"* and y € R"¥, parameters p € np, two sets of model equations
Fi,Fy € C! (RMMetnytnatnp Riatny) initial conditions hy € C! (R 7= RM= ),
and user given parameters ¢y € R"* characterising the actual IVP to be solved.
Due to their structure, MBSSIM can handle F'; and F'5 as semi-explicit index-1
DAEs which eases the determination of consistent initial conditions for the deriva-
tives of the differential variables & as well as for the algebraic variables y [ScWi 94].
In order to simplify notation we only consider a single discontinuity in Eqs. (4.6)—
(4.7). The time of this discontinuity tgisc €]to, %[ is assumed to be indicated by
the root of a real-valued switching function

0= Q(tdisc; m(tdisc;p)ap) s

qg €C! (]RH'"m +”P,R). Note that g does not depend on the algebraic states y.
Further, the jump function h € C* (RUf7=+np RM=) js defined as the increment

z " (to, o, p) = (to, 0, P) + h(tdgise, ¢ (o, 0, D), P) (4.8)

w_(t01m07p) = limt/‘tdisc $(t;t0,$0,p), $+(t0,$0,p) = limt\tdisc $(t;t0,$0,p)-
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Le., the differential variables & are selected as the n, dynamic degrees of freedom.
The initial values £+ and yT are determined consistently after the discontinuity.

The Wronskians) of the differential states = at time ¢ with respect to the
parameters p and with respect to the initial values (or defining parameters) x.,
starting from %, are defined as

Wini(t, ts) :== %m(t;t*,m*,p) and Wp(t,t,) == %m(t;t*,az*,p), (4.9)

Wini € Rt=X%= W, € R*=>*"»_ {, denotes ¢y or tj’isc. Accordingly, x, is one of
xo or 1. The sensitivities of the algebraic states are not addressed. In their im-
plementation [SWS 95] apply an internal numerical differentiation (IND) scheme
based on finite differences (see, e.g., [Bock 87], [SBS 98], [Kieh 99]).
Remark 4.3:

[SWS 95] have to consider the sensitivities with respect to the initial values ¢ as they
use a direct multiple shooting approach for parameter identification. Further information
on direct multiple shooting for parameter identification can be found in, e.g., [Bock 87],
[Schl 88] who consider the ODE case, and [Heim 92], [HeSt 96] where index-1 DAEs arising
from mechanical multibody systems without state dependent discontinuities are treated.

0

The formulae given for the Wronskians in the interval after the discontinuity
t € [th.. ti] are

Wini (£, t0) = Wini (£, tis) Uini Wini (t e 0) (4.10a)
Wop(t,to) = Wini(t, ths.) (UiniWp(tgise to) + Up) + Wp(t, thi.) 5 (4.10b)

where the update matrices Uip; € R™® %"= and U, € R"=*"? are defined by

r ~ ~ 1 | 9q ~

Ooh 0Oh [am] oh

e |t 2 P A i
Ui == |T T T awa: p + Id + R (4.11a)

- dq
. ._ Oh Oh [3p] oh
e |t _

Up:= |x T % 9w p [81’] , (4.11b)

using ¢ := dq(t, (1, p), p)/dt.

4.1.2.b Equivalence with the Results Derived by Rozenvasser

In accordance with the notation in Section 4.1.1 we define a new jump function

h(t,z,p) == h(t,z,p) + =,

(1In this section we stick to the nomenclature used in [SWS 95], although in our case a
Wronskian does not differ from a sensitivity matrix.
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h € C! (R'7="+"p R"= ) which (trivially) owns the partial derivatives
; oh _ Oh z
%:B_h_f_‘[d, — = —, and 3_h:(9_h
or Oz op Op ot ot
Therefore the leading terms in Egs. (4.11a)—(4.11b) transform as

_[o=* _[oh  Ohox-
1 ot ot oz Ot ‘

By Eq. (4.9) and by z(t},..) = (tlith. ™. p) = ™ (where T is to be in-

disc?

terpreted as the fized initial value at the discontinuity defined in Eq. (4.8)) the
Wronskians satisfy

B ox(ts. ;t0, o, P oxr~
Wini(tdiscato) = ( disc , , ) =

(9:120 N 8:130 ’
—_ aw(t_ ;thwOap) Oz~
Wp(tdiSC’ t()) = dlscap = 8p b
0
+ + — + 4t + —
VVini(tdisc’ tdisc) - ox+ m(tdisc’ tdisc’ T ’p) = Id ’ and

disc? “disc disc?

0
Wp(th ., 4 )=%w(t+ itttz p)=0.

Thus Egs. (4.10a)-(4.10b) evaluated at ¢, for the Wronskians Wini(t}.., o) and
Wip(tt...to) of the discontinuous IVP Egs. (4.6)—(4.7) read as

Wini(the t0) = Wini(thaes thiee) UiniWini (t giger to)
- {8:1:+ [ah Bham_]} 019 +[8h8m_]

=<3 =42 L -~
ot ot oz Ot 990z- 4 09 | Oz Oxo
and
Wp(tg—isc’ to) = Wini(té—isc’ tt_i'—isc) (UiniWP(tgisc’to) + UP) + Wp(tt_i'—isc’t:isc)
_ [9=* [0h Ohoa~|\ %y Top [OhOa Ok
| ot ot Oz Ot g_gag_t’ + %—? o 0p Op|

The expression for Wp (¢ ., t0) is equivalent to Eq. (4.5) given in Section 4.1.1.
This means that in case of discontinuous index-1 DAEs the sensitivities for the
differential states transform as in the ODE case, given that the differential states
are chosen as the dynamic degrees of freedom and that the transition conditions
for the DAE as well as the switching functions do not depend on the algebraic

states.
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Remark 4.4:
The difference in the expressions obtained for Wini(tj{isc,to) and Wp(tjisc,to) by the re-
formulation above mirrors that the defining parameters &g do neither enter the switching

function nor the jump function directly, in contrast to the model parameters p. ¢
Remark 4.5:

Also [GFB 99] report the equivalence of the results of [SWS 95] with the results of [Roze 67].

However, [GFB 99] do not provide an explicit derivation of this equivalence. O

4.1.3 Sensitivity Transfer in DAEs: Numerical Differ-
entiation of the Jump-Function

Similar to [SWS 95] discussed in Section 4.1.2 above [ErAr 98] aim at the cal-
culation of sensitivities for discontinuous DAEs arising from dynamic mechanical
multibody system simulation. For the continuous part of the task they derive sen-
sitivity equations for index-3 DAEs of mechanical multibody systems with holo-
nomic constraints. In order to treat the discrete part of the task they resort to
the simplified problem of sensitivities for discontinuous systems of ODEs. The
argument is that for DAEs describing mechanical multibody systems it is always
possible to find an ODE representation at least locally (see Definition 1.9 (differ-
ential index), Definition 1.10 (corresponding extended system of a DAE)). Under
this assumption the following lemma is shown by [ErAr 98]:

Lemma 4.1 (Sensitivities of a Discontinuous Solution)

Let there be a nonempty interval [to,t] C R, a vector of parameters p € R'?
and a switching function q : R% ™ — R. Suppose that there exists a unique
tdisc = tdisc(P), to < tdisc < tf, such that

q(&(to;p),p) <0,
t}i(gn q(é(t;p),p) =0,

disc

where &(t;p) : [to, tf] X R'"» — R is the solution of the system of IVPs

&(t;p) = F1(€(p).p); ¢ € [to, taiscl,
(to,p) §o(p), and
p) =
)=

( (E( ap) p) 5 te [tdiSCatf] 3
(td1scap h( ( )ap)a

with
q(h(¢”(p),p):p) 20,
where F1,Fy : R 1" — R £ (p) := limy »y, £(t;p), and h : R¢ e — R
is the jump function.
Assume that F1(&,p), Fa(€,p), q(€,p), and h(€, p) are continuously differen-
tiable with respect to € and p, and that &)(p) is continuously differentiable with
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respect to p. Further assume that for all t € [ty, tgisc| the following relations hold:

S €ltsp).p) - F1(6(59)p) > 0.
SLE Bp)-File (B)p) >0,

and in case of g(h(§" (p),p),p) =0

0q

a_g(g(tdisdp)ap) - F1(&(tdisc; p),p) > 0.
Then for all t €]ty, taisc[ U |taisc, tf] the sensitivities %(t, p) exist. Further, for all
t €]to, taisc| the sensitivities are given by

0§ &, LoF,
a ta = a_ + a_ T3 ) dTa
ap( P) op (p) . Op (&(7;p),P)
with the limit from below
% gy i K= Ko s [
ap (p) L t}gﬂ}sc 8p(t’p) - ap (p) + to ap (g(Tap)ap)dT

Furthermore, with F~ := limg ~ . Fi(&(t;p),p), Ft .= limy 4, F2(€(t;p), D),
q :=limy ~, q(€(t;p),p), and h™ := limy ~, h(§(t;p),p) the sensitivities for
all t €]tgisc, tf| are given by

oe,
5( )
Ft— % F oqg on|oe [F'-% F og oh
351_‘; .F~ o€ o€ | Op 36_£_ .F~ op op
b OF,
+ —(&(7;p),p)dr 4.15
| Gewmmpdr. @13

4.1.3.a Algorithm for the Calculation of Sensitivities after a Dis-
continuity

For t;’isc =1\ tdisc Eq. (4.15) gives the value of the sensitivities shortly after the
discontinuity as

%€

+ —
op P = o o (g ap o

. (4.16)

F'—%¢ F [oq-0g”  0q7] [0k 06~ o
o6 op  Op
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In the application considered by [ErAr 98] the right hand side of the model equa-
tions at the discontinuity, i.e., F'T, is directly accessible, but derivative information
for both the switching function q and for the jump function h is missing. There-
fore [ErAr 98] propose to approximate the unknown derivatives of the switching
function and of the jump function present in Eq. (4.16) by one-sided first order
finite differences. From the integrator the time of discontinuity %g4isc, the numeri-
cal, left-sided approximation £~ of the states at tgisc, as well as their derivatives
éf(z F7) and their sensitivities w ', and the actual set of parameters p have to
be passed to the algorithm. Additionally, the norms || ||, ||w™||, and ||p| are
needed. Other input parameters of the algorithm are the relative tolerance €,
the absolute tolerance €,pg, and the machine precision €y ,cn. Altogether, the algo-
rithm for the sensitivity transfer after discontinuities developed by [ErAr 98] reads
as:

Algorithm 9 (Sensitivities after Discontinuities)
1. Set disturbance for finite difference approximation of time derivatives

€¢ = \/€mach - Max(||€ ||, €re1 - [|€ || + €abs) -

2. Approximate total derivatives with respect to t

d  9q” ;- . 4q¢ +e-& .p)—al¢,p)
a? T g S T ce ’
ih_ — ah; g = h(g_ +6§ 'é_ap) — h’(g_:p)
dt  0¢ N e :

3. Introduce auxiliary variable v

h~ i~
F— %€
'Ui:aq_—.,
€ €

4. Fix disturbance for finite difference approximation of parametric derivatives

€p ‘= V/€mach - MaxX (HpHa llw™ ||, €rer - [|w™|| + fabS) .

5. Approximate the total derivatives with respect to p,, v =1,...,ny
d - _0q 0  dq . q(¢ +ep-lwl,pt+epe) —q(é,p)
dp,? ~ 06 “op, " op, & |
d . _0h 0  Oh” . h (¢ +e-[wl,p+epe,) —h(€,p)

dp, o OJp, Op, €p
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where e, is the v unit vector in R% and [w], is the vl column of the
sensitivity matrix w € R <",

6. Calculate new sensitivities

) oq— 0&  Oq~ Oh~ 0¢  Oh
+1 . . .
T am*@m]*[@& op, " op,

The point to be noted in Algorithm 9 is that by utilising directional derivatives in
steps 2 and 5 costly approximation of the Jacobians of the switching function and
of the jump function can be avoided.

[w

4.1.3.b Equivalence with the Results Derived by Rozenvasser
Slightly reordering Eq. (4.16) we find

_ 0q— 06~ | 9q~ — ae— —
0, .\ [ O ) et op  [OR 0  Oh
i) = [F* = o - o ap Tap | MY

The difference between Eq. (4.17) and Eq. (4.5) in Section 4.1.1 is due to [Roze 67]
taking into account explicit time dependence in the switching function g and in the
jump function h, which is not the case with [ErAr 98]. As [ErAr 98] restrict to the
underlying ODE of the original DAE system this equivalence has to be expected.
In a strict sense due to the restriction to the ODE case the above results apply to
the UODE only. However, as shown in [SWS 95] under some assumptions on the
jump and switching functions these formulae also apply directly to the differential
states of index-1 DAEs obtained by index reduction of mechanical multibody DAE
models, cf. Section 4.1.2 above.

4.1.4 Sensitivity Transfer in Systems of Index-1 Differ-
ential-Algebraic Equations with Discontinuities

In [Feeh 98] and in the related papers [GaBa 98], [GFB 99] optimal control of
batch processes (which are a common type of process in chemical engineering) and
related problems of sensitivity transfer at discontinuities are addressed. In this
section we restrict to a summary of their results regarding the computation of
sensitivity functions for discontinuous DAE models.

The process model is given by the DAEs (i)

Fo(t,z(t;p),y(t;p), (t;p),p) =0; tho1 <t <tp, n=12,..., (4.18)

(i) The notation used in [Feeh 98], [GaBa 98], [GFB 99] has been adapted and simplified.
Especially, control variables u have been suppressed and the dimension of the variables
has been fixed for all times. Furthermore, the sequence of transitions is assumed to be
fixed.
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where £ € R" is the vector of differential variables, y € R"¥ is the vector of
algebraic variables, p € np is the vector of parameters, ¢ € R is the independent
variable, and Fy, € C! (Rt netnyfnatne Rratny) pn =1 2 ... are the consecutive
models. By the rank condition

rank ([831;” 6;;”]) =ng +ny (along the solution), (4.19)

the range of problems covered is restricted to ODEs and most index-1 DAEs.
Higher index DAEs are treated by index reduction according to the method of
dummy derivatives (see Section 3.1.6). Further we have the a priori adequately
defined sets of initial conditions and transition conditions

hO(t()amanOa:-cOap) = 07
hn(tnam;ayzam:am;ayﬁaw;’p):Oa n:112a"'a

ho € C! (RiFnatnytnetny Rna) p, e Cl (RIF2(Metnytne)tnpy Rre) where with
z € {z,y, &}, zo = zo(to; ) := 2(t;P)li=te, 2, = 2, (tn;P) = limy ~, 2(; p),
and z; = 2z} (tp;p) := limpy, 2(4;p), n=1,2,... .

The times of the discontinuity events are given as the isolated zeros of the
real-valued switching functions

q,(tn, (tn; ), y(tn; p), (tn; p),p) =0,

g, € C' (Rif=tnytn=tne R) n = 1,2,... . In general, the roots of different
switching functions must not coincide (see also the discussion in Section 4.2).

Later on the higher order time derivatives & and ¢ will be required. Under
the rank condition Eq. (4.19) these derivatives can be obtained from the definition
of index-1 DAEs according to Definition 1.7 as at a consistent point [t, z,y,z, p],
t € [tn—1,tn[, the following statement holds

d ) Eq. (4.19) ] )
aFn(t,a:,y,:c,p) =0 ' [6;;" 632“] [y] =—[%n + %Fng] . (4.20)

4.1.4.a Sensitivities of the Initial Values

In the sequel, we consider the initial time ¢y as an additional parameter. Then the
sensitivities

[3w0§;5;);17)]’ [ayoa(;f;p)], [%‘)zgﬁ’;p)]a and [aw%(fo;p)], [ay%(tto;l’)]’ [afv%(fom)] ’
0 0 0
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of the solution of the initial consistent initialisation problem

Fl(ta wanO’imp) = Oa (421&)
hO(ta w05y0,¢05p) = Oa (421b)
t—tg=0, (4.21c)

are obtained by differentiation of Egs. (4.21a)—(4.21c) with respect to the param-
eters p and with respect to the initial time %, respectively, and solution of the
resulting linear system of equations

dzo  Ozg
OF OF, OF op dto oF OF
ox 0 oz dyy 9y | _ | @ ot ( 4 22)
Ohg Ohg Oho| | Dp Bt | = | Oka Oho| - :
ox dy ox dzg Oxo op ot
op dto

The trivial relations 0t/0p = 0 and 9t/0ty = 1 are already considered in Eq. (4.22).
Eq. (4.22) is (uniquely) solvable if the system matrix is of full rank 2ng + ny, i.e.,
the initial conditions hgy have to be suitably chosen.

Actually, we are interested in the sensitivities of the dynamic initial consistent
initialisation problem. On the one hand, the sensitivities of the dependent variables
with respect to the parameters p need not to be modified, i.e.,

plto,p) = 23501 | o1y, p) — [2lom)] oty p) — [Poftom]

where

" [Bw( )] R Xnp d t [By( ,p)] Ry X7p
ptp) = |5 |, € and ot p) := | T~ |, €
denote the parametric sensitivity functions for the solution trajectory of the DAE
Eq. (4.18). But on the other hand, as we identify z(t;p) with z(¢;t9,p), 2 €
{z,y,z}, due to

+ [6z(t;t0 ap)

9o ] to,p

Ozo(to;p) | — | 9z(tosto,p) | — | dz(t;to,p) .| ot
Oto dto ot to,p dto

]t07p
. oz(t: 0z
= 2(iip) - 14+ | 2GR = 2(t0p) + 5 (10.p),
the dynamic sensitivities with respect to ¢y become
0 0 . o 0 .
[ z(gtt%,p)] - [ z%fg,p)] —&(te:p), [ y((;to,p)] — [ y%(fg,p)] — §(to; p), and

o] < o] s

The value &(to; p) is available after consistent initialisation. The missing deriva-
tives &(to; p) and y(to; p) can be obtained from Eq. (4.20).
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4.1.4.b Sensitivity Transfer Across Discontinuities

In addition to the notation introduced at the beginning of this section we now use
z, = 2z, (tp;p) = limy », 2(t;p) and z;} = 2z} (tn;p) = limpy, 2(t;p) for z €
{p, o, p}, Fﬂ; = limpy, Fr1 = Frqa(tn, a:j;, y;’;, :i:;;,p), and q,, = lim; ~, q,, =
@ (tns T s Y &5 D)

By definition, at a discontinuity ¢t = %,, n = 1,2,..., the system of equations
Frii(tn, @y, yn 25 ,0) =0, (4.23a)

ho(tn, T s Y, T s T, Yy, T, P) = 0, (4.23b)
a,(tn, 2, Y, , &, ,p) =0, (4.23c)

holds. The sensitivity of the switching time ¢,, = ¢,(p) with respect to the parame-
ters p is obtained by total differentiation (1) of the switching condition Eq. (4.23c)

99, | %ay - — |, 0qy ~— | 0qy »—| |Otn| _
[at T2 toyY t i ] [617;]_
_ % ,— 4 940 — , 08y ;— | 94,
o + %o + o + %
under the transversality condition

dq— aq,, aq, . — aq, - — aq, —
T 2 + 9o+ By + Y| £ 0.
Accordingly, total differentiation of Egs. (4.23a)—(4.23b) with respect to the pa-

rameters p under consideration of the parametric dependency of the switching
time gives the sensitivities of the dynamic consistent initialisation problem

oF: oFr oFt1 [pT oFf oFf oFf] [T
gz oy 0% | |gt|=—|22 T @ | |gt|. [%]
oh, Oh, Ohy oh, Ohy, Ohy, ap
ozt 9yt gzt l | pT dxct Byt oxt]l |&
— % -
op

_ﬂ_aF+ 3F+ pi + i_ . 8_

0 0 0 —_—n _ L p

a lahn Ohy  Ohy Oh, O ] o +y - dn| . (4.24)
ot ox— Oy~ Oz~ op p_ L

Id,,

oFf OFf OF}
ox oy ox —
rank { | 55° 9B oh, | | = Met Nyt e,

gzt oyt  Bar

= d=(tnip) _ delta(p)ip) _ D=(t,p)  Otn(p)  S=(l.p)
op :

(iii) de
E.g., we have dp Ip ap 3 op
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i.e., if the consistent initialisation problem is well posed in the sense that the
transition conditions are compatible with the DAE.

Remark 4.6:
In case of ODEs with autonomous and explicit transition conditions [Feeh 98] shows the
coincidence of Eq. (4.24) with the expressions derived in [Roze 67] (see Section 4.1.1,
Eq. (4.3)). O

Similar to the sensitivities of the dynamic initial consistent initialisation prob-
lem at the initial time ¢ = ¢ treated in Section 4.1.4.a above, the sensitivities of
the dynamic consistent initialisation problem at discontinuities can be obtained
in two steps. In the first step, solely the sensitivities of the consistent initiali-
sation problem contained in Egs. (4.23a)—(4.23b) are considered. Differentiation
of Egs. (4.23a)—(4.23b) with respect to the parameters neglecting the parametric
dependency of the switching time gives

oF+ —
:_[0 0o o 3,,] o

Oh, Ohn Oh, Ohn
oz~ Oy~ Ox~ op

Qe

where p and o denote the sensitivities of the consistent initialisation problem. In
the second step, the sensitivities of the dynamic consistent initialisation problem
are obtained from

oFt orFt orFt] [P oF: oFf oFt1 [P
9z @ 9% +| _ |8z @ oz =
ohy O Ohs | |7 | T | one o oh.| |C
ozt dyt aatl | pt ozt oyt axtl |p
+ + + + + !
OFF OFF OF T oOF -
w oy o | |gt|4 |l O 0 0= [ota
oh, Oh, 0Oh, | |Y Ohn  Ohy  Ohy  Ohn | |- ap | -
ozt oyt Bt 2t ot  dx— Oy— ox— >
Xr

(4.25)

Remark 4.7:
If the switching time ¢,, does not depend on the parameters the sensitivities of the consis-
tent initialisation problem and of the dynamic initialisation problem are identical, as can
be seen from Eq. (4.25). ¢

4.2 Multi-Dimensional Switching Functions

In most literature a single, real-valued switching function is considered. How-
ever, in practice it is often desirable to treat a vector of real-valued switching
functions, say, ¢ = q(t,€,p) = [ql,...,qmq]T(t,ﬁ,p), q € Ct (RMtmetne Rma),
q, €Ct (RHnE +"P,R), v =1,...,mq. In such cases usually several independent
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real-valued switching functions are implemented, each of them characterising a
potential modification of a subset of the model equations.

Remark 4.8:
Please note that this type of switching functions differs from the switching functions
introduced in Definition 1.22 (description of hybrid dynamical systems) which mark the
transition to a new dynamical system in the sense that the entire model is replaced by a
new model. O

The determination of the discontinuity must be modified in such a way that
all switching functions q,, v = 1,...,mq, are traced simultaneously during inte-
gration. Without loss of generality assume that in the integration step from t#~!
to t#, tg < th~1 < t* < tg, for the first time some of the switching functions have a
root. The discontinuity is then uniquely determined as the location of the earliest
root

taisc = min {t € [t*,t"] | Iy € {1,...,mq} : q,(t,€(t;p),p) =0},  (4.26)

where £(t; p) is the solution trajectory of the underlying dynamical system.

In the context of optimal control, problems arise at points where several of
the switching functions g,, vanish simultaneously, cf., e.g., [Feeh 98]. Such critical
points indicate a potential change in the sequence of discontinuities, i.e., they mark
the boundary between different realisations of a hybrid dynamical system. Thus
at critical points in the parameter space the parametric sensitivities do not exist
in the general case (see Section 4.2.1 below).

A similar problem can be observed already for a single real-valued switching
function (mg = 1) if the trajectory meets the switching manifold at a touching
point. As above the discontinuity sequence can change for a small variation in the
parameters. But in contrast to the multi-dimensional setting where critical points
are somewhat natural, in the scalar setting such critical points are commonly
regarded as special degenerate cases. Therefore, touching points are in general
excluded by the transversality conditions

dg,
dt t,p

ql/(t’g(t;p)7p):0 :> ¢O7 V:]-a"'amQ' (4'27)

Remark 4.9:
The transversality condition Eq. (4.27) simplifies the procedure of locating discontinuities.
This condition in general allows to detect the presence of discontinuities numerically ad-
vantageously by tracing the signs of the switching functions (for limitations of this method
see the discussion at the end of Section 1.3.2). O

4.2.1 Nonexistence of the Parametric Sensitivities in
the General Case

Here we introduce a counter-example to the existence of parametric sensitivities
in the general case of a multi-dimensional switching function. To this purpose
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consider the ODE-IVP

0:£(t;p)—1; tE[to,tf] = [—1,1],

0= E(toip) + 1, (4.28)

with the solution &(t;p) = t. Additionally, we introduce the two-dimensional
switching function

aten= [00EN] = [75)

The roots of g; and g, along the solution £(¢; p) of Eq. (4.28) are given by

N 1
tl(p) =D, and t2(p) = Epa
with the parametric sensitivities

ot Ots 1

— = —1, and —= = —.

op (p) and 52 (p) = 5

According to rule Eq. (4.26) the switching point is determined as the earliest root,
cf. Eq. (4.26). In the example case the first switching point is characterised by the
C° function

ip; p<o,
taisc(p) :== min {1 (p),t2(P)} =4 0; p=0, (4.29)
—p; p>0.

Consider the point in the parameter space p = 0. The switching point is then
taisc(P) = 0. Although both switching functions g; and g, fulfil the transversality
condition Eq. (4.27) at t = tqisc(P), the parametric sensitivity Otgisc(p)/0p of the
switching time determined by Eq. (4.29) is not defined at p = p.

Remark 4.10:
The example does not fully represent realistic problems as here two different switching
functions govern the same (and only) part of the model equations. However, the sole
intention of this example is to provide a simple case of non-differentiability with respect
to the parameters. O

Remark 4.11:
Consider the simulation tool OPTISIM" which provides the basis of our work. In the
case of purely time dependent switching functions we have often observed that several
switching functions are activated simultaneously during a dynamical simulation. In such
cases the models contain, e.g., several ramp functions with the same fixed duration of the
ramp. On the other hand, we have rarely observed a coinciding change of sign for state
dependent switching functions, cf. Remark 4.13 on page 167. ¢
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4.2.2 Existence of the Parametric Sensitivities in a
Special Case

In spite of the counter-example given in Section 4.2.1 a simultaneous change of
sign in multiple switching functions does not necessarily imply non-existence of
the sensitivity matrices at the discontinuity. In special cases existence of the
parametric sensitivity of the point of discontinuity can be proven, as shown in the
following Theorem 4.1.

Theorem 4.1 (Parametric Sensitivities for Multiple Switching Functions)
Consider the multi-dimensional switching function q(t, &, p) € C* (R'*"¢ Te R™a)
composed of mgq real-valued switching functions g, (t,€,p) € C! (RMmetme R),
v =1,...,mq. Further let there be a sufficiently smooth trajectory & : [t,p] —
£(t;p) € Re.

Assume that for a fixed parameter value p at time t(p) all switching functions
vanish

q,(t(p),€((D);p),p) =0; v =1,...,mg,

and that each one fulfils the sign and transversality conditions q;; < 0, q} > 0,
and dq,, /dt > 0 at this point. By the implicit function theorem the location of the
root for each real-valued switching function q,, v = 1,...,mq, can be described at
least locally around ((p),€(£(p); p),P) by a continuously differentiable function
t,(p) : R*» —» R

Suppose that the following condition holds:

ot1(p)
Op

— — =M\ 4.30
P op ‘i) op Ip (4.30)

Then the multi-dimensional switching function q can be substituted in a neigh-

bourhood of (£(p), &(£(p); P), P) by the continuously differentiable one-dimensional
function

a(t,€,p) =Y _q,(t,€,p).
v=1

Here, the trajectory &(t;p) is to be interpreted as extended smoothly to some
sufficiently long interval [ty, () + dt[ without execution of the discontinuity.

Proof:
By construction, ¢ inherits continuous differentiability from the switching func-
tions gq,, v = 1,...,mq. The function g satisfies the transversality condition

dq,, /dt > 0 by linearity. Also, the sign conditions ¢~ < 0,4" > 0 hold for g, as
otherwise at least one of the switching functions g, must have a change of sign
at a different time than others. In a neighbourhood of p this is not possible due
to Eq. (4.30). Especially, the switching point tqis.(p), defined as the root of g at

(t(p),&(t(D); D), P,) is unique. 0
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Condition Eq. (4.30) is equivalent to

+ 9qy 8¢ | 9qy
Fp eR™ Yy e {l,...mg}: 8”(p)‘A:—[m] =p.
i i(®)

op 3{;1{ gi"'aqy D
Therefore,
[36:1&,,354_ 811] (@),@:_[agg%%"’_a;fy]f(ﬁ), piv=1 @
and
atdlsc(p)‘ B [ggaf,#‘g] o [E’,”ql S Zf,+aqu]
op b oot lipp LS TS ), ’

:_[E%( 55+ %] )] — [(E

dq, 9
: a [65 e+ % D ]
m q, 35 9q,
Z.2 5ot i(5),p

qu [L: Bf_i_a‘h/
v=1 9¢ 9t ot

i(p),p
= p .

v=1 9¢ dt

This means that the real-valued substitute g for the multi-dimensional switching
function g preserves the parametric sensitivity of the switching point.

4.2.3 Problems with Discontinuous Sensitivities in Di-
rect Optimal Control Algorithms

In Section 2.4.2 we have discussed a direct shooting-type optimal control algorithm.
Just to recall, the idea is to transform the variational problem into a nonlinear
programming problem (NLP) by parameterisation of the controls. For every pa-
rameter value of interest the model is integrated numerically. The resulting NLP
can be solved efficiently by SQP methods which are based on the availability of
continuously differentiable first order derivatives of the objective function and of
the point constraints with respect to the parameters. These derivatives are ob-
tained via parametric sensitivities.

One advantage of direct methods is that in principle no a priori knowledge
of switching events is required. In contrast, the user of an indirect optimal con-
trol algorithm (e.g., transformation of the variational problem into a multi-point
boundary value problem (MPBVP) based on the first order necessary conditions
for optimality and solution of the MPBVP with a multiple shooting code (indirect
multiple shooting, cf. Section 2.4.1)) has to provide the switching structure of the
problem, cf., e.g, [BMP 91a], [BMP 91b], [Pesc 94].

However, the discussion in Section 4.2.1 and Section 4.2.2 above shows that
also for direct methods the switching structure can be of importance. This is the
case when a modification of the optimisation parameters (within the admissible
parameter domain) leads to a different switching structure. When the switching
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structure changes, smoothness properties (SQP: local C? differentiability of the
objective function and of the constraints with respect to the optimisation parame-
ters) may not hold. As a consequence a conventional SQP optimisation algorithm
may have difficulties in finding a solution of the optimisation problem.

Due to its inherent combinatorial nature the adequate form of the optimisation
problem in this setting may be a mixed-integer nonlinear programming problem
(MINLP) [Feeh 98]. This is the natural extension of the NLP obtained by the
control parameterisation approach when control parameterisation is applied to
hybrid dynamical systems described in Definition 1.22. However, mixed-integer
dynamic optimisation (MIDO) introduces an additional order of complexity which
makes its direct application to our class of optimal control problems difficult.

As a possible approach in the context of batch process optimisation [Allg 97]
proposes simplified screening models in order to obtain numerically cheap initial
bounds for the various scenarios. Another method employed by [Stry 00], [StG1 01]
is to introduce a continuous relaxation of the MIDO.

4.3 Two Tailored Algorithms for the Sensi-
tivity Transfer Across Discontinuities

4.3.1 Problem Setting

In the sequel two algorithms for the sensitivity transfer in parameter dependent,
discontinuous, and large-scale semi-explicit index-2 DAEs of the form

0=fn(t,z(t;p),y(t;p),p) —&(t;p), L€ [ta1,tn], n=1,2,...,  (4.31a)

0= g,(t,z(t;p),y(t;p),p), (4.31b)
withz € R'=, y € R', p € R, f, : RI*M= tnutno  RNe and g, : RUnetmutnp
R™ are developed. These systems are similar to the DAEs already discussed in

Section 3.2. Each switching point ¢,, i.e., each transition from model n to model
n+1,n=1,2,..., is indicated by the root of a switching function

0= qn(tnam_(tn;p)ay_(tn;p)ap) ) (4'32)

g, € C' (R'Fm=*mutne R), where & (tn;p) = limy q, z(t;p) and y~ (tn;p) =
lim; »~;, y(;p). The initial time ¢y is considered to be fixed. At ¢ =ty the initial
conditions are given by

0 = ho(to, x(to; ), y(to; ), (to; P), P) » (4.33)

ho € C! (RiFnetnytnatne Rraai(0)). nyqe(0) is the number of dynamic degrees of
freedom of the model DAE at ¢t = tg'. At t =t,, n = 1,2,..., the models are
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connected by transition conditions

0= hn(tna "B+(tn;p)’ y+(tn;p)a ".B+(tn;p)a iB_(tn;p), Yy (tn;p)a d7_(tn;p),p) )
(4.34)

h, € C! (RHQ("m +”y+"m)+”P,R"ddf(")), where for each variable z € {x,y, &} the
values at the discontinuity from the left hand side and from right hand side
are (again) defined by the limits 2~ (tn;p) = limy », 2(¢;p), and 27 (t,;p) =
limy 4, 2(¢;p). naar(n), n = 1,2,..., denotes the number of dynamic degrees of
freedom at ¢ = ¢

In OPTISIM" the transition conditions Eq. (4.34) are not an explicitly formu-
lated part of the simulation problem. Instead, the user relies on the BDF integrator
to “determine” the transition conditions, without any means for external interfer-
ence (cf. Section 3.1.10). In our first algorithm for the computation of sensitivities
in discontinuous models presented in Section 4.3.2 we keep this paradigm. The
algorithm extends the numerical differentiation approach of [ErAr 98] discussed in
Section 4.1.3 by employing back-tracing as a means to evaluate the jump function.

In our second algorithm developed in Section 4.3.3 we compute the sensitivities
of the dynamic consistent initialisation problem adapting the results of [Feeh 98],
[GaBa 98], and [GFB 99] discussed in Section 4.1.4. In order to set up the consis-
tent initialisation problem we employ our hybrid consistent initialisation algorithm
introduced in Section 3.2. This algorithm automatically generates an adequate set
of explicit transition conditions.

Remark 4.12:
In general, OPTISIM" uses initial conditions of the type @(to) = 0 in order to start an
integration. However, for a typical dynamical model Egs. (4.31a)—(4.31b) the system

0 = f,(to, z(to; ), y(to; ), ) — 0,
0 = g4 (to, 2(to; P), y(to; P), P) ,

does not possess a well-defined solution due to the presence of pure integrators, e.g., the
hold-up in a flash drum, cf. Example 3 on page 30. Therefore the initial values are
determined by a modified steady-state model.

As a simple example consider the ODE 0 = &(¢;p) — p, ¢ € R, p € R, which in the
steady-state model may be replaced by the algebraic equation 0 = x(to; p) — ®o(to; P)-
On the one hand this setting provides the required initial value, on the other hand it also
allows for a start with a nonzero initial slope when p # 0. In order to obtain correct results
this means that we have to perform consistent initialisation at ¢ = to with explicit initial
conditions Eq. (4.33) where the subset of the differential variables which is chosen as the
dynamic degrees of freedom are assigned their values from the steady-state calculation. ¢

4.3.2 Sensitivity Transfer Using Back-Tracing

In Section 3.1.10 we have briefly discussed back-tracing as a method for the gen-
eration of numerically consistent initial conditions

& tnip) = 7o) and € (tin) = [
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starting from

Clam =[] om =[]

The back-tracing method has been introduced in the context of linear DAEs. As
far as we know currently no theoretical result is available establishing convergence
of the back-tracing method applied to nonlinear semi-explicit index-2 DAEs. How-
ever, at the current state of our research we can provide some numerical results.

Back-tracing provides an algorithm for the approximation of numerically con-
sistent initial conditions. The explicit form of the jump functions is not revealed.
Therefore, we assume the functional dependencies

= Xo(tn, & (tn;p), € (tn;P), D), (4.35a)

P X1(tn, € (tn;p), € (tn;P). D), (4.35b)

£+ (t’nap) = XO(tasaéap)
._|_(

3

tn P

tnap) = Xl(tagaéap)

for the jump functions, where x((-) and x;(-) are defined as the results of the
back-tracing method for the state variables, and for the first order derivatives of
the state variables with respect to time, respectively, cf. Section 3.1.10. The rela-
tions Eqgs. (4.35a)—(4.35b) have been derived from the properties of the numerical
integration algorithm employed. The point is that after each discontinuity the
variable-order BDF method is restarted with lowest order one (i.e., implicit Euler)
in order to drop inaccurate higher order derivative information.

Following Section 4.1.4.b we split the sensitivity computation for the consis-
tent initialisation problem into a pure initialisation part (neglecting 0t,/0p), and
a dynamic initialisation part (taking into account dt,/0p). Then on the one hand
starting from Eqgs. (4.35a)-(4.35b) the sensitivities for the solution of the initiali-
sation problem based on back-tracing are given by

. Oxo0¢ Oxp 0 Ixo ~  Ox, 06 Ox 08 Oxy

o= ~° + , and w= 5= — + )

o0&~ Op oé op op o0&~ Op o¢ op op
(4.36)

while on the other hand differentiation of Egs. (4.35a)—(4.35b) with respect to the
parameters under consideration of the parametric dependency of the switching
time t,, gives the sensitivities of the dynamic initialisation problem

06 ot 0" _

ot Op op
CEUTE T S Y K
ot O0p 0¢& | Ot 0p Op a¢” | 0t Op  Op Op ’
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-+ .+
o¢ ot, 0
£ ot | 0€" _

ot Op Op
Ox1 0tn | Ox:1 [0€ Otn 85] Ox [0€ 0tn  O€ | Oxi
ot Oop 0¢ | Ot Op Op o¢” | 0t op = Op op -~

After reordering of the latter equations and application of Eq. (4.36) we obtain

oMo dup Dupllg

= - :$+ - %] g—i’:Jra, (4.37a)
o= e Gu - due - 2ug| Se

=- :§+ - %] %—2+5, (4.37b)

as expressions for the sensitivity transfer at discontinuities using back-tracing.

4.3.2.a Back-Tracing and Numerical Differentiation of the Jump
Function

As basis for our algorithm the technique presented in Section 4.1.3.a is employed.
The main extension is in the utilisation of back-tracing in order to evaluate the
jump function, together with formulae Eqgs. (4.37a)—(4.37b) for the sensitivity
transfer. Additionally, in the handling of a multi-dimensional switching function
the special case discussed in Section 4.2.2 is considered. The result is given in the
subsequent Algorithm 10.

Note that in Algorithm 10 the time of the discontinuity is denoted as tgjsc
instead of t,, as a vector of real-valued switching functions is to be treated instead
of a single specific switching function g,,. Additionally, we identify g(¢,&,p) :=
[q17 T aqmq]T(tagap) with Q(t, , yap) = [qla s 7qmq]T(t’ z, yap)’ where Mg is
the number of switching functions in the model exhibiting a root at ¢ = tgisc. L-e.,
in the notation of Algorithm 10 g only contains active switching functions. In
general, mg and the subset of all switching functions in the model which change
their sign usually differ from one switching point to another.

Algorithm 10 (Sensitivities after Discontinuities)
(i) Approximate the derivatives of the switching functions q,, p = 1,...,mq,
with respect to time t by forward difference approximation:

(a) Determine the disturbances for the finite difference approximation

€t := Atpin (minimum integrator step size),
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>0,

e {ym Gl e

0; otherwise.

(b) Apply the finite difference approximations

[@] . |:q(td1'sc + €, E_ap) — q(tdiscaé-_ap)]

ot €t
@ ag— - q(tdisc; 6_ + €¢ - é_ap) - q(tdiSC7 E_ap)
0¢ ot €g
(ii) For each parameter p,, v = 1,...,np, execute:
(1) Approximate the derivatives of the switching functionsq,, , u = 1,...,mgq,

with respect to parameter p,, by forward difference approximation.

(a) Determine the disturbance for the finite difference approximation

v, = Vemaan - (1+ || [€72][[) /[| w0, 1] -

(b) Apply the finite difference approximation

dq0¢  9q) .
ot dp,  9p,]
[q (tdisca &+ €p, * [wi]u,p + 61),,61/) —-q (tdisca 5_,p)
€p,

(2) Approximate the derivative of the switching time tg;sc with respect to
parameter p,, and check for the special case.

(a) Approximate the (possibly different) derivatives of t4isc with respect
to parameter p, as determined by each of the switching functions

q;u,u:la"'amq

0a, 06~ , 0a,
5 1= _ | 289,  9p,
[pV,N] . aq”’ 8&— aﬂ

JE ot at

p:l,...,mq

(A vanishing denominator indicates that a switching function vio-
lates the transversality condition. In this case exit with an error.)

(b) If mgq =1 then goto iii.
(c¢) Compute the arithmetic mean over all derivatives obtained in step

ii(2)a
1
Py = —— Z Pop -
Mq p=1
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(d) If all derivatives p,,, pp = 1,...,mq, are close enough to p, then
assume that the special case is detected. Otherwise, terminate with
an error:

If 3pe{l,...,mq}: (|pvu — pv| > RTOL - |p,| + ATOL)) then
exit(cannot compute sensitivities!).
]T

(iii) Determine the second order time derivative € := [[&~ 1T

of~1.  [of~ of . of .
[%]m __[at T s T Ty Y |

Y~ :=0 (see the discussion in Section 4.3.2.b below).

[y by

(iv) Switch the model equations, i.e., perform the transition from t g . to tjjsc.

(v) Approximate the total time derivative of the jump function (respectively, of
the back-tracing functions). Additionally, compute numerically consistent
initial values by back-tracing as well as the corresponding sensitivities of the
initialisation problem.

(1) Determine the disturbances for the finite difference approximation

€t := Atmin,

65::{«%-<1+||s—||>/usu; e
0; otherwise,

o [ DL o
0; otherwise.

(2) Compute the back-tracing function x =[x, x17]" starting from undis-
turbed as well as from disturbed initial values

(a) undisturbed: X (tdisc 5_,5_,p) )

(b) disturbed int: X(tgisc + €, €, € D) ,

(c) disturbed in €™ : X (tqisc, & + €¢ - é_aé_ap) )
(d) disturbed in & : x(tgisc, €, € + € £ .p) -

In order to obtain the sensitivities of the initialisation problem activate
the integration of the sensitivity equations during step v(2)a and set

- ax
i _ [3_X]
w [Z_);l t(fsc_ag ap tdisc.’p

I

’
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(3) Apply finite difference approximations in order to approximate the di-
rectional derivatives of the back-tracing function

a_X- . -X(tdisc‘l'etag_aé_ap) _X(tdiswg_aé_ap)
8t i N i €t ’
|:8_X'_— . -X(tdiscagi +6§ 'é_aé_ap) _X(tdiscagiaé_ap)
o¢ = 1 | 2 ’
B_X--f_ - -X(tdiscag_aé_ + €¢ - é_ap) - X(tdiscag_aé_ap)
o€ | %

(4) Calculate the total time derivative of the back-tracing functions

3]-80- [ e e

e dt 85’ 35

(vi) Determine the second order time derivative é+ = [T, (GN)T)T by
0F 1., [oft oft . oft .
[8ab]m __[Bt Tt Ty ¥ |

gt :=0 (see the discussion in Section 4.3.2.b below).

(vii) For each parameter p,,, v =1,...,nyp, calculate the corresponding corrected
column of the sensitivity matrices according to Egs. (4.37a)—(4.37b)

@], == ¢ - 2] -+ @1,
=[-8 e,

Remark 4.13:
The additional computational effort required to handle the special case of more than one
active real-valued switching function in steps ii(2)c and ii(2)d is small. On the other
hand, the conditions for the activation of this feature are rather restrictive. However, we
required the additional logic in the context of state dependent discontinuities for a model
where during an earlier stage of development of the flowsheet two nearly identical parts of
the plant were present (due to “copy and paste”). See also Remark 4.11 on page 158. ¢

4.3.2.b Discussion of the Method

A weak point in Algorithm 10 is the assignment of the second order derivatives
4~ and ¢ in steps iii and vi. A better estimate for ¢~ is available if the BDF-
integrator had chosen at least order 2 for the integration step during which the
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discontinuity occurs. Similarly, a more reliable value for 4T is available if at least
order 2 is achieved in the last backward integration step made in order to compute
the undisturbed back-tracing function x(¢,, €, £, p) in v(2)a.

Remark 4.14:
Strictly speaking the latter is equivalent to the introduction of a third back-tracing function

X which gives £+ (tn; D) := Xo(t, &, €, p)‘ . Xy was not explicitly used in Algorithm 10

n P
as its availability is strongly dependent on the actual integration history. Though it may
be used as an optional feature in case of a sufficiently high local order of the integrator. ¢

The error in E+ can be neglected as it only affects 9y*/0p in step vii. This
has no effect on the further evolution of w(; p) as &Y' /0p is not required for the

integration of the sensitivity equations. A deviation in 5 ~ is more severe as £ is
used in order to approximate [0x,/0¢ ]¢ in step v3 and thus enters wt and w™
in step vii via the approximation of dx/dt in step v4.

In our numerical tests the back-tracing based method for the computation
of sensitivities after discontinuities has shown deficits in robustness, especially
when applied to non-trivial problems from chemical engineering. In case of failure
mainly the forward and backward integration phases of the disturbed problems
v(2)b — v(2)d required for the numerical differentiation of the jump functions
could not be performed. In some cases failure of the integrator already occurred
in the evaluation of the undisturbed jump function, cf. the numerical tests of our
algorithms for computation of consistent initial conditions summarised in Section
6.2. We see at least two possible explanations for this behaviour:

1. In the context of models for processes from chemical engineering disturbing
the state variables can severely harm computations regarding physical prop-
erties based on underlying root-finding methods. Moreover, the disturbed
trajectories may head into regions of the state space which have no physical
significance. In such regions the physical models loose their validity, or they
may even fail.

2. By backward integration error contributions may get dominant which are
damped during forward integration.

4.3.3 Sensitivity Transfer in the Index-2 Consistent
Initialisation Problem

In Section 3.2 we have developed an algorithm for the consistent initialisation of
semi-explicit index-2 DAE systems. The point in time ¢ of consistent initialisation
was not specified in closer detail as consistent initialisation may be performed
at any fixed but otherwise arbitrary time ¢ within the integration horizon, given
corresponding transition conditions.

We now assume that our algorithm introduced in Section 3.2 has been executed
successfully, i.e., given the semi-explicit index-2 system Eqgs. (4.31a)—(4.31b), and
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the time of a discontinuity ¢ := t, fixed by the switching function Eq. (4.32) re-
duced derivative array equations have been generated (cf. Egs. (3.36a)—(3.36d))()

= }'n (ta‘%aga‘%aéap)a (4388.)
= g:(t,i,@,i,p), (4.38b)
0 = .§$(t,a~3,§!,P)a (438(})
d_, .
0= &S:(t,w,z,p)
~+ ~1 . —t .
= a;f (t,z,2,p) + 8;; (t,&,z,p)-= + 6;2” (t,&,2,p) %, (4.38d)

with ]": : Rine tngtnztnetne _ Ry gt RiAnatngtnztne , RMs and 3} :
RItra+n:4np 3 RMs and the transition (or initial) conditions Eq. (3.57)

k}?l(ﬁ}H (tn)ag;(g(u) (tn)) = :E}u (tn) - 6;(5(10 (tn) =0;pu=1,... anddf(n) .

(4.39)

The transition conditions will be denoted as hy, (&1, 2=, y~), hy, : Rtetnatny _,
R"4dt(")  The implicit notation for the original differential part of the DAE Eq. (4.38a)
has only been chosen for convenience. Whenever appropriate, however, we exploit
the special semi-explicit structure of our class of DAEs Egs. (4.31a)—-(4.31b) where
Eq. (4.38a) is explicit in Z.

The solution of the reduced system of consistency equations Eqs. (4.38a)—
(4.38d), Eq. (4.39) gives the consistent initial conditions at ¢, for a fixed value of
the vector of parameters p:

(tn(p); D)
3 (tn(p); P)
EX(tn(p);p) = |2 (ta(P)iP) | - (4.40)
(tn(p); D)
(tn(p); P)

4.3.3.a The Index-1 System and Higher Order State Derivatives
According to the information obtained from Pantelides’ Algorithm an index-1 sys-

tem can be generated from the index-2 DAE Egs. (4.31a)—(4.31b) by replacing the
equations 3+ with their total time derivatives d3;' /dt, i.e., by dropping Eq. (4.38c)

(iv)We stick to the notation introduced in Section 3.2, in combination with the notational

. . . . Tt .
conveniences that have been used in the preceeding sections, e.g., f,, (-) := limyy, frp1()-
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from the reduced derivative array equations Egs. (4.38a)—(4.38d):

0=F,(t&5 2% 20p) (4.41)

Il
Q
3
=~

8
@
&

J z o5t ~ o~ 5
a—tn(ta"n,zap) + a—g(t’w,zap)'w + %(t,w,z,p)-z

If a rank condition similar to Eq. (4.19) is valid at the consistent point [t}, =1, p]
-t
rank ([ a%"

the higher order time derivatives 7, 21, and §* can be obtained from (cf.
Eq. (4.20))

oFt  oF) ]
o 0z lgzvy

(%

):(n@—l—ng)—l—ng:nm—i—ny,

=t =+ =+ =+ =+ =+ =+
AFT  oFT. oF . oF . oF' . oF . oF
0= 4Fn _ OF, - nz n 3 nz 3 n 4.42
@ ozt ¥tz T T Tt o (442)
- aF:;+aF:é aﬁ::__aﬁzi_aﬁ*:%_aﬁj
g 7" oz oz ° oz 0% ot
or, in detail,
oFt of+ of aFt
ag:+ ol = — oG+ dg+ T _ ag
o [ o | 8= [m] (] |2 [
ol e sl L
oz 0z ox dt 0z dt ot dt

All Jacobians are evaluated at [t =T, p|, cf. Eq. (4.40).

4.3.3.b Parametric Sensitivity of the Time of Discontinuity

Additionally, the sensitivity of the switching time ¢, = ¢,(p) with respect to the
parameters p is required. It is obtained by total differentiation of the switching
condition Eq. (4.32) with respect to the parameters:

09, | 9qy »— | 9qy o —| |Otu| — _ |09y ,— , 94y —— | Oq,
[#*ﬁm+#'ﬂw— Ba P Ty T ep |

under the transversality condition

dq; aq;,, oq, - — oq, - —
at = [+ 9o+ 3y ] £0.

Remark 4.15:
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The parametric sensitivity of the switching time is based on the active switching function(s)
evaluated before the discontinuity is executed. O

In our case the Jacobians of the switching functions are not available in explicit
form. Therefore, the Jacobians are numerically approximated by finite differences
as in steps i, iil, and ii2 of Algorithm 10 in Section 4.3.2.a.

4.3.3.c Sensitivity Transfer

The consistent initial conditions after the discontinuity are obtained by solving the
reduced system of consistency equations Egs. (4.38a)—(4.38d), Eq. (4.39). Thus
the corresponding system describing the sensitivity transfer across the disconti-
nuity can be obtained by total differentiation of Eqs. (4.38a)—(4.38d), Eq. (4.39)
with respect to the parameters p. With the Jacobian of the reduced system of
consistency equations (cf. Eq. (3.37))

[ [ors| [orl] [or: ]
5] (%) (%] . o
foar] [oat]  T[oar
B %] (%] o o
M .= | [95f st
3 0 [Fz&] 0 0 |-
[i_i] 0 [@ji] [3_82] [3_8&]
ox dt o0z dt oz Z
Ohy,
L _a~+ 0 0 0 = tz;é+7p
the sensitivity matrices p*, 6™, 71, i)"’, and 71 on the right hand side of the

discontinuity are determined by the linear system of equations

( 3 -

p* it " 3f’
] L %]
o ) at op
M- |77 =—{ M- 27| + | ozt X [%{:]— 95,
Ht Gt o op
- = 5 d&ft 9 daf
o zt [m at ] [%T]
\ - 0 = t;t;é+’p) - 0 = t;t5é+ap
. 0
0 0
— Oty | Oz~
— 0 0 [m op T op (4.43)
— Oty + oy~ )
0 0 Y o T op
[6hn] [ahn]
- oz ay7 = tn aé P
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After reordering of the terms on the right hand side it can be seen that Eq. (4.43)
exactly corresponds to Eq. (4.24) already encountered in the review of the results
of [Feeh 98] in Section 4.1.4.

Eq. (4.43) can be further simplified. For this purpose we utilise that the ex-
pression within the curly braces {-} is by rows equivalent to

d . ~ ~ ~ 3
&f;f(t, A TANEANE A OF (4.44a)

Ao\

i ZICEARN AN OF (4.44D)
Sarat 2 ), (4.440)
d2
A CEANER OF (4.44d)

Ohn] .
[3wz] [#7]- (4.44¢)

Due to the consistency of the states (collected in =) 43" (Eq. (4.44c)) is zero.
Furthermore, 2+ are a consistent state of the index-1 DAE Eq. (4.41) at ¢} for the
fixed value of the vector of parameters p. Thus application of the same argument as
in Eq. (4.20) to Eq. (4.42) gives that the total time derivative dﬁ‘:/dt is zero, i.e.,
%}: (Eq. (4.44a)), 4.5 (Eq. (4.44b)), and %é;: (Eq. (4.44d)) vanish. Inserting
these relations Eq. (4.43) can be reduced to

_ [a”*] -
. op
P - 0
ot [3—1’}] 0
M- |7 =- [asjg] -1 0 |, (4.45)
i)+ 8p~+ 0
7+ [%dLg] Ady,
- 0 =

where A@ € Rdat(m)*np ig defined as
. [0Ohy .4 Oty
A = [3w+] [m Op

oh,1 [. 0Ot, Oz~ oh,]1 [._0t, Oy
- [393] ' [m op * op ] [ay] ' [y op + Bp] - (4.46)

Again, all partial derivatives are evaluated at [t}, 2T, p).

An advantage of the newly derived system Eq. (4.45) over Eq. (4.43) as pro-
posed in [Feeh 98] (see_ Section 4.1.4) is that the higher order time derivatives of

the state variables Z, ¥, and z are no longer required. Especially, the solution of
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the index-1 system Eq. (4.41) for these values is unnecessary when the transition
of the sensitivities is performed according to Eq. (4.45).

4.3.3.d Consistency of Transferred Sensitivities

The sensitivity equations

[ 0 o .
0= |Le] psp + |2 ] ottim) + |2L2] - bium),
t € [th—1,tn],n=1,2,..., (4.473a)
[0 o o
0= _%] p(t;p) + [aiy"] o(t;p) + [aip"] : (4.47b)

of the DAE Egs. (4.31a)—(4.31b) constitute a DAE again, see Section 1.4. This
motivates the question for the consistency of the transferred sensitivities p*, 67,

7+, pt, and 71 with the sensitivity DAE after a discontinuity.

The Jacobian of the sensitivity DAE Egs. (4.47a)—(4.47b) with respect to o
and p, i.e., with respect to the highest order time derivatives present

%) .
%] o

is identical to the corresponding matrix of the original DAE obtained by differ-
entiation of Eqs. (4.31a)—(4.31b) with respect to y and @. Thus, the sensitivity
DAE inherits the structural properties of the original DAE. I.e., Pantelides’ Algo-
rithm (Section 3.1.5) applied to the sensitivity DAE Egs. (4.47a)—(4.47b) returns
the same index, the same number of dynamic degrees of freedom, the same set of
equations to be differentiated in order to achieve index reduction, and the corre-
sponding partitioning of the algebraic sensitivities as when applied to the structural
analysis of the DAE Egs. (4.31a)—(4.31b). Additionally, the possible sets of sen-
sitivities that can be assigned as dynamic degrees of freedom is equivalent to the
sets of dynamic degrees of freedom for the state variables. Altogether, at ¢t = ¢,
the reduced derivative array equations of the sensitivity DAE Egs. (4.47a)—(4.47b)
associated to the DAE Eqgs. (4.31a)—(4.31b) can be set up as

Mot ~+ -t ~t
_ a.fn ~+ 8fn ~+ a.fn ~+ 8fn =+
0= ¥ra ] pr+ [—8@ o+ 5 |7 + op P, (4.482a)
[Oat . ag+ . oat . oat
— | 2 —Jn —Jn —Jn 4.48b
o-[Gle+ G (5 5] ()
(055 .. 051 ..  [08)
— n ~ n -~ n .4
0 _Oﬁz]p +{62]T +[8p]’ (4.48¢)
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057 .. [085] ., [0

oz 1P Tz |7 T op

[odsf]., [0dsf]., [051., [085]-, [0 ds

‘[_ ]” +[£W]T +[%]” *[E]T *[%W]'
(4.48d)

Furthermore, the subset of the sensitivities p* can be assigned as dynamic degrees
of freedom which corresponds to the differential states that are assigned as dynamic
degrees of freedom for the original DAE. As transition conditions we choose

0= [8”"] : |::b+%+ﬁ+:|

ozt Oop
oh ._ Ot ox~ Oh ._ Ot oy~
Ox op op dy ap Op
Ohn | -4 -
[8a:+:| p=-Aw,. (4.49)
Remark 4.16:

The matrix [g’m‘ﬂ € Rmaar(?) % ng has by construction of h,, full row rank ngge(n). Le.,
ngat(n) components in each column of p* are determined by Eq. (4.49). 0

The reduced system of consistency equations for the sensitivities Eqs. (4.48a)—
(4.48d), Eq. (4.49) can then be written as

@LQ",
SR
| I

]

+

QO
Q)
8
P
I
|

=l
1
D
Q:
S+

Ve
+ +
+
Q
i)

0
0
0 |, (4.50)
0
@

A

n

+
| —}
Q)
Sl
als
| I

L 0 e,

which is the same as Eq. (4.45). Therefore we conclude that Eq. (4.45) describing
the transfer of sensitivities at discontinuities enforces consistency in the sensitivi-
ties.

In consideration of this property the (relatively small) step from Eq. (4.43) to
Eq. (4.45) may be important from a numerical point of view, as due to round-
off errors arising from Leimkuhler’s approximation to d3*/d¢ perturbations are
introduced to the right hand side of Eq. (4.43). Thus the numerical values for the
sensitivities pt, &1, #1, pt, and 71 obtained by the solution of Eq. (4.43) may
not be consistent with the sensitivity equations for the underlying DAE model.

Remark 4.17:

A comparison of the transition conditions Eq. (4.49) with the results of [Roze 67] discussed
in Section 4.1.1, especially in the reordered form Eq. (4.5), shows that Eq. (4.45) derived
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for the DAE case is equivalent to the formulae valid in the ODE case. This result on the
compatibility of the formulae for the sensitivity transfer in DAEs with the ODE case has
also been obtained by [Feeh 98] (see Section 4.1.4).

In detail, the restriction of the transition conditions to continuity in a subset of the
differential states Eq. (4.39) is mirrored in the transfer of the sensitivities of the differential
states Eq. (4.49) equivalent to the formulae for ODE case under a continuity condition on
the state variables. The main difference between ODE and DAE is that in the DAE case
the remaining sensitivities are determined by the consistency conditions for the sensitivity
DAE. O
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Chapter 5

Software Engineering

There are two ways to write error-free programs.
Only the third one works.

FORTUNE cookie

In the previous chapters we have presented our investigations regarding model
predictive control of large-scale systems, and consistent initialisation and transfer
of sensitivities for discontinuous semi-explicit index-2 DAEs primarily originating
from chemical engineering problems.

Based on these investigations we have implemented our fast update method
for disturbance rejection of open-loop controls aiming at preserving feasibility of
the system dynamics (cf. Section 2.6.2). Further, we have implemented the back-
tracing method (cf. Section 3.1.10) and the hybrid technique (cf. Section 3.2)
for consistent initialisation. Finally, we have implemented the algorithms for the
correction of parametric sensitivities after discontinuities (cf. Section 4.3.2 and
Section 4.3.3) corresponding to the two different methods for the computation of
consistent initial conditions. All algorithms have been integrated in the in-house
simulation and optimisation tool OPTISIM" [Burr 93] of the Linde AG, Linde
Engineering Division.

In the following sections the implementation of the algorithms is discussed,
starting from the direct single shooting algorithm for the computation of open-loop
parameterised optimal controls as the root of the work presented in this treatise.
The main algorithms are depicted in flowcharts. A shaded item in a flowchart is
explained in greater detail by a subordinate flowchart. If a flowchart is directly
derived from another flowchart modifications are indicated by boldly lined items.

5.1 Direct Single Shooting Algorithm

Figure 5.1 depicts the main components of our direct single shooting algorithm
as described in Section 2.4.2. We have integrated most of these components into
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[ object handlerj

A4

object

pure
sensitivity analysis
requested ?

Y \i

discretise optimal control problem sensitipvr@aar\ﬁalysis
parameter | | optimal | |
identification control
N S 4
solve solve general nonlinear
quadratic NLP: constrained NLP:
\NLSSOL, LSQFDN, ... NPSOL, SNOPT
[ |
\ 4 ¢ Y
calculate calculate calculate
objective/ constraints/ objective/
gradients gradients gradients
\ 4 Y Y \4
initialise integration / sensitivity analysis

'

integrator

1
i calculation of sensitivities (IND) :

Figure 5.1: Flowchart for direct single shooting algorithm. For a flowchart of the
integrator see Figure 5.2 (with sensitivity analysis) and Figure 5.3
(discontinuity treatment).

the simulation and optimisation tool OPTISIM" (cf. Section 2.2) within a previ-
ous project [Kron 98], [EKKS 99]. This thesis basically extends this direct single
shooting algorithm with respect to the computation of closed-loop controls (see
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Section 2.6), and with respect to the treatment of discontinuities in both simula-
tion (by back-tracing, cf. Section 3.1.10, and solution of the reduced consistency
equations, cf. Section 3.2) and parametric sensitivity analysis (cf. Section 4.3).

OPTISIM" is designed according to the object oriented programming paradigm
[BMS 94]. Therefore, our algorithm starts when the object for the computation
of parameterised optimal controls is invoked by the OPTISIM" object request
broker.

If only parametric sensitivity analysis is requested then the integration of the
sensitivity functions by the IND algorithm is started immediately. Otherwise,
an optimisation problem is derived from the given optimal control problem by pa-
rameterisation of the controls and discretisation of the path inequality constraints,
cf. Section 2.4.2. The user specified options and parameters for the optimisation
algorithms are set, and the specified optimiser is started.

The optimisation algorithms require evaluation of the objective function and
of the point constraints (i.e., of the sampled path constraints) for fixed values of
the vector of optimisation parameters, as well as of the respective gradients(®).
In both cases the model DAE has to be integrated numerically. The gradients
are obtained from the parametric sensitivity functions. These sensitivities are
calculated simultaneously with the integration of the model DAE by IND, cf. the
subsequent Section 5.2.

The basic implementation developed in [Kron 98] contained interfaces to the
SQP algorithms NPSOL and NLSSOL. In the course of our recent work we have
implemented interfaces to additional optimisation algorithms as listed in Table
5.1. The basic reason for extending the repertory of optimisers is that different
algorithms work differently on the optimisation problems to be solved. Thus, on
the one hand, if an algorithm fails for an optimisation problem the solution may
be found by another one. On the other hand, [GMW 95] recommend to confirm
the result from one optimisation algorithm by solving the same problem with a
second one.

The optimisers can be classified into algorithms for the solution of general NLPs
(NPSOL ([NAG 94b], [GMSW 98]), SNOPT ([GMS 97a], [GMS 97b]), EO4CCF
(INAG 94a])), and algorithms designed for the solution of optimisation prob-
lems with a quadratic objective (LSQFDN ([GiMu 78], [NAG 94a]), LSQFDQ
([GiMu 78], [NAG 94a]), NLSSOL ([NAG 94c](), VA07 ([AEA 93])). The latter
type of optimisers is restricted to parameter estimation problems, while the former
can be used for general optimal control problems. The second major characteris-
tics is whether an optimisation algorithm is suitable for constrained optimisation,

M Tn contrast to all other optimisers mentioned below the simplex algorithm (E04CCF)
does not utilise derivative information. However, due to performance issues it is intended
for test purposes only.

(i) With Mark 17 of the NAG" Fortran Library EO4UPF has been superseded. EO4UNF
has been recommended as replacement.
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Table 5.1: Optimisation algorithms accessible for the solution of a discretised op-
timal control problem.

‘ routine ‘ Src. ‘ alias ‘ algorithm type ‘ application
SNOPT S SNOPT | general SQP (sparse) general constr. NLP
E04GBF N | LSQFDQ quasi GauB-Newton unconstr. least-squares
E04GDF N | LSQFDN | modified Gau-Newton | unconstr. least-squares
E04UCF | N | NPSOL general SQP (dense) general constr. NLP
E0O4UNF | N | NLSSOL special SQP (dense) constr. least-squares

(E0O4UPF) | N | NLSSOL
E04CCF N simplex general unconstr. NLP
VAQ7 H modified Marquardt unconstr. least-squares

source (src.): H: Harwell Subroutine Library, N: NAG" Fortran Library,
S: Stanford Business Software Inc. SOL Optimization Software

or whether it is limited to unconstrained optimisation problems. We have found
that the unavailability of a means to specify bounds at least for the optimisation
variables by simple box constraints severely limits the applicability of an optimiser
to our real-world parameter identification problems, cf. Section 6.3.2. Moreover,
constraints constitute an important ingredient in our class of optimal control prob-
lems from industrial application, cf., e.g., Section 6.3.5.

SNOPT has proven exceptionally suitable for the solution of optimisation
problems arising from the calculation of open-loop optimal load-changes for cryo-
genic air separation plants, see Section 2.1.1, Section 2.1.2, Section 6.3.5, and
Section 6.3.6. Its key capabilities are an extended feasibility phase and robustness
against failures in the evaluation of objective, constraints, and gradients. In our
load-change problems the initial guess for the optimisation parameters is in general
infeasible. Here the feasibility phase provides a powerful means for the detection
of a set of optimisation variables such that the nonlinear constraints are not vio-
lated. Robustness of the optimiser against failures to provide requested data is the
second important feature of SNOPT. This special robustness is required as due to
the high nonlinearity and complex structure of the models success of an integra-
tion and of the computation of sensitivity functions cannot be guaranteed for all
possible sets of optimisation variables even if the space of optimisation variables
has been reasonably bounded a priori, e.g., according to physical reasons.

5.2 Internal Numerical Differentiation

In Section 2.4.3.b internal numerical differentiation has been discussed. As we
have seen, IND constitutes an efficient and reliable technique for the computation
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of sensitivity functions for parameter dependent DAE-IVPs. Additionally, within
Section 2.4.3.b the relevant formulae for fixed leading-coefficient BDF integrators
applied to semi-explicit index-2 DAEs have been derived.

In the staggered direct method the major effort for the integration of the sen-
sitivity equations is in the solution of the linear corrector system Eq. (2.12). This
linear system has to be solved directly after an integration step for the state vari-
ables has been finished. In case of large-scale DAE models with a sparse Jacobian
the system matrix of these linear corrector systems is also large and sparse. If a
direct linear solver is employed, e.g., MA48 ([AEA 93], [DuRe 96]), the numer-
ically most expensive steps in the solution of a linear system of equations are
the analysis of the structure of the system matrix and, based on this informa-
tion, its LU-decomposition. The final forward and backward substitution steps
are relatively cheap. From the integration of the state variable trajectories the
LU-decomposition of the system matrix of the Newton system for the nonlinear
corrector equations Eq. (2.11) is readily available. However, due to performance
issues the Newton iteration is in general implemented as a quasi-Newton method
with the system matrix fixed as long as possible. Thus the matrix available from
the integration of the model DAE is in general not identical to the system matrix
required for the integration of the sensitivity DAE, i.e., the LU-decomposition it-
self cannot be reused. But at least numerically expensive information about the
formation of the LU-decomposition of the system matrix of the sensitivity DAE
can be taken from above.

Figure 5.2 shows the major extensions of the BDF integrator in OPTISTM"
required for the implementation of the staggered direct method. If the sensitivities
are to be integrated without truncation error control the modifications in the orig-
inal BDF code can be reduced to a small number of calls to auxiliary subroutines.
The flow of information is then unidirectional from the main BDF integrator to
the subroutines regarding the integration of the sensitivities.

In case of truncation error control for the sensitivity functions the integration
of the sensitivity equations may influence the integration of the state variable
trajectories. Especially for the case that the truncation error in the sensitivities
exceeds the given threshold a major modification in the BDF code is necessary, as
then repetition of the entire integration step with a reduced step-size is required.

5.3 Computation of Consistent Initial Condi-
tions

Though interesting as a problem in itself, the computation of consistent initial
conditions in practice is only a subordinate task within the numerical integration
of a DAE-IVP. Consistent initial conditions are required either at the start of an
integration or at a discontinuity during integration. Figure 5.3 (which has been
derived from Figure 1.1 in Section 1.3.2 depicting the flowchart of an integrator
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Figure 5.2: Computation of parametric sensitivity functions by IND of the BDF
integrator in OPTISIM", with optional truncation error control for
the sensitivity equations. For the handling of discontinuities see Fig-
ure 5.3.

with discontinuity detection by discontinuity locking) shows the corresponding
extensions in the integrator.

The computation of consistent initial conditions proceeds as shown in Fig-
ure 5.4.
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Figure 5.3: Extending an integrator with discontinuity detection by an algorithm
for the computation of consistent initial conditions, cf. Figure 5.4. The
gradient dig;s./dp is required for the transfer of sensitivity matrices at
discontinuities, cf. Section 5.4.

According to the choice of the user back-tracing as described in Section 3.1.10
and Section 4.3.2 may be used in order to obtain numerically consistent initial
conditions. At first the DAE is integrated forward in time for a fixed number of
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Figure 5.4: Computation of consistent initial conditions. The algorithm for the
automatic choice of the transition conditions is sketched in Figure 5.5.
Forward and backwards integration during back-tracing amount to a
call of the (accordingly extended) integrator.

steps (based on our experience we use 4 integration steps). Then the direction
of integration is reversed, and the DAE is integrated backwards in time until
the starting point of the back-tracing task is reached. Algorithmically, several
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low-level modifications of the BDF code in OPTISIM" have been necessary for
implementation of this technique.

If consistent initial conditions are to be computed by the solution of the reduced
consistency equations (Section 3.2) — optionally with the result of a back-tracing
run as improved initial guess — the DAE is analysed by Pantelides’ Algorithm
in its implementation SPALG [UKM 95], cf. Section 3.2.1. The data obtained
from SPALG provides the instructions for setting up the reduced derivative array
equations. In the next step continuity conditions for a suitable set of differen-
tial variables are determined automatically by the method developed in Section
3.2.4, i.e., an adequate set of the state variables is chosen as dynamic degrees of
freedom (see Figure 5.5). These transition conditions together with the reduced
derivative array equations constitute the reduced system of consistency equations.
In our case, the reduced system of consistency equations is in general nonlinear
and large, and owns a sparse Jacobian without special structure. For the solu-
tion of this nonlinear system of equations different solvers can be employed in
sequence, cf. Section 3.2.5 and Figure 5.6. A Levenberg-Marquardt algorithm
(NS13, [AEA 93]), and the SQP method SNOPT ([GMS 97a], [GMS 97b]) are
offered as pre-solvers with extended global convergence properties in order to ob-
tain an improved start estimation for the more efficient main solvers. Primarily,
however, Powell’s dog-leg method (NS02, [AEA 93]), and preferably the affine-
invariant Newton method NLEQ1S ([NoWe 91]) are employed to obtain the final
value of the consistent initial conditions.

Return to Figure 5.4. After consistent initial conditions have been determined
the switching functions have to be evaluated at the new system state. If a switching
function has changed its sign the switching manifold has been passed. In this case
the model equations have to be switched accordingly, and the corresponding set
of consistent initial conditions has to be computed again (care has to be taken in
order to avoid dead-locks).

In Section 6.2 our algorithms for consistent initialisation of semi-explicit index-
2 DAEs are tested on a small, a medium, and a large-scale example.

5.4 Transfer of Sensitivities at Discontinuities

In Section 4.3.2 and Section 4.3.3 algorithms for the transfer of sensitivity matri-
ces at discontinuities have been developed. These two algorithms are related to
the algorithm for the computation of consistent initial conditions by back-tracing
(cf. Section 3.1.10), and to the algorithm for the computation of consistent ini-
tial conditions by solution of the reduced consistency equations (cf. Section 3.2),
respectively. The coupling of the methods for consistent initialisation to the cor-
responding method for the transfer of the sensitivity matrices is mirrored in the
implementation. As depicted in Figure 5.7 the transfer of the sensitivity matrices
directly extends the routine for the computation of consistent initial conditions.
In case of the back-tracing based approach derivatives of the jump function are
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Figure 5.5: Automatic generation of a suitable set of transition conditions by Al-
gorithm 8 developed in Section 3.2.4. mgqr is the number of dynamic
degrees of freedom. Note that once a candidate is fized as DOF it is
removed from the set of candidates.

numerically approximated by finite differences, cf. Section 4.3.2. Thus the BDF in-
tegrator has been extended for back-tracing starting from disturbed initial values.
Additionally, as shown in [Kieh 99], during the disturbed back-tracing phases the
same step-size and order history has to be employed as during the primary, undis-
turbed back-tracing phase in order to obtain reliable results. Therefore, during
undisturbed back-tracing the adaptively determined step-size and order sequence
is recorded. Then during disturbed back-tracing the order and step-size selection
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Figure 5.6: Solution of the reduced system of consistency equations by a cascade
of algorithms for the solution of large, nonlinear systems of equations
with sparse Jacobian, cf. Section 3.2.5.

' use last saved result .

strategy of the BDF integrator is temporarily overridden by the recorded data.
In order to increase the robustness of the method the algorithm is restarted with
the undisturbed back-tracing phase in case of a failure during a disturbed back-
tracing phase, employing a reduced step-size for the initial integration step. Note
that during the undisturbed back-tracing phase sensitivity analysis is active, while
it is deactivated during disturbed back-tracing.

If consistent initial conditions are to be obtained by the solution of the reduced
consistency equations the transfer of the sensitivity matrices basically reduces to
the solution of the linear systems of equations Eq. (4.45) (or Eq. (4.43)). If back-
tracing is employed in order to find an improved initial estimate for the solution of
the reduced consistency equations sensitivity analysis has to be deactivated during
this (undisturbed) back-tracing phase.
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Figure 5.7: Transfer of sensitivities at discontinuities: Extension of the routine for
the computation of consistent initial conditions, cf. Figure 5.3.

Each of the two algorithms requires the gradient dtqis./dp (i-e., first order
information about the dependency of the location of the discontinuity on the pa-
rameters of interest). This data is approximated by numerical differentiation of
the switching functions directly after location of the discontinuity, cf., e.g., step
i in Algorithm 10. Thus it is located in the routine responsible for the detection
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of the discontinuities and for the basic management of consistent initialisation (cf.
Figure 5.3).

5.5 Fast Disturbance Rejection

In Section 2.6.2 a method for the fast rejection of disturbances present during
the operation of larger processes has been proposed. The main idea is to predict
the evolution of the constrained states in the presence of disturbance parameters
employing sensitivity information. This sensitivity information may have been
computed offline, or it may be available from a preceding solution of an open-loop
optimal control problem within an NMPC control strategy, cf., e.g., the optimal
control concept discussed in Section 2.3.3. Based on this prediction updates to the
optimisation parameters of the master optimal control problem are calculated by
solving the constrained linear quadratic programming problem (QP) Egs. (2.25a)—
(2.25b). The updates are determined such that a predicted potential violation of
the path inequality constraints of the master optimal control problem is avoided.
If the quadratic objective Eq. (2.26) is used instead of Eq. (2.25a) the updates for
the optimisation parameters are chosen such that additionally the deviation of the
predicted state variable trajectories from a reference trajectory is minimised.
The computation of the updates is started from the object handling layer in
OPTISIMY, cf. Figure 5.8. The next steps basically consist in data handling,
i.e., actual values of the disturbance parameters, precomputed sensitivity matri-
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ces, as well as trajectory data are loaded. Based on this data either the linearly
constrained QP Eqs. (2.25a)—(2.25b), or the linearly constrained QP Eq. (2.26)
and Eq. (2.25b) is set up. The QP is then solved by the algorithm LSSOL
[GHMSW 86] (NAG" routine EO4NCF [NAG 94a)). In contrast to the solution
of the NLPs (which are at the core of our direct single shooting method discussed
in Section 5.1), special routines for the evaluation of the objective function and of
the constraints are not required. In the case of constrained linear QPs these oper-
ations reduce to matrix-vector multiplications. These multiplications are handled
internally within LSSOL.
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Chapter 6

Numerical Results

6.1 Introductory Remarks

The problem with engineers is that they tend to
cheat in order to get results.

The problem with mathematicians is that they tend to
work on toy problems in order to get results.

The problem with program verifiers is that they tend to
cheat at toy problems in order to get results.

FORTUNE cookie

In Section 6.2 and Section 6.2.3 we present a series of example problems as
an assessment of the capabilities of our algorithms for consistent initialisation (cf.
Section 3.1.10, Section 3.2, and Section 5.3) and correct treatment of sensitivities
at discontinuities (cf. Section 4.3.2, Section 4.3.3, and Section 5.4). Our algorithm
for fast disturbance rejection proposed in Section 2.6.2 could not be sufficiently
tested during this project, and will be part of further work.

In the course of the project there has been a perpetual interaction between
theory and numerical examples. Theoretical considerations gave rise to modifica-
tions and/or extensions of the existing code, while the necessity of more refined
methods arose from numerical tests. At this point we emphasise the importance of
tests with real world problems from industry. Not very surprisingly we have made
the experience that an algorithm that would work well for small to medium size
academic test examples revealed weaknesses when applied to a real world problem.
E.g., initially the back-tracing algorithm was suitable for the calculation of (numer-
ically) consistent initial conditions in the pendulum example (cf. Section 6.2.1.b),
while it would fail when applied to the C3-splitter example in Section 6.2.2. After
some amendments it worked for this example but there were pertinent failures for
the air separation plant examples (cf. Section 6.2.3, Section 6.3.5). At this point
we decided to consider the solution of the reduced system of consistency equations
as the practically more demanding but theoretically better founded approach.
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As one of the main reasons for this phenomenon we see that mathematical
models of real-world processes often suffer from limitations, e.g., due to their de-
pendency on the convergence of lower-level iterative processes, unexpected singu-
larities, hard (physically given) bounds on variable values, or extrapolation re-
quired in order to broaden their numerical applicability. These limitations can
cause practical problems which are in common unknown to academic examples,
e.g., if numerical differentiation is applied, or if an iterative algorithm drives the
system state to the border of the domain of a model.

Next, in the context of complex models numerical methods have to take into
account that functions or derivatives may only be available in limited precision. In
contrast, academic examples seldom suffer from problems with low precision due
to their simplicity.

Finally, by their mere size the large-scale examples set high demands on the
numerical software used, mainly onto the linear algebra of large, sparse, and un-
structured systems. In the solution of large nonlinear systems we additionally had
to deal with the problem of transformation to well-scaled problems, and with the
choice of adequate norms and global parameters.

Remark 6.1:
We have found that especially our rigorous algorithm for consistent initialisation is ex-
tremely sensitive to coding errors in both the model equations and in their Jacobian. Due
to this property in some cases even subtle errors in complex unit models have been de-
tected that had not caught any attention in the past. Other standard numerical methods
within OPTISIM", e.g., steady-state solver or integrator simply had not been affected
adversely (which accounts to some extent for their robustness), or the detrimental effects
had been too intricate than would have allowed to assign them to a special portion of
code. O

Therefore we examine our algorithms on both, small academic examples and
large-scale, industrial real-world problems as far as possible.

6.2 Consistent Initialisation

Grabel’s Law:
2 is not equal to 3
— not even for large values of 2.

FORTUNE cookie

In the sequel mainly results for our algorithm for consistent initialisation dis-
cussed in Section 3.2 are reported. In Section 6.2.2 and Section 6.2.3 the reli-
ability of our algorithm for consistent initialisation based on the solution of the
reduced consistency equations is tested by disturbing the initial estimate for the
nonlinear solvers with the relative factor disturb. Additionally, a fixed bias of
V/€mach = 1- 1078 is added in order to disturb small values (especially we intended
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to avoid artefacts in the tests caused by zeros)®). The residual measures the Eu-
clidian norm of the final residual of the reduced consistency equations, A, denotes
a measure for the relative difference between result and reference. We use

‘gu gref|
rel Z 14+ ‘gref‘ (61)

where ¢ := [&7, 97, 27,27, 27T € R, ng = 2ng + ng + 2nz, is the result of a

consistent initialisation run. &' € R is a given fixed reference value. The value
given as evaluations counts the number of evaluations of the reduced consistency
equations, separated into pure residual evaluations (res.), and combined Jacobian
/ residual evaluations (Jac. & res.). Finally, time is the computer time in seconds
elapsed for the solution of the reduced consistency equations measured on a Pen-
tium0 II/350 MHz PC with a WINDOWS NT" operating system. The program
was compiled using Compagl] Visual Fortran 6.6. During these tests run-time
error checks have been enabled so that a speed-up of at least a factor 2 can be
expected for fully optimised code.

In some cases the solvers returned an unphysical solution which is marked
with the flag (p) behind the residual value. In the example in Section 6.2.2 in some
cases at least one switching function repeatedly changed its sign immediately after
consistent initialisation. This effect is marked with (1.

In Section 6.2.1 the back-tracing algorithm is briefly considered. In Section
6.2.2 and Section 6.2.3 some additional results are reported. The back-tracing
algorithm will also be used in some of the examples regarding sensitivity analysis
in Section 6.2.3.

6.2.1 The Planar Pendulum (Index-2)

One of the standard examples in DAE analysis is the two dimensional mathematical
pendulum with fixed length (cf., e.g., [Heim 92]). As sketched in Figure 6.1 a
mass point is located at the end of a weightless rod of fixed length, which itself
is mounted on a frictionless pivot. After a disturbance from its stationary points
(the upper-most and lower-most positions) the mass point oscillates around the
centre, i.e., the pivot.

The equations of motion can be derived by the Euler-Lagrange formalism,
see, e.g., [GLG 85], [Gold 63]. When Cartesian coordinates are used the result is
a system of two second order ODEs coupled with an algebraic condition. This

) «Tt is remarkable how often the values z = 0 or z = 1 are used to test function
evaluation procedures, and how often the special properties of these numbers make the
test meaningless.” ([GMW 95], p. 296)
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Figure 6.1: The two dimensional mathematical pendulum with fixed length [.

system is easily transformed into the first order DAE

T=u, (6.2a)

Y=, 6.2b)
A

=2 2

=z, (6.2c)

b= iy -9, (6.2d)
m

0=a?+y?-1?, (6.2¢)

where z and y are the Cartesian coordinates of position, u and v are the respective
velocities, m is the mass of the mass point, [ is the length of the rod, and g is the
constant of gravitational acceleration. A is a Lagrangian multiplier which can be
identified with the tractive force of the mass point exerted on the rod mounted on
the pivot.

The DAE Egs. (6.2a)—(6.2e) has a differential index of three. This is always
the case for models derived from Euler-Lagrange equations with holonomic con-
straints®, c.f., e.g., [Rhei 84].

We restrict to the pendulum in index-2 formulation. It is obtained by replacing
the algebraic constraint Eq. (6.2e) with its first total time derivative, see Eq. (6.3¢)

(1) Holonomic constraints are defined as equality constraints relating the coordinate vari-
ables of a system [Gold 63]. They may also explicitly depend on time. Eq. (6.2e) is such a
holonomic constraint. It restricts the movement of the mass point to a circle with a radius
of the length of the rod.
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below. The index-2 DAE is then

T=u, (6.3a)
Yy=uv, (6.3b)

A

=z, 6.3

W= (6.3¢)

A
v=—y—g, (6.3d)

m
0=zu+yv. (6.3e)

Remark 6.2:

In Section 6.3.3 the formalism is demonstrated at an extended pendulum example. O

The task in the sequel is to calculate consistent initial conditions for the index-2
pendulum at ¢ = 0. In Table 6.1 the initial guess for the state variables is denoted.
The estimate for A\(0) is marked with the qualifier ©. As the index-2 pendulum
contains the length constraint Eq. (6.2e) only in its differentiated form Eq. (6.3¢)
it needs to be enforced at least at the initial time (). In our tests both the hybrid
algorithm as well as the back-tracing algorithm preserve the suitably chosen initial
values for z(0) and y(0) without additional measurements, see the results in Table
6.2 and Table 6.3 below.

Table 6.1: Initial guess and constants for pendulum example.

z(0) | 0.4 | [m]

y(0) | -0.3 | [m]
uw(0) | 0.0 | [m/s]
2(0) 0.0 | [m/s]
X(0) | 0.0 | [N/m]

m| 03| [k

Il 05 [m]
g|9.81 | [m/s?]

6.2.1.a Solution of the Reduced Consistency Equations

Pantelides’ Algorithm (or SPALG, respectively) correctly reports that the system
Egs. (6.3a)—(6.3e) is an index-2 DAE with 3 dynamic degrees of freedom. Without
appropriate physical information regarding the choice of the dynamic degrees of
freedom the continuity condition for one of the four differential variables has to be

(5)Tn the index-2 DAE Eqgs. (6.3a)—(6.3¢) the length of the rod is a constant of integration.
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Table 6.2: Consistent initial conditions for pendulum: Solution of the reduced
consistency equations.

z(0) 0.4 | [m]
y(0) -0.3 | [m]
u(0) 0.0 | [m/s]
v(0) 0.0 | [m/s]
A(0) | -3.53160 | [N/m]

dropped by our heuristic rule (step 4(c)ii in Algorithm 8). Based on the condition
estimate for the Jacobian of the reduced consistency equations at the initially
guessed value of the state vector the algorithm selects v. In turn, z, y, and u
are chosen as dynamic degrees of freedom. Thus these variables are fixed at their
initially given values by the corresponding continuity conditions, and the length
constraint is implicitly enforced. Note that in the hybrid algorithm z and y also
could have been explicitly assigned as dynamic degrees of freedom by the user in
order to guarantee that the initial position of the mass point and thus the length
of the rod is fixed.

The affine-invariant Newton algorithm NLEQ1S requires 3 iterations for the
solution of the reduced consistency equations. The results are given in Table 6.2.
At the solution the residual of the reduced consistency equations is exactly zero
in double precision arithmetics. v(0) has to vanish due to Eq. (6.3e). A(0) is then
easily confirmed by solving the index-1 condition for the pendulum

12
0:u2+02+a)\—yg,

which is obtained from total differentiation of Eq. (6.3e) with respect to time.

6.2.1.b Back-Tracing

The behaviour of the back-tracing method can be seen from Figure 6.2 which
depicts the integration history for A(¢). In order to obtain a suitable graphical
output a loose integration tolerance of 1.0 - 10~* has been chosen.

After forward and backward integration at ¢ = 0 the values noted in Table
6.3 are returned. Recall that in contrast to the hybrid algorithm the back-tracing
based method does not explicitly contain continuity conditions. Though, the result
of the back-tracing based method is similar to the result of the hybrid algorithm.
With a more strict integration tolerance of 1.0 - 10~ the back-tracing algorithm
even nearly reproduces the result of the rigorous consistent initialisation.
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-3.525 | | | | |
A(t): forward
A(t): backward —-—
A(t): forward (consistent) - - - -

-3.53

value(t)
&
o
w
o

-3.54 - —

-3.545 L L L L L
0 0.002 0.004 0.006 0.008 0.01
time t

Figure 6.2: Pendulum example: back-tracing history of A(%).

Table 6.3: Consistent initial conditions for pendulum: Back-tracing with loose and
strict integration tolerance.

variable integration tolerance unit
1-10°* 1-10°5
(0) 0.399930 0.399999 [m]
(0) -0.300093 -0.300001 [m]
(0) | 0.554837 - 1075 | 0.478937 - 10~° | [m/s]
(0)

(0)

8

S

0.739703 - 1075 | 0.772240 - 10~° | [m/s]
-3.53251 -3.53161 | [N/m]

6.2.2 A C3-Splitter

As a first example from application we consider the so-called C3-splitting section
of a petro-chemical plant. The section splits a mixture of hydrocarbons containing
components with two to eight carbon atoms (e.g., propylene has three carbon
atoms, butane has four) mainly into a C3-fraction rich in propylene (the fraction
also contains the C2 components) and a heavier fraction. Figure 6.3 depicts the
flowsheet of the process.

The DAE model in OPTISIM" consists of ngy = 305 differential and ny = 1442
algebraic equations. During a typical simulation run the model exhibits several
state and time dependent discontinuities. At the initial time and at all disconti-
nuities Pantelides’ Algorithm reports that the DAE is of index two, that there are
ngdf = 304 dynamic degrees of freedom, and that mz = 6 algebraic constraints
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Figure 6.3: Flowsheet of the C3-splitting process including control structure.
main units: a: rectification column, b: reboiler, c: condenser,
d: flash drum, e: pump
controllers (v € N): FCv: flow controller, LCv: level controller,
TCv: temperature controller, PCv: pressure controller

are to be differentiated in order to obtain an index-1 system, introducing the time
derivatives of nz = 5 originally algebraic variables. At the initial time and at each
discontinuity the transition conditions are uniquely determined by our physical
and structural criteria. ILe., exactly one set out of (§J;) = 305 potential sets of
differential variables can be directly assigned as dynamic degrees of freedom, cf.
Section 3.2.4. The condition number based heuristic rule (cf. Algorithm 8, step
4(c)ii) is not required.

The main purpose of this medium-scale example is to compare some of the
options for the solution of the reduced consistency equations (cf. Section 3.2.5.b).
The performance of our hybrid algorithm is tested at the initial point ¢ = tg
and at the first state dependent discontinuity at ¢ = tqisc. In order to examine
robustness and precision the entire initially guessed state vector — i.e., the quasi
steady-state solution at the initial point, and the instationary state before the
discontinuity — is perturbed with a relative disturbance of up to 5%. Such a
disturbance can be regarded as rather large in the context of chemical engineering.
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Table 6.4: C3-Splitter: Algorithm for consistent initialisation using NLEQ1S.

evaluations
t disturb. residual Avel res. | Jac. & res. | time
to 0 1.1-10°H 0 (reference) | 0 5 11
0.01 1.5-10711 1.7-10710 1 10 32
0.02 7.4.10712 1.9.10°10 0 9 31
0.03 2.2-1079 5.4-1079 1 13 45
0.05 7.5-10712 [y 2.4.10701 0 13 45
taisc 0 4.3-10~13 0 (reference) | 0 4 9
0.01 3.7-10712 oy 2.6-10710 0 8 26
0.02 7.7-107 1 8.1-10°10 1 10 35
0.03 |7.2-107% e,y | 1.4-10701 0 9 33
0.05 failure n/a 2 13 73

Here, especially the physical property computations are sensitively affected. For
all experiments the total time derivatives of the derived algebraic equations as well
as their Jacobian are evaluated using the partial approximation mode with error
controlled disturbances and subdivision of the disturbed variables (see Section
3.2.3).

Table 6.4 contains the results when solely NLEQL1S is used for the solution of
the reduced consistency equations. The consistent initial state obtained from the
undisturbed initial estimate is taken as the reference for all other computations.
Table 6.5 shows the corresponding results for the dog-leg method. The tables
indicate that the hybrid algorithm delivers highly accurate results with each of
the two nonlinear solvers. The norm of the residual for NLEQ1S ranges from
O(1.0 - 10712) to O(1.0 - 1079), while the residual for the dog-leg algorithm is
typically larger, ranging from O(1.0-1073) to O(1.0 - 1079). If the perturbation
exceeds a certain bound the results may be unphysical, or at least unsuitable as
consistent initial values for further simulation as indicated by the py flags. In these
cases the solvers converge to points which differ considerably from the reference
value. This is indicated by the corresponding values of A, which are then in the
order of 1.0 - 10 9. At the discontinuity we also observe that in several of the
perturbed cases the new consistent initial conditions cause an immediate reversal
of the sign of the active switching function leading to repeated switching (see the
sy flags). However, at the discontinuity the absolute value of the active switching
function is in the range of 1-1078,...,1- 1077 so that this problem could be
removed by extending the formulation of the switching functions with a small
hysteresis (“e-band”) as proposed in [Otte 95] (see Section 1.3.2).

We have also applied back-tracing in order to solve the consistent initialisation
problem at ¢t = ty and at t = tgisc, starting from sets of undisturbed initial esti-
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Table 6.5: C3-Splitter: Algorithm for consistent initialisation using the dog-leg
method. The reference value is the corresponding consistent initial
state obtained by NLEQ1S starting from an undisturbed initial guess,

cf. Table 6.4
evaluations
t disturb. residual Arel res. | Jac. & res. | time
to 0 56-107% |56-107'1| 3 2 7
0.01 3.3-1079% |50-1009 | 9 5 21
0.02 1.4-1079 | 1.6-107% | 15 8 44
003 [29-10% py|24-10700 | 14 8 33
0.05 |54-10797 py | 2.4-10701 | 22 12 50
tdisc 0 23-1079% [ 85-10799 | 1 1 4
0.01 1.1-107% | 1.3.10708 5 23
0.02 5.2-1071 gy | 1.4-107%0 | 13 8 34
003 [22-107" py|1.4-1079 | 11 7 32
0.05 1.4-10797 py | 3.2-10701 | 22 15 63

mates. In both cases the back-tracing algorithm terminates successfully. However,
the results differ considerably from the reference values obtained by the solution of
the reduced consistency equations with NLEQ1S (cf. Table 6.4). At ¢ = t; the rel-
ative difference between the values of the state variables generated by back-tracing
and the reference value is Al = 2.1 - 107!, at ¢ = tgis the relative difference is
Arel = 2.3-107 1. Such large relative differences in the results have been typical for
the unusable results obtained from the numerical solution of the reduced consis-
tency equations for highly disturbed initial guesses. As a consequence we consider
the results of the back-tracing method for this example as unreliable.

6.2.3 A Complex Cryogenic Air Separation Plant

As the last example problem for our consistent initialisation algorithm we consider
a complex real-world cryogenic air separation plant. Basically the process works
as described in Section 2.1.2. However, in place of a single crude argon column (cf.
Figure 2.2 on page 28) the plant contains an additional section where the crude
argon is further refined to pure argon.

With ng, = 1832 differential and ny = 7292 algebraic equations the process
model is about 2.6 times larger than the largest model considered so far in our
previous work, cf., e.g., [EKKS 99]. Additionally, the highly nonlinear plant char-
acteristics render the automation of this plant a demanding task. The determina-
tion of an open-loop optimal load-change policy by our optimal control algorithm
is discussed in Section 6.3.6.
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Table 6.6: Air separation plant: Algorithm for consistent initialisation with
NLEQ1S using Leimkuhler’s approximation. The reference value has
been computed using the partial approximation method with subdivi-
sion of the disturbed variables and truncation error based choice of the
disturbance step-size, cf. Table 6.7.

evaluations
disturb. residual Avel res. ‘ Jac. & res. | time
Leimkuhler’s approximation (plain)

0 failure n/a 12 14 171
0.001 45-107% | 1.6-107% | 0 6 45
0.010 35-107% 116-109% | 0 11 94
0.015 1.4-10797 py | 7.7-10793 | 2 19 161
0.020 failure n/a 3 55 545

Leimkuhler’s approximation (subdivision of variables)

0 3.7-1071 | 79.107M | 1 8 85
0.001 4.0-107% | 1.7-107% | 0 6 80
0.010 7.0-1070 [ 1.6-107% | 0 11 163
0.015 | 1.4-107%7 oy | 7.7-10793 | 2 19 559
0.020 failure n/a 1 16 225

According to Pantelides’ Algorithm at the initial time ¢t = ¢ the model of the
air separation plant is an index-2 DAE which owns ng4s = 1827 dynamic degrees
of freedom. In difference to the C3-splitter examined in the previous Section 6.2.2
only 1823 dynamic degrees of freedom can be assigned by the deterministic rules.
Le., for 1823 differential states continuity conditions are generated based on ex-
pert knowledge on the physics of the process and on its mathematical modelling, as
well as by the rank criterion Eq. (3.66) (cf. Algorithm 8, step 2). Thus additional
1827 — 1823 = 4 continuity conditions have to be determined by the condition-
based heuristics (cf. Algorithm 8, step 4(c)ii). As only differential variables are
admitted for assignment as dynamic degrees of freedom 1832—1823 = 9 candidates
for assignment are available at this stage. From these 9 candidates 2 are excluded
by the block triangularisation technique (see step 3 in Algorithm 8 and Section
3.1.13), finally leaving (7 ) = 35 possible DOF-assignments to the condition-based
heuristics. Altogether, the assignment of the dynamic degrees of freedom is com-
pleted within O(1) [s]. The final system of reduced consistency equations has a
dimension of 11178 variables/equations.

In the first series of tests the reduced consistency equations are solved at ¢t = tg
by NLEQ1S given a disturbed quasi steady-state as initial estimate. The results
are collected in Table 6.6.

Initially, the total time derivatives of the derived algebraic equations are ap-
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proximated by Leimkuhler’s original formulae (residual according to Eq. (3.45),
Jacobian according to Eqs. (3.46a)—(3.46d)). For disturbances of 0.1% and 1.0%
the algorithm is successful. When the disturbance is increased to 1.5% the gener-
ated solution is not suitable as initial data for further dynamic simulation (the inte-
grator fails at the second step after initialisation). At 2.0% disturbance NLEQ1S
fails. The failure of the solver to establish convergence in the undisturbed case is
a major problem as consistent initialisation starting from a quasi steady-state is
one of the standard tasks which we expect our algorithm to solve.

By applying subdivision of the variables in Leimkuhler’s formulae (residual
using Eq. (3.48), Jacobian according to Egs. (3.49a)—(3.49b), cf. Section 3.2.3.b)
this failure is avoided. Additionally, with the decomposition of the variables in
the case of 0.1% and 1.0% disturbance the residual is slightly smaller. In these
disturbed cases, however, the consistent initialisation procedure requires roughly
twice the computational time in comparison to the algorithm without subdivision
of the variables. For 1.5% disturbance the result is again unsuitable, while the
solver still fails at a disturbance of 2.0%.

In the second test series summarised in Table 6.7 the same problem is solved
again. In difference to the first test series analytical expressions for the residual
of the derived algebraic equations Eq. (3.54) are used, and the partially approx-
imated Jacobian Egs. (3.55a)—(3.55d) is employed. This series itself is divided
into three parts. In the first part the approximated portion of the Jacobian is
built according to Leimkuhler’s original formulae, in the second part Leimkuhler’s
formulae are used in connection with subdivision of the disturbed variables, and
in the third part Leimkuhler’s formulae are applied employing subdivision of the
disturbed variables and truncation error control. The results using the various
approximation methods are almost identical. In each case for 1.5% disturbance an
unusable initial condition is generated, and at 2.0% disturbance the solver fails.
Also the number of residual and Jacobian evaluations only shows minor differences.
In comparison to Table 6.6 the results are in general slightly better. Additionally,
the second setting without subdivision of the disturbed variables does not suffer
from the convergence problem which appeared in the case of the plain Leimkuh-
ler approximation. Although in this test series the setting without subdivision
of the disturbed variables delivers the quickest results we stick to the partially
approximated Jacobian with subdivision of the disturbed variables and truncation
error control as the standard, as the latter has shown more reliable in some small
academic test examples.

In the last two series of tests the second test scenario is extended by using either
the Levenberg-Marquardt solver or the dog-leg solver in sequence with NLEQ1S.
In each case the derivative array equations are generated with subdivision of the
disturbed variables and truncation error control for the finite difference approxi-
mations.

Table 6.8 shows the results when using the dog-leg method as initial solver.
In this example the dog-leg solver does not contribute to the robustness of the
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Table 6.7: Air separation plant: Algorithm for consistent initialisation with
NLEQLS using the direct evaluation mode.

evaluations
disturb. residual Avel res. ‘ Jac. & res. | time
partially approximated Jacobian (subdivision & error control)

0 3.9-107'2 | 0 (reference) | 1 8 61
0.001 4.0-10799 1.7-10708 0 6 79
0.010 6.9-10710 1.6-10708 0 11 135
0.015 |24-107% py | 7.5-10793 0 14 187
0.020 failure n/a 3 16 194

partially approximated Jacobian (with subdivision)

0 3.9-10712 0.0 1 8 67
0.001 4.0-10799 1.7-10°08 0 6 70
0.010 6.9-10710 1.6-10708 0 11 140
0.015 | 1.4-107% py | 7.5-10793 2 19 256
0.020 failure n/a 3 16 179

partially approximated Jacobian (plain)

0 3.9-10 12 0.0 1 8 60
0.001 4.0-10799 1.7-10708 0 6 53
0.010 6.9-1010 1.6-10708 0 11 94
0.015 | 1.4-1079 py | 7.7-10793 2 19 188
0.020 failure n/a 3 16 121

combined method. As indicated by the numbers in brackets the dog-leg algorithm
even fails at lower disturbance levels than NLEQ1S. In these cases bad convergence
of the dog-leg method leads to excessive computational times.

Table 6.9 summarises the results of the combination of Levenberg-Marquardt
solver and Newton’s method. When using the Levenberg-Marquardt method as
pre-solver the reduced consistency equations can be successfully solved for higher
disturbance levels in the initial estimate than with the pure Newton solver. The
cascaded solvers succeed to generate the correct consistent initial conditions even
at a disturbance of 4% (recall that in the preceding examples NLEQ1S on its own
returned an unsuitable solution for 2% disturbance, while it completely failed at
a disturbance level of 4%, cf. Table 6.7). Unluckily also the time required for the
solution of the problem drastically increases — at 2% disturbance the solution of the
reduced consistency equations required approximately 1/2 hour, at 4% disturbance
an hour of CPU time was elapsed. In summary this example indicates that the
Levenberg-Marquardt method may considerably increase the robustness of the
solution procedure, but it should only be chosen in case of severe problems with
NLEQ1S (in these cases it is better to have slow convergence than fast failure)
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Table 6.8:

Air separation plant: Algorithm for consistent initialisation with dog-
leg method and NLEQ1S in sequence. The first numbers are the data
for the dog-leg solver, the second numbers are the data for NLEQ1S. If
these numbers are in brackets the dog-leg solver failed and the original
estimate was restored as initial guess for NLEQ1S.

disturb.

evaluations
residual Avel res. Jac. & res. time

0
0.001
0.010
0.015
0.020

3.9-107* | 0 (reference) 1 1;8 15;67

3.0-1071 1.7-10708 7 4:6 5755
6.9-10710 1.6-107% | (8 );11 (1148) ;133
2.4-107% g | 7510793 ( ); 14 (28) ;178
failure n/a (5 );16 (731) ;179

Table 6.9:

Air separation plant: Algorithm for consistent initialisation with
Levenberg-Marquardt method and NLEQ1S in sequence. The first
numbers are the data for the Levenberg-Marquardt solver, the second
numbers are the data for NLEQ1S.

disturb. residual Arel res. | Jac. & res. time

evaluations

0
0.00

0;1
0:2
0.010 9.6-10~1! 2.5-107% | 0;0
0.015 3.0-10710 2.1-107% |0;1| 29;13 1197;151
0.020 4.4-10711 7.1-1079 | 051
0.040 5.9-10"11 2.5-1079% | 0;7
0.080 |3.0-10" | 1.3-107°Y |0;0

3.9-1072 | 0 (reference)
1 3.0-10711 1.8-10798

5;8 158; 61
24:14 1120; 146
29;9 1366 ; 99

34:16 1406 ; 195
61;31 3557 ; 366
15;13 1532162

unless considerably more powerful computer hardware is used.

The back-tracing algorithm fails to solve the consistent initialisation problem
for this model at the initial time. During the backwards integration phase the step-
size is steadily decreased in order to preserve the bound for the local truncation

error until

the minimum step-size is reached. Backwards integration then aborts

far from the destination point as the local truncation error still exceeds the user
given bound.
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6.3 Sensitivity Matrices and Optimisation
Problems

I regard as quite useless the reading of large treatises of pure analysis:
too large a number of methods pass at once before the eyes.
It is in the works of applications that one must study them;
one judges their ability there and one apprises the manner of making use of them.

Joseph-Louis Lagrange

In this section our algorithms for the treatment of sensitivities at discontinuities
are examined. The examples are given in increasing order of complexity and
difficulty, ranging from a simple ODE problem to a complex air separation plant
modelled by a very large-scale index-2 DAE system.

In the nontrivial cases analytical expressions that could be used in order to
validate the correctness of the numerically computed sensitivity matrices are in
general not available. For the large-scale examples with a larger number of pa-
rameters also the numerical approximation of the sensitivity matrices by finite
differences as a potential reference is in general impractical. Additionally, these
finite differences are not reliable as the BDF integrator employed is not designed
for the integration of a DAE at the perturbed parameter sets with the same (fixed)
order and step size history as used during the integration at the undisturbed pa-
rameter set. The reliable approximation of parametric sensitivities by numerical
differentiation can only be guaranteed when the same step-size and order sequence

is used for both disturbed and undisturbed integration [Kieh 99].
Remark 6.3:

We have extended the BDF integrator of OPTISIM" in such a way that the adaptive
step-size and order selection strategy can be temporarily replaced by a recorded step-size
and order sequence, cf. Section 5.4 (disturbed back-tracing phase). After some minor
modifications this logic might as well be used during an entire integration horizon. How-
ever, approximation of sensitivity matrices by finite differences and external numerical
differentiation is not the subject of this work. O

We have chosen to follow a more instructive way and use the sensitivities as
basic data for the solution of optimal control problems by our direct single shooting
algorithm (see Section 2.4.2). However, slow convergence of the optimiser or even
failure is not necessarily caused by inaccurate or wrong sensitivities. Both may
have their source in the problem setting or, in the worst case, in programming
errors. On the other hand, to some extent the state-of-the-art SQP methods
applied have shown robust against small errors in the sensitivities, see, e.g., Section
6.3.3 and Section 6.3.5. Thus a successfully solved optimal control problem may
indicate the validity of the sensitivities, but it cannot provide a numerical proof.

In the optimisation examples failures of the optimiser due to an excessive
number of iterations are marked with my. If better values of the optimisation
variables could not be found although the conditions for an optimum have not all
been satisfied the result is marked with [c. If the conditions for an optimum have
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been satisfied, but the requested accuracy of the result could not be established
the solution is marked as [a.

6.3.1 A Simple ODE Example
Consider the ODE-IVP®) on [to, tf] = [0, 1]

; -p; &(tp)>1,
(t:p) :{ NG (6.42)
—p“; otherwise,

&(tosp) =2, (6.4b)

& € R, with the parameter p € R;\{0}. The right hand side of the ODE switches
if

=P tiisc +2=1,
i.e., at tqisc(p) = 1/p. Therefore, the parametric sensitivity of the location of the
discontinuity with respect to p is dtgisc(p)/0p = —1/p?. Further at ¢t = 3, the
sensitivity of the state with respect to p is

_ o0& (p 0 _
w (p) = (9]5 ) = %(2 _pt)|t:t;isc = _tdisc =

At the discontinuity we enforce continuity in the state &, i.e.("),

¢ =h(t¢,p)=¢".

Then the sensitivity w™ (p) = ¢ (p)/0p immediately after the discontinuity com-
putes as

O R SO

ot ot | op 9t Op
-1 -1
:(pQ—P)FJF?:—la

cf. Eq. (4.5). In this special example w™(p) is independent of p.

In Figure 6.4 the graph of the sensitivity matrix w(¢;p) is plotted for p =
1.61803 (this value is motivated below). The solid line depicts the correct sensi-
tivities obtained when using our hybrid algorithm discussed in Section 4.3.3 for
the transfer of the sensitivities at the discontinuity. The back-tracing based algo-
rithm introduced in Section 4.3.2 gives the same sensitivities as indicated by the
crosses. Without correction wrong sensitivity information is computed after the
discontinuity, see the dashed line.

(v)Due to the internal treatment of freely formulated differential or algebraic equations
within OPTISIM" the actual model equations constitute a DAE of differential index 1.
(" For this simple example the notation used in Section 4.1.1 is applied.
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Figure 6.4: Sensitivity trajectories for simple example, p = 1.61803.

In order to illustrate the effects of the uncorrected sensitivity information the
behaviour of the SQP algorithm NPSOL [GMSW 98] (NAG" routine EO4UCF
[NAG 94b]) is examined at the optimal control problem

Jp] = £(tp) — min! (6.5a)
0 <&(t;p); t € [to, ], (6.5b)
with the dynamics defined in Eqgs. (6.4a)-(6.4b). The solution of the optimal
control problem Egs. (6.5a)-(6.5b), Egs. (6.4a)-(6.4b) is given by
£(tsp) = 1+ (=p” + Plase(p) = 0.
Due to the restriction of p to strictly positive reals the optimiser is

., 14+5

= ~ 1.61803.
2

For the numerical solution of the optimal control problem the path inequality
constraint Eq. (6.5b) is discretised on an equidistant grid of 30 points. In the
experiment an optimisation precision of 1.0 - 10~° is requested. The result of the
experiment is collected Table 6.10. Using the sensitivities generated employing
either the hybrid algorithm or the back-tracing based method for the sensitivity
transfer at the discontinuity the optimal value is computed up to a maximum
absolute difference of 4.0 - 107°. Only a moderate number of integrations with
and without sensitivity analysis is required. The differences between hybrid and
back-tracing based algorithm are neglectable. In case of uncorrect sensitivity in-
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formation NPSOL terminates successfully starting from an initial guess of 3.0
after requesting more than twice the number of optimisation function and gra-
dient evaluations. For all other initial guesses the optimisation algorithm finally
fails due to an excessive number of iterations as indicated by the requested num-
ber of integrations. Though it succeeds in locating the optimum roughly. A closer
examination of the iteration history in the failed tests shows that initially the op-
timisation quickly converges closely towards the solution, but then the optimum
value cannot be determined to the requested accuracy.

6.3.2 Parameter Identification for a Bottle Filling Pro-
cess

As a first numerical illustration for the correct transfer of sensitivities across state-
dependent discontinuities with an industrial background we consider a parameter
identification problem introduced in [KKES 01], [KSBK 01]. The model DAE is
of differential index 1. In extension of the results published in [KKES 01] and
[KSBK 01] the number of identified parameters is increased from 3 to 7. Addi-
tionally, the two algorithms for the treatment of sensitivities at discontinuities,
i.e., our algorithm based on back-tracing and numerical differentiation of the jump
function (see Section 4.3.2) as well as our algorithm based on the solution of the
reduced system of consistency equations (cf. Section 4.3.3) are examined.

The problem arising from industrial application is the filling of industrial gases
(e.g., Ng, O, or Ar) into high pressure gas bottles for retail. Initially, the bottles
are depressurised to vacuum in order to avoid contamination of the pure product
with residue in the bottle. The process in view is the subsequent filling of the
bottles with the gas from a high pressure gas tank up to a final pressure of 200 [bar].
An important point in the investigation of potentials for the acceleration of the
filling process is the heat balance of the bottle system. For this investigation

Table 6.10: Simple optimal control problem, with and without corrected sensitiv-
ities. Note that in the case of p < 1 the structure of the problem
changes during the course of the optimisation as the discontinuity is
initially located outside the prediction horizon [tg, tg].

initial value cons. init. back-tracing no correction
P eval p eval p eval
0.15 1.618036 | 7 1.618037 | 7 1.623465 | 136 [my
0.50 1.618036 | 7 1.618037 | 7 1.623096 | 130 my
2.00 1.618036 | 6 1.618037 | 6 1.620091 | 201 [my
3.00 1.618035 | 11 || 1.618036 | 11 | 1.618034 26
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Figure 6.5: High pressure gas bottle filling.
units: a: high pressure bottle battery, b: valve, c: tube, d: valve,
e: retail bottle

knowledge on the coefficients for the gas-bottle heat transfer is required in order
to determine the heat flows in the system. As no model for the prediction of
heat transfer coefficients in a fast pressurised gas volume is available from the
literature, the heat transfer coefficients must be determined from measurements.
In a first approximation we consider a parameter fitting problem where constant
heat transfer coefficients are to be identified based on experimental data.

In the physical experiment a single depressurised gas bottle (e) is filled from a
bottle battery (a), cf. Figure 6.5. During the experiment the valve on the battery
side (b) is always 100% opened. The second valve (d) between bottle battery and
bottle to be filled is opened at time zero and closed after 120 seconds when pressure
equilibrium has been achieved. Measured observables are the temperature at the
filling pipe Tpipe, the temperature at the outside of a bottle in the bottle battery
Thattery, and the temperature at the outside of the retail gas bottle Ti,ot11.. Based on
measurements from the experiment with a non-insulated bottle, n, = 7 parameters
p (heat transfer coefficients p,, p, for the bottle, heat transfer coefficients ps3, py
for the pipe, initial temperature ps and pressure pg of the bottles in bottle battery,
and the ambient temperature p;) are to be determined by the dynamic parameter
identification algorithm. The simulation model for the entire process consisting
of bottle battery, the single gas bottle, piping, and valves has ng + ny = 162
differential and algebraic equations, and — as already mentioned — the differential
index 1.

Remark 6.4:
Some special aspects of parameter identification have been treated in Remark 2.3 on page
page 39, in Section 2.4.2, and in Section 5.1. O

The parameter identification problem has been solved with the specialised
SQP algorithm NLSSOL (NAGY routine EQ4UNF [NAG 94c]) and with the
general SQP solver SNOPT [GMS 97a], [GMS 97b]. NLSSOL terminates after
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Figure 6.6: Non-insulated bottling process: Fitted and measured data. Retail
bottle temperature Tigit1e, bottle battery temperature Thaitery, and
pipe temperature Tpipe are within [275; 325] [K]. The valve position of
valve (d) ranges between 0% and 100%.

23 major iterations, 99 minor iterations, and 59 integrations including sensitivity
analysis with an objective value of 40.40. SNOPT terminates after 26 major
iterations, 63 minor iterations, and 56 integrations including sensitivity analysis
with an objective value of 40.94. In both cases the same (bad) initial guess for the
parameters was used which gives an initial objective value of 2718. The optimised
sets of parameters show only major differences in the heat transfer coefficient for
the pipe and in the initial temperature of the bottle battery. By physical reasons
the parameters obtained with SNOPT are taken as the final result. The results of
the optimisation (solid lines) and the 8 sampling points entering the optimisation
problem are shown in Figure 6.6.

Optimisation with the modified Gau-Newton algorithm LSQFDN [GiMu 78]
(NAG" routine E04GDF [NAG 94a]) starting from the initially estimated param-
eters fails as the optimiser tends to drive the parameters into unphysical regions
of the parameter space. In consequence, the mathematical model breaks down,
numerical integration and sensitivity analysis is aborted, and optimisation fails.
As LSQFDN is an optimisation method for the solution of unconstrained optimi-
sation problems these failures cannot be avoided. Moreover, LSQFDN shows the
same behaviour when (externally) restarted from the last suitable set of parame-
ters. Thus this optimisation algorithm it is not applicable in this example. How-
ever, starting from the optimised parameters obtained from SNOPT LSQFDN
successfully indicates local optimality of this set, confirming the former result.

In Figure 6.7 measurements originating from another physical experiment with
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Figure 6.7: Insulated bottling process: Measured data and simulation with the
parameters obtained for non-insulated case. For an explanation of the
graph cf. Figure 6.6.

an insulated bottle are compared with a numerical simulation using the parame-
ters identified above. The measurements are available at 9 points in time. The
comparison indicates that the fitted parameters are applicable even in a not too
closely related scenario.

In Figure 6.8 example trajectories of the parametric sensitivity functions for
the (non-insulated) bottle filling process at the optimised parameter set are de-
picted. The solid and dotted lines are the sensitivities obtained with our hybrid
algorithm for consistent initialisation and corresponding sensitivity correction at
discontinuities. The symbols +, X, and A indicate the numerical results for the
sensitivity functions without correction. Remarkably, the numerical approxima-
tions for the sensitivity functions are almost independent from the treatment of the
discontinuities although at least two state dependent discontinuities are present.
This observation is also valid for all other sensitivities entering the optimisation.
The sensitivities obtained using the back-tracing based algorithm are not shown
as they are identical with the sensitivities obtained employing rigorous consistent
initialisation.

To some extent this behaviour of the sensitivities can be explained directly.
The first state dependent discontinuity (at ¢ = t1) is independent from all pa-
rameters, i.e., 0t;/0p, = 0, v = 1,...,np, and thus the corresponding terms in
A&, (cf. Eq. (4.45)) primarily responsible for the modification of the sensitivities
in Eq. (4.46) after the discontinuity are nullified. Additionally, at this disconti-
nuity the numerically consistent initial conditions computed by back-tracing are
nearly the same as the consistent initial conditions obtained from the solution of
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Figure 6.8: Non-insulated bottling process: Sensitivities of some of the state vari-
ables depicted in Figure 6.6. 0Tyipe/0py has been divided by 3000,
O0Tpipe/Op3 has been divided by 25.

the reduced derivative array equations. In detail, the relative deviation of the
numerically consistent initial conditions from the rigorously computed consistent
initial conditions measured according to Eq. (6.1) is A = 5.94-107% in the state
variables, and A = 9.47 - 10~° for the first order time derivatives. Therefore,
integration without consistent initialisation gives the same trajectory as with rig-
orous consistent initialisation. This, in connection with the independence of the
discontinuity from the parameters explains why sensitivity analysis without special
correction generates appropriate sensitivity functions. However, the situation is
different for the the second discontinuity as t2 non-trivially depends on all param-
eters, i.e., 0ty /0p, # 0, v = 1,...,np. As above, the results of back-tracing and
rigorous consistent initialisation for the state variables are close (A = 7.18-107°),
but the first order time derivatives differ significantly (Aye = 4.67 - 1072). The
discontinuous model equations do not exhibit a special structure at this point,
either.

6.3.3 The Planar Pendulum (Index-2), Immersing in a
Liquid

In this section the two dimensional pendulum introduced in Section 6.2.1 is ex-

tended. Consider a pendulum mounted above a liquid medium, e.g., a pendulum

located above a water-filled bath tub. As depicted in Figure 6.9 the distance from

the liquid surface to the pivot of the pendulum A is chosen smaller than the length
of the rod [. Therefore the mass point immerses in the liquid for some time during
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y |

<Y

Figure 6.9: The two dimensional mathematical pendulum with fixed length [, im-
mersing in a liquid.

each of its oscillations. Now assume that the mass point is a metal ball. Then the
ball is decelerated while immersed in liquid due to friction with the liquid, and it
is decelerated while outside the liquid due to friction with the atmosphere.

6.3.3.a A Model for the Immersing Pendulum

The absolute value of the frictional force for turbulent flow in fluid or gas is |Fy,| =
cwbA |v|? [Stoc 93]. In two dimensions the directed force is

P v p
Fy=—cy A |v|? o = —cwyAlv|v

= —cng\/:ic2 + 72 B] = —yVu? + v? [Z] ,

where v := cypA/2 contains all constant terms. Here, p € R denotes the density of
the medium, A € R is the active cross sectional area between body and medium,
and ¢, € R is a geometric constant("). v € R? is the velocity vector. The
Lagrangian for the two dimensional pendulum is

L:T—U-i-%/\G

1 . 1
= om(@® +9°) —mgy + SA@? +y* - ),

()¢, depends on the Reynold’s number. In the case of a smooth ball in a medium the
Reynold’s number is given by Re = (rp|v|)/n, where r is the radius of the ball, p is the
density of the medium, |v| is the speed of the ball, and 7 is the viscosity of the medium.
Taking ¢, as a constant is a simplification.
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where T is the kinetic energy, U is the potential energy, and G is the length
constraint (cf. Eq. (6.2¢)). The Euler-Lagrange equations for systems containing
forces F' that cannot be derived from a potential [Gold 63]

d
LE(,,) — EL% =—-Fy, v=1,...,ng,

with E = [g(l)a§(2)7£(3)]T = [$ay7 >‘:|T7 ng = 37 and F := - i"2+y-2[j"aya0]T
provide the equations of motion

d
Az — a(m:ﬂ) =yii?+ 92,

d, .. .
4w+w—amw=w 2 492,

1
§(w2+y2—l2):0

The corresponding first order system is then

i=u, (6.62)

y=v, (6.6b)

U= i3: — Luv/u2 + 02, (6.6¢)
m- m

b:iy—lv u2+vi—g, (6.6d)
m”  m

0=a+9*-1?. (6.6¢)

Egs. (6.6a)—(6.6e) set up an index-3 DAE. By replacing the length constraint
Eq. (6.6e) with its first total derivative with respect to time

0=zu+yv, (6.7)

an index-2 DAE is obtained.

In simplification we assume that the ball is totally immersed in the liquid when
its barycentre is on or below the liquid surface, i.e., the density p of the medium

is given by
Piq; Y < —h,
p=mw={lq

Pgas; else.

This condition creates a state dependent discontinuity in Eq. (6.6¢) and Eq. (6.6d)
at y = —h as there vy changes discontinuously.

We have chosen to fix a platinum ball of mass m = 1[kg] at the end of the rod
with length [ = 10.0 [m]. Due to the density of platinum pp; = 21.090-10° [kg/m?]
the ball has a radius of 0.0225 [m| and a cross-sectional area of 1.58 - 10~® [m?].
We take ¢y = 0.13, assuming in simplification strongly turbulent flow around the
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value(t)

time t

Figure 6.10: Trajectories for the immersing pendulum. The values for z and y
have been divided by a factor 10.0, » and v have been divided by a
factor 15.0, and A has been divided by a factor 3.0.

ball at any time. The liquid medium is water with a density of piiq := pu,0 =
1.003 - 10® [kg/m?], the gaseous medium is air with an average density of pgas :=
pair = 1.2928 [kg/m3], cf. [Stoc 93]. The distance between pivot and liquid surface
is h = 9.90 [m].

In Figure 6.10 the trajectories for the immersing pendulum have been plotted.
Figure 6.11 shows the results of a numerical sensitivity analysis with respect to
Pliq and pgas With correctly transferred sensitivities at the discontinuities computed
by our algorithm based in the solution of the reduced consistency equations, and
wrong sensitivity information obtained without additional numerical treatment
of the sensitivities at the discontinuities. The corrected sensitivities have been
confirmed in an additional experiment by plain finite differences.

In Figure 6.12 the result of the back-tracing based algorithm is compared with
the sensitivity functions obtained from the algorithm based on the solution of the
reduced consistency equations. While 0z/0pjiq is computed correctly, incorrect
values are generated for Ou/Opgas.- We have observed that in this example all
sensitivities with respect to pjiq are computed correctly by the back-tracing based
algorithm, while it generates incorrect sensitivity information with respect to pgas-

6.3.3.b Parameter Identification for the Immersing Pendulum

Starting from different initial guesses for the liquid and gas densities (cf. Table 6.11)
the task is to reconstruct the nominal values of these parameters by our direct sin-
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Figure 6.11: Sensitivities for the immersing pendulum: Correct treatment of the
discontinuities by hybrid algorithm, and no special treatment of dis-
continuities. The values for 02/0pgas have been divided by a factor
0.03, Ou/0piq has been divided by a factor 0.0085. The spikes in the
corrected sensitivities du/0piq indicate penetrations of the waterline.

gle shooting method. In the experiment 21 equidistant samples of the nominal
trajectory in the interval [0; 10] are provided as measurement data. As optimisa-
tion methods the modified GauB-Newton algorithm LSQFDN [GiMu 78] (NAG"
routine EO4GDF [NAG 94a]), the specialised SQP algorithm NLSSOL (NAG"
routine EO4UNF [NAG 94c]), and the general SQP solver SNOPT [GMS 97a],
[GMS 97b] are employed.

Table 6.11: Initial guesses for parameter identification of immersing pendulum.

set Pgas Pliq
nominal | 1.2928 | 1003
1 1.5 | 700

2 0.4 | 1500

3 0.5 | 1200

In the first series of tests (cf. Table 6.12) the optimisers are provided with the
correct sensitivities. The modified Gau-Newton method delivers the best results
with a small number of function and gradient evaluations. Both SQP algorithms
encounter difficulties with the identification of the density of the gas pgas (0.5 has
been set as the lower bound for this parameter). Not surprisingly, SNOPT as
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Figure 6.12: Sensitivities for the immersing pendulum: Back-tracing based ap-
proach in comparison with correction based on solution of reduced
consistency equations (reference). The graphs are scaled as in Figure
6.11.

a general nonlinear optimisation method requires the most function and gradient
evaluations.

In the second series of experiments summarised in Table 6.13 partially incorrect
sensitivities are used which result from numerical sensitivity analysis in connection
with discontinuity treatment by the back-tracing based algorithm. NLSSOL and
SNOPT in general return inacceptable results. LSQFDN shows higher robustness
against the erroneous gradient information. Only the estimate of pg,s deteriorates
slightly, and the number of NLP function and gradient evaluations increases by a
factor 2 to 3.

In the final series of tests uncorrected numerical sensitivities are used. Table
6.14 shows the resulting behaviour of the optimisers. LSQFDN returns acceptable

Table 6.12: Parameter identification of immersing pendulum: Correct sensitivities
by solution of the reduced consistency equations.

LSQFDN NLSSOL SNOPT

set Pgas Pliq | eval Pgas Pliq | eval Pgas Pliq | eval
1.327 | 1004 5 0.500 998 4 1.960 | 1005 | 13
1.327 | 1004 6 0.500 | 1007 6 0.500 | 1007 | 10
1.327 | 1004 5 1.124 | 1006 4 0.500 | 1008 8

W N =
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Table 6.13: Parameter identification of immersing pendulum: Sensitivities
adapted by back-tracing based algorithm.

LSQFDN NLSSOL SNOPT

set Pgas Piq | eval Pgas Pliq | eval Pgas Piq | eval
1.373 | 1004 | 18 || 13.39 | 965.2 9 4.022 | 986.1 8
1.374 | 1004 | 10 || 3.921 | 996.4 | 5 0.500 | 1004 12
1.374 | 1004 | 10 || 1.325 | 1005 | 4 31.90 | 917.6 | 91 [my

W N =

Table 6.14: Parameter identification of immersing pendulum: Sensitivities without

correction.
LSQFDN NLSSOL SNOPT
set Pgas Pliq eval Pgas Pliq eval Pgas Pliq eval

1.389 | 1003 | 105 my || 4.366 | 1027 | 3 1.230 | 1005 | 11
1.353 | 1004 | 78 ey || 3.328 | 1005 | 6 3.363 | 985.2 | 18
1.471 | 1003 | 241 @y || 2.078 | 991.3 | 4 0.500 | 1200 | 1 ran

W N =

results, but it suffers from severe problems due to the wrong sensitivities. From the
progress of the optimisation it can be seen that the optimiser requires an excessive
number of iterations as it cannot establish convergence. NLSSOL and SNOPT
tend to state convergence at suboptimal points.

6.3.4 Parametric Sensitivity Analysis for C3-Splitter

In Section 6.2.2 our algorithms for the computation of consistent initial conditions
have been applied to the dynamic model of a C3-splitter. The model DAE contains
ng + ny = 1747 differential and algebraic equations, and it is of differential index
2. During a typical simulation run several state dependent discontinuities occur.

In this section parametric sensitivity analysis of the state variable trajectories
of the C3-splitter with respect to n, = 8 model parameters p, € R, v = 1,...,nyp,
is performed. p;, p,, and p; are used for the modelling of the heat transfer within
the condenser (c¢), p, and py are parameters of the pressure controller (PC1), and
P and p; are parameters of the column sump level controller (LC1), cf. Figure 6.3
on page 197. In the scenario considered the temperature controller (TC1) fails.
Parameter pg is used to model this malfunction.

Table 6.15 shows a varying effect of omitting the correct transfer of the sensi-
tivity matrices at the discontinuities. Due to the system dimensions the test has
been restricted to the sensitivities of some of the states of major interest, i.e., on
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Table 6.15: Sensitivity analysis for C3-splitter: Numerical evaluation of the sensi-
tivity functions [O(state variable)/0p,|(t;p), v = 1,...,8, with sensi-
tivity transfer based on solution of the reduced system of consistency
equations, and sensitivity analysis without correction. In case of - the
values obtained by the two methods generate (almost) identical re-
sults, in case of A the results are slightly different, and in case of A
they differ considerably.

state variable parameters
P1 | P2 | P3 | Py |P5 | Ps | Pr | Ps
T, ; ; ; S IATATAT
Ty . A A
T‘nop A A
Piop . . . . AT AL
Fhottom A : : A A A A | A
3 T T T T o Jop —

OFpottom /OPo (uncorrected) +

value(t)

o 200 400 600 800 1000 1200
time t

Figure 6.13: Sensitivity analysis for C3-splitter: Numerical evaluation of the sen-
sitivity function 0Fpottom/0Pe with and without correction.

the sensitivities of the column temperature at the first tray above the column sump
Ty, at the fourth tray T4, and at the column top Tyop, on the sensitivities of the
column top pressure Py,p, and on the sensitivities of the molar flow rate Fyotom of
the product stream leaving the column at the bottom. In most cases the values for
the sensitivity functions obtained numerically with and without extended discon-
tinuity treatment are almost identical (an example is plotted in Figure 6.13). In
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Figure 6.14: Sensitivity analysis for C3-splitter: Numerical evaluation of the sen-
sitivity function 0Fpottom/0Ps With and without correction.

some cases minor differences arise, and finally some of the results of the numerical
sensitivity analysis differ significantly (see Figure 6.14). In general, the sensitivities
with respect to pg and p; are affected by the discontinuities, while the sensitivities
of the states of interest with respect to p, and p; are not affected. Especially the
sensitivities of Fyottom require a correct transfer at the discontinuities.

6.3.5 An Optimal Load-Change Policy for a Cryogenic
Air Separation Plant (I)

The subject of interest in this section is the load-change of an existing cryogenic
air separation plant as described in Section 2.1.2 (cf. Figure 2.2 on page 28). The
task is to decrease the load of the plant from 100 [%] to 60 [%] air input. The
standard procedure for the load-change effectively takes about one hour. For the
computation of optimal control strategies, however, it is necessary to consider an
extended prediction horizon in order to account for large time constants in the air
separation plant, cf. Section 2.1.2. E.g., [Nijs 96] proposes a prediction horizon
which is about two to three times larger than the process response time. For
this example a less conservative prediction horizon [tg, t¢] := [0,6000] [s] has been
chosen. The air separation plant is modelled by a semi-explicit DAE of index 2 (as
reported by SPALG), consisting of ng = 910 differential and ny = 3352 algebraic
equations.

For stable operation and for guaranteed product quality it is of utmost im-
portance that several purity restrictions are not violated during the load change.
These purity restrictions result in lower and upper bounds on six state variables
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(cf. Table 2.2 on page 27). Five constraints refer to product quality, the sixth
constraint is a stable operation constraint. The n, = 5 control variables (GOX
drain, crude Ar drain, Ar condenser turnover, reflux HPC, reflux LPC) describe
the positions of the valves (a)-(e) in Figure 2.2. These control variables are pa-
rameterised by np = 10 parameters using global shape functions according to our
direct single shooting scheme. The path inequality constraints are discretised on
a time grid of 40 equidistant points resulting in™" 6 -2 - 40 = 480 nonlinear point
inequality constraints for the nonlinear programming problem. Furthermore, the
controls are constrained to upper and lower bounds on an equidistant grid with
20 points, amounting to 5 - 2 - 20 = 200 additional nonlinear point inequality con-
straints. The objective function has been chosen such that the product gain is
maximised. However, the primary task is to find a feasible control strategy for
this highly complex plant.

In [EKKS 99], [KKES 01] a closely related optimal control problem has been
treated using an earlier version of our direct single shooting algorithm integrated
into OPTISIM". This version did not contain an algorithm for the numerically
correct treatment of the sensitivities at state and time dependent switching points.
Though, the load-change problem has been successfully solved. A detailed inspec-
tion of the optimisation history using diagnosis facilities implemented in the course
of the presented project shows that during integration only time dependent switch-
ing functions have been active. Le., the switching times were fixed, and thus the
sensitivities of the dynamic initialisation problem were identical with the sensitivi-
ties of the consistent initialisation problem. As a consequence no special correction
of the sensitivities was required.

The initial guess for the optimisation parameters p leads to a breakdown of
the air separation process, caused by several state variables severely violating their
bounds. In Figure 6.15 the time histories of the relevant purities (cf. Table 2.2)
are displayed. After optimisation feasibility of all purities within their lower and
upper bounds is achieved, see Figure 6.16. In both graphs the purities are scaled
to their admissible ranges given in Table 2.2, and the air input is scaled to [60;100]
[%]. The differences between the optimal trajectories displayed in Figure 6.16
and those obtained in [EKKS 99], [KKES 01] can be explained by the usage of a
modified and more detailed model for the rectification columns. In relation to our
earlier results the optimised product gain has been increased by 23% with respect
to [EKKS 99], and by 6% with respect to [KKES 01]. Again, note that the results
are not strictly compatible due to the modified dynamic column model.

The above optimisation generates a feasible transition of the air separation
plant given a fixed interval in time tA = 3600 [s] for the adaptation of the main
air intake. The next step is to find the minimum admissible time span for the
transition of the main air intake that allows to find controls such that the state

(Vi) The states are constrained from below and above. The same holds for the control
constraints introduced below.
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Figure 6.15: Air separation plant: Normalised purities before the optimisation of
the parametrised controls. The symbols are explained in Figure 2.2
and Table 2.2.
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Figure 6.16: Air separation plant: Normalised purities for the optimal

parametrised solution maximising the product gain. For an expla-
nation of the symbols see Figure 2.2 and Table 2.2.

constraints are not violated. For this purpose the basic ramp time is subject to op-
timisation. L.e., the objective is to minimise the interval in which the air intake is
driven to its desired value. This is a considerable change in the optimisation prob-
lem as the new problem contains a parameter dependent discontinuity at ¢ = ¢t
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Figure 6.17: Air separation plant: Normalised purities for the optimal

parametrised solution with minimum transition time. For an expla-
nation of the symbols see Figure 2.2 and Table 2.2.

when the ramp is switched to its final constant value. According to the theory
in such a case consistent initialisation and correct transfer of the sensitivities is
generally necessary. Together with the transition time the parameterised optimi-
sation problem includes np, = 11 parameters. The nonlinear path constraints are
the same as considered above. In order to facilitate the solution of the optimisa-
tion problem the feasible set of parameters maximising the product gain for the
standard transition time is taken as initial guess. As result of the optimisation we
obtain that by employing optimally chosen controls the ramp time can be reduced
by 46% from tA = 3600 [s] to ta = 1960 [s] without violating the path constraints
in a prediction horizon of 6000 [s]. The most important trajectories for the opti-
mised transition are depicted in Figure 6.17. The fast transition is to be payed
for with a decrease of 6% in the overall product gain during the entire prediction
horizon. In industrial practice this small loss is neglectable.

Again, a closer inspection of the sensitivities with respect to tA shows that at
the optimal solution uncorrected sensitivities are identical with the sensitivity func-
tions computed using consistent initialisation and rigorous sensitivity transfer in
spite of the parameter dependent discontinuity, cf. Figure 6.18. This behaviour can
be explained by the special form of the basic ramp function. The basic ramp is a
global C!-function with zero slope at the discontinuity. According to Eq. (4.45) and
Eq. (4.46) the second property can mask off the terms for the corrected sensitivities
containing the parametric dependency of the time of discontinuity. Additionally,
the smoothness of the ramp can implicate that the state vector at lim; », (i.e.,
immediately before the discontinuity) is consistent with the system at limy\ 4, . In
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Figure 6.18: Air separation plant: Sensitivities for the optimal parametrised so-
lution with minimum transition time and smooth ramp, with and
without correction. 3(Og LOX)/8ta has been divided by 2.0 - 1077,
0(02 GOX)/0ta, O(Ar Prod)/0ta have been divided by 4.0 - 1075,
0(03 DLIN)/0ta, 0(02 GAN)/8ta have been divided by 2.0 - 1078,
and 0(0O; feed ArC)/0ta has been divided by 6.0 - 1075, For an ex-
planation of the symbols see Figure 2.2 and Table 2.2.

this case consistent initialisation has no special effect on the system dynamics, cf.,

, [KMG 97], [Hins 97].

When the smooth ramp is replaced by a linear ramp the correct sensitivities
with respect to the transition time (see Figure 6.19) and the result of an uncor-
rected sensitivity calculation (see Figure 6.20) differ significantly. Thus in the last
sequence of calculations the numerical solution of the optimal control problems
(maximum product gain, minimum transition time) is investigated for the linearly
ramped process air intake.

If provided with the corrected sensitivities the direct single shooting algorithm
successfully solves the maximum product gain problem (A = 3600 [s] constant).
The achieved product gain even improves the result of the computation with the
smooth ramp by 3.3%. As can be seen from Figure 6.21 the system dynamics
differ considerably from the smooth transition (compare with Figure 6.16). The
optimal solution utilises the maximum allowed range in the path constraints, but
feasibility is preserved during the entire optimisation horizon of 6000 [s]. Starting
from this parameter set optimisation for minimum transition time based on the
corrected sensitivities gives to = 2174[s]. This is about 210 [s] longer than for
the smooth ramp. In comparison with the maximum product gain policy for the
smooth ramp the gain during the transition reduces by 10%. Shortly after the
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Figure 6.19: Air separation plant: Correct sensitivities with respect to transition
time for linear ramp. The sensitivities are scaled as in Figure 6.18.
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Figure 6.20: Air separation plant: Incorrect sensitivities with respect to transition
time for linear ramp due to inappropriate treatment of discontinuity.
The sensitivities are scaled as in Figure 6.18.

ramp is finished Oy GAN violates its upper bound for a small period in time
(about 150[s]). Though the optimiser states feasibility. This behaviour can be
explained by the peak of Os GAN at the interval in question, cf. Figure 6.22. Due
to the discretisation of the path constrains on a mesh with a distance between two
consecutive points of about 150 [s] the violation escapes from further treatment.
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Figure 6.21: Air separation plant: Normalised purities for the optimal
parametrised solution with maximum product gain and linear ramp.
For an explanation of the symbols see Figure 2.2 and Table 2.2.

1 | 7T | | PR N
/N air input
/ \ O2 LOX -—-
! . s Oy GOX ----
/ \ Oy DLIN. --eeee
08— 7 \ O GAN —-—]
/ \ Ar Prod =--—
/ \ O5 feed ArC ----
/ . B [ U,
: \ / e
064 ____ ~ 2\ 7/ | AT —
= T -
1 / '
2 \
[ . \
> e \
-
0.4 o . e —
, L~ ~
\. - ~
/ - '// \\-
e N IR
02—, s TiTIToI ]
o -
= '/
) BRI EL R T l L
0 1000 2000 3000 4000 5000 6000
time t

Figure 6.22: Air separation plant: Normalised purities for the optimal
parametrised solution with minimum transition time and linear ramp.
For an explanation of the symbols see Figure 2.2 and Table 2.2.

As a countermeasure the sampling grid for the path constraints could be refined.
Additionally, the objective could be augmented by terms penalising the integral
violation of the path constraints, cf. Remark 2.2 on page 38, and Remark 2.6 on
page 55. However, from a practical point of view the violation is tolerable.
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When the gradient information for the parameterised optimal control problem
is generated using uncorrected numerical sensitivity information SNOPT termi-
nates successfully in the maximum product gain scenario with nearly the same
set of optimised parameters as above (the final value of the objective function
increases marginally by 0.05%). As the transition time is fixed in this optimal
control problem (nearly) the same sensitivities are generated as with the extended
discontinuity treatment. Therefore the result is as expected. When minimising
the transition time, however, the sensitivity information is considerably affected
by the parameter dependent discontinuity at the end of the main ramp (cf. Figure
6.19 and Figure 6.20). SNOPT aborts prematurely with the diagnosis that the
set of optimisation variables cannot be further improved. The final value of ta
is 2635 [s], which is 21% worse than the result of the optimisation with correct
sensitivity information.

6.3.6 An Optimal Load-Change Policy for a Cryogenic
Air Separation Plant (II)

As the final test for our direct single shooting algorithm the optimal load-change
for the complex cryogenic air separation plant introduced in Section 6.2.3 is con-
sidered. The mathematical model of this air separation plant in OPTISIM" is
set up by an index-2 DAE with ng + ny = 1832 + 7292 = 9124 differential and
algebraic equations. This is about 2.6 times the size of the DAE used to model the
air separation plant in the preceding Section 6.3.5. Thus this model constitutes the
basis of the largest optimal control problem from chemical engineering application
that has been successfully solved by our algorithm up to now. Additionally, due
to the intricate plant characteristics also from the chemical engineering point of
view the control of this air separation plant is more difficult than the control of
the plant considered in the previous Section 6.3.5.

The load-change task is to decrease the load of the plant from 100 [%] to 60 [%]
air input within tA = 5400[s] (1.5 hours). During the load-change n, = 13
control variables are to be chosen such that 2 - 14 = 28 nonlinear path inequality
constraints(Vi) are not violated. 2-5 = 10 of these path inequality constraint refer
to control variables.

The optimal control problem covers a prediction horizon of [ty, ] := [0, 10800] [s]
(3 hours). By sampling on an equidistant mesh of 30 points in [tg,¢] the path
inequality constraints are transformed into 2 - 14 - 30 = 840 point inequality con-
straints. The control variables are parameterised by n, = 29 parameters.

Remark 6.5:
In this example the dense sensitivity matrix [z, yT]T/0p contains 9124 - 29 = 264596
entries. Thus solely for the integration of the sensitivity matrix during a single integration

(vii)T e, 14 state and control variables are constrained by a lower and an upper bound,
compare Table 2.2 on page 27.
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Figure 6.23: Complex air separation plant: Normalised state constraints at initial
parameter set. The bold horizontal lines at ordinate 0 and 1 indicate
the bounds. The constrained quantities ¢,, u = 1,...,9, are both
bounded from below and above.

step with lowest integration order 1 (backward Euler’s method) roughly(™) 5-264596- 8 ~
10.1 [MB] of memory are accessed (using double precision arithmetics). For an integration
step with highest order 5 about 13 - 264596 - 8 ~ 26.2 [MB] of memory are accessed. ¢

The initial guess for the optimisation parameters leads to a violation of the
constraints as depicted in Figure 6.23. In a first optimisation step feasible controls
are obtained using the extended feasibility phase of SNOPT. In Figure 6.24 the
corresponding trajectories for the constrained states are plotted.

After this a second optimisation is started in order to minimise the nitrogen
intake into the argon refinement section during the transition. Minimising this
nitrogen intake aims at increasing the robustness of the load-change policy by
gaining backup for the nitrogen constraint at the argon transition, cf. Section 2.1.2.
As initial estimate the feasible set of parameters from the previous optimisation is
used. The trajectories of the state constraints for the result of this optimisation
are shown in Figure 6.25. The optimised control strategy decreases the nitrogen
intake into the argon refinement section by 25%.

(ix)1 [MB] = 1024 [kB] = 1048576 [Bytes]
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Figure 6.24: Complex air separation plant: Normalised state constraints at the
first feasible set of optimisation parameters, cf. Figure 6.23.
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Figure 6.25: Complex air separation plant: Normalised state constraints at the
optimised parameter set with minimum nitrogen intake into the argon
refinement section, cf. Figure 6.23.
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Chapter 7

Summary and Outlook

I have learned to use the word “impossible” with the greatest caution.
Wernher von Braun

Starting from a concrete problem from industrial application a new concept
for nonlinear model-based predictive control has been suggested. This concept
extends and specifies currently existing NMPC approaches. A core part of the
concept consists in the repeated calculation of parameterised open-loop optimal
controls by a tailored direct single shooting algorithm. This direct single shooting
algorithm has been integrated into the industrial simulation and optimisation en-
vironment OPTISIM" of the Linde AG, Linde Engineering Division. The models
of the processes of primary interest are given by very large-scale systems of coupled
differential and algebraic equations of index two with state and time dependent
discontinuities.

In order to tackle with the problem of limited computational time available for
the calculation of updated optimal control policies in a real-time setting an algo-
rithm for the fast computation of corrections to a previously determined control
policy has been proposed. The algorithm determines corrections which counteract
a predicted violation of the nonlinear constraints of the optimal control problem in
the presence of disturbances modelled by disturbance parameters. An advantage
of the algorithm is that it uses data which may be available from the previous solu-
tion of the open-loop optimal control problem. Especially, it requires information
on the parametric sensitivity functions of the system trajectory.

A central part of the tailored direct single shooting method is an algorithm for
the integration and parametric sensitivity analysis of very large-scale semi-explicit
index-2 DAEs. The numerically determined sensitivity functions also constitute
a basic piece of information required by the newly proposed algorithm for the
fast calculation of corrections to a nominal control strategy. In this work the al-
gorithm for numerical integration and sensitivity analysis of DAEs incorporated
into OPTISIM" has been extended with methods for the correct numerical treat-
ment of state and time dependent discontinuities present in the process models of
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interest.

In the context of DAEs the correct treatment of discontinuities leads to the
problem of generating consistent initial conditions. This problem is numerically
demanding especially for large-scale higher index DAEs. Based on a review of
existing methods two algorithms for the numerical calculation of consistent initial
conditions for very large-scale semi-explicit index-2 DAEs have been developed
and implemented:

e In the first approach back-tracing is employed in order to obtain numerically
consistent initial conditions by utilisation of special properties of the BDF
integrator method.

e In the second approach consistent initial conditions are calculated in a strict
sense by solution of the reduced consistency equations. In order to obtain
a regular system of reduced consistency equations this rigorous approach
employs structural analysis of a given DAE (Pantelides’ Algorithm) and a
newly developed method for the automatic generation of appropriate transi-
tion conditions. For the approximation of total time derivatives Leimkuhler’s
method is employed. The algorithm only requires numerical evaluations of
the DAE and of its Jacobian, and the structural pattern of the Jacobian.

The transfer of parametric sensitivities at discontinuities in DAEs is closely
related to the determination of consistent initial conditions. Therefore, corre-
sponding to our algorithms for the numerical computation of consistent initial
conditions two algorithms for the transfer of sensitivities at discontinuities have
been implemented. The first algorithm is based on back-tracing and numerical dif-
ferentiation of the jump function. The second, rigorous algorithm is based on the
solution of the reduced system of consistency equations for the sensitivity DAE.
While the back-tracing based approach has shown applicable to smaller problems
only, the capabilities of the rigorous approach have been demonstrated by the suc-
cessful solution of demanding open-loop optimal control problems from chemical
engineering.

A task left to be done is a comparison of the new method for the fast cor-
rection of controls with the Newton-type controller reviewed in Section 2.6.3. An
interesting point are the similarities between both methods in spite of the different
ways that have lead to their development.

Then the next step is — with the proposed NMPC concept, the tailored direct
single shooting method, and the algorithm for a fast correction of the controls at
hand - in tying the elements together in order to perform the step from open-loop
optimal control to closed-loop optimal control of large-scale processes. The missing
link is a suitable algorithm providing an estimate of the process state consistent
with the large-scale dynamic process model as initial conditions to the open-loop
optimal control algorithm.
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Appendix

Algorithms

Algorithm of Pantelides (outline) ... [Alg. 5] 94
Basic MPC Algorithm ............... ... .. oo [Alg. 2] 40

Consistent Initial Conditions for Index-2 DAE, Gaussian Elimination [Alg. 4] 89

Decomposition of Variables for Numerical Differentiation ........... [Alg. 7] 124
Index Reduction and Determination .................ccooiiiiiin... [Alg. 1] 7
Index Reduction: Elimination and Substitution ..................... [Alg. 6] 99
Multistep, Newton-Type Controller ................................. [Alg. 3] 77
Sensitivities after Discontinuities, Back-Tracing and Modified Numerical Differen-
tiation of the Jump Function ............. ... ..., [Alg. 10] 164
Sensitivities after Discontinuities, Numerical Differentiation of the Jump Func-
13103 4 [Alg. 9] 151
Specification of Dynamic Degrees of Freedom ...................... [Alg. 8] 135

Definitions

(Partial/Complete) Assignment, Augmenting Path ................ [Def. 3.2] 93
(Smoothly) Consistent Initial Conditions ......................... [Def. 1.15] 11
(Strictly) Consistent Initial Conditions .............. ..., [Def. 1.12] 9
Active Inequality Constraint of an NLP ........ ... ... ... ..... [Def. 2.3] 56

Admissible Initial Conditions ................ ... ... ..o [Def. 3.6] 106
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Back-Tracing Function for Linear DAEs ............ ... . ... ..... [Def. 3.7] 107
Consistency Equations ........... ... ... .. il [Def. 1.13] 10
Consistent Initial Conditions ...........c..coeuiiiiiiiiiininion... [Def. 1.11] 9
Corresponding Extended System of a DAE ........................ [Def. 1.10] 9
DAE of Hessenberg form ............ ... ... ... ...l [Def. 1.5] 5
Derivative (Array) Equations .............. ... [Def. 1.8] 7
Description of Hybrid Dynamical Systems ....................... [Def. 1.22] 15
Differential Index of a DAE ............ .. ... ...l [Def. 1.7] 6
Differential Index of a DAE, Reformulated ......................... [Def. 1.9] 7
Discontinuity ......... ... [Def. 1.21] 15
Disturbed Optimal Control Problem .............................. [Def. 2.4] 70
Dynamic Degrees of Freedom .................. ... [Def. 1.14] 11
Fundamental Assignment of Structural Values ................... [Def. 1.16] 12
Index-1 Tractability ........ ... [Def. 3.4] 102
Index-2 Tractability ... [Def. 3.5] 103
Linear-Implicit DAE ... . [Def. 1.3] 4
Model Predictive Control ............ ... ... ...l [Def. 2.2] 39
Optimal Control Problem .............. ... ... il [Def. 2.1] 37
Pattern of a Matrix ........... ... i [Def. 1.17] 12
Perturbation Index .......... ... .. [Def. 1.6] 5
Semi-Explicit DAE ... ... [Def. 1.4] 4
Sensitivity Analysis for DAEs ... [Def. 1.24] 22
Solution of a DAE / DAEIVP ... ... ..o [Def. 1.1] 2
Solvability / Solution of Hybrid DAE Systems ................... [Def. 1.23] 16
Solvability of a DAE ... ... [Def. 1.2] 3
Structural Index/Number of Degrees of Freedom ................. [Def. 1.20] 13
Structural Rank of a Matrix ............. ...t [Def. 1.18] 12
Structural Singularity of Sets of Equations ........................ [Def. 3.1] 92
Structurally Inconsistent DAE ... ... ... i, [Def. 3.3] 94
Structurally Nonlinear/Linear Differentiation .................... [Def. 1.19] 13
Well-Posed Parameter Dependent DAE-IVP ..................... [Def. 1.25] 24

Theorems

15* Order NLP Optimality Conditions (KKT-Conditions) ........ [Thm. 2.1] 56
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Convergence of the Back-Tracing Method ....................... [Thm. 3.7] 108
Existence of the Parametric Sensitivities for Multiple Switching Functions in a
Special Case ....... .o [Thm. 4.1] 159
Gear’s k-Step Method on Index-iq Linear DAEs ................ [Thm. 3.6] 107
Maximum Attainable Order of Approximation ................... [Thm. 3.2] 84
Regularity of Projected Consistency Equations ................. [Thm. 3.5] 104
Systems of Distinct Representatives ..................ooiiiii... [Thm. 3.3] 92
Termination of the Algorithm of Pantelides ...................... [Thm. 3.4] 94
Truncation Error of Derivative Approximation ................... [Thm. 3.1] 84

Lemmas

Augmenting Paths & Minimally Structurally Singular Subsets ....[Lem. 3.2] 93
Existence of the Expansion Coefficients ........................... [Lem. 3.1] 84

Sensitivities of a Discontinuous Solution .........ccoviiiiinnnn... [Lem. 4.1] 149

Propositions

Structural Index and Jacobian Patterns ............... ... ... ... [Prp. 1.1] 14
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Index

ABACUSS, 32, 35, 97
ABACUSS 11, 32
ADIFOR, 35, 83
ADOL-C, 79, 83
ADOL-F, 83
ALGO, 101
ALGOU, 101
AspPeEN CusToM MODELLERU, XV,
32
AsPEN DyNAMIcsS[], XV, 32
AUGMENTPATH, 93, 94, 114
DASPK, 110
DASSL, 110
continuously stirred tank reactor, 35
DIVA, 32
DYMOLAO, XV, 35
¢PROMS", XV, 32
HARWELL SUBROUTINE LIBRARY
MAZ28, 138, 141
MAA48, 138, 141, 180
MC21, 93, 135, 138
MC23, 115
MC29, 142
MC41, 138
MC(C45, 138
NS02, 141, 184
NS13, 140, 141, 184
TD12, 126, 127
VAO07, 178, 179
HYSYSO, XV, 32
LSQFDN, 178, 179, 209, 215, 216
LSQFDQ, 178, 179
LSSOL, 189
MapLEL, XV, 79, 112
MATLAB"Y, XV
MBSSIM, 146
NAGY, XV
E04GDF
— see LSQFDN
E04GBF

— see LSQFDQ
E04NCF
— see LSSOL
E04UPF
— see NLSSOL
E04UNF
— see NLSSOL
E04UCF
— see NPSOL
E04CCF, 178
— see simplex algorithm
NLEQ1S, 141, 142, 184, 195, 198-
203
modifications to, 141
NLSSOL, 59, 178, 179, 208, 215-217
NPSOL, XV, 55, 56, 59, 60, 178, 179,
206, 207
OPTISIMP, XII, XV, 32-35, 61, 116,
117, 128, 139, 158, 162, 176—
178, 180, 181, 184, 188, 191,
196, 204, 205, 220, 226, 229
PALG, 96, 101
PALGU, 96
SNOPT, XV, 55, 56, 140-142, 178,
179, 184, 208, 209, 215-217,
226, 227
SOcCsY, Xv, 55
SPALG, 34, 96, 101, 117, 120, 184,
194, 219
SPALGU, 96
SpeeDUPY, XV, 32

academic test examples, 190
active (inequality) constraint, 56
active set, 57

— see SQP
additional control layer, 51
adjoint equations, 23

— see sensitivities
adjoint variables, 66
affine-invariant Newton
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— see solvers, nonlinear
air separation plant, 36, 66
argon column, 29
argon side-stream level, 28
cryogenic, 1X, 25, 48, 54, 199
downstream customer, 48
growing demands, 26
high pressure column, 27
index-1, 37
index-2, 34, 37
large-scale models, 34
load-change, X, 26, 36, 48, 51, 54,
61, 71, 179, 219, 226
constraints, 27, 37, 71
determination of, 37
optimal control problem, 37
low pressure, 27, 28
low pressure column, 28
nitrogen cycle, 27
operated quasi-stationarily, 36
time constants, 29, 219
algebraic constraints, 1, 4, 132
algebraic variables
— see DAE
Algorithm of Pantelides, 8, 89
— see Pantelides’ Algorithm
algorithms, 176
argon, 25
pure, 199
argon column, 29
argon side-stream level, 28
arrival cost, 46
assignment
— see dynamic degrees of freedom,
see Pantelides’ Algorithm
associated sensitivity equations
— see sensitivity equations
automatic control, 43
automatic differentiation, 35, 83, 97
— see ADOL-C, ADOL-F, AD-
IFOR

back-extrapolation, 110

back-tracing, XII, 110, 140, 162, 176,
178, 182, 198, 203, 210, 230
admissible initial conditions, 106
as initial guess, 184
back-tracing function, 108
back-tracing method, 106
BDF, 106
convergence of, 108
integration tolerance, 195
jump function, 162-164
linear constant coefficient DAE,
106
nonlinear semi-explicit DAE
convergence, 163
revert direction of integration, 106
second order derivatives, 167
sensitivities at discontinuity
algorithm, 164
dynamic initialisation problem,
163
initialisation problem, 163
robustness, 168
truncation error, 203
backward difference formulas, 61
— see BDF
base control, 51
batch
— see chemical engineering
BDF, 61, 64, 90, 106, 110, 117, 163,
180, 230
DASSL
— see DASSL
corrector system, 62
Gear’s k-step method, 106
implicit Euler, 90, 163
leading coefficient, 62
modified error control criterion,
62
predictor polynomial, 62
source code, 61
staggered direct method, 180
transition conditions, 162
Bernoulli-Bellman Principle of Opti-
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mality, 37 transition conditions, 130
BFGS, 58, 69 chemical process control, 15

big-M constraints, 81
binary variables, 81
binomial coefficient, XIII
black-box routines, 18
block lower triangularisation, 115, 136
MC23, 115
Dulmage and Mendelsohn, 115
BLT, 115
— see block lower triangularisa-
tion
Bolza form
— see objective function
boolean arrays, 21
boundary value problem
— see BVP
bounds, 124
box constraints, 80, 179
BVP, 66
— also boundary value problem

C3-splitter, 196
Calculus of Variations, 52
— see optimal control

canonical form, 113

carbon dioxide, 25

cascading, 44

chemical engineering, IX, 1, 61, 85,

100, 116, 152, 168, 176, 230
back-tracing, 168
batch processes, XI, 36, 152
continuity of differential variables,
113

disturbance parameters, 66
dynamical process models, 33
flowsheeting, 30
higher index, 34
initial guess, 139
nonlinear process control, 47
phase changes, XI
physical bounds, 124
physical properties, 140, 168, 198
software packages, 32

closed-loop, 52, 177
column rank, 121
combinatorial complexity, 114, 129
combined discrete/continuous system
— see hybrid dynamical system
computer-aided modelling, 30
condition number, 138
LINPACK estimator, 138
MC(C45, 138
convex optimisation, 138
estimation, 137
Hager’s estimator, 138
inverse iteration, 138
iterative estimate, 138
conserved quantities, 113
enthalpy, 113
impulsive changes, 113
mass, 113
consistency equations, XII, 10, 80, 114
as an NLP, 80
construction of, 82
dynamic degrees of freedom, 11
full rank, 89
full rank system, 90
ill-conditioned, 142
not explicitly determined, 106
rank-deficient, 85, 90
reduced, 89, 90, 110, 134, 171,
174, 184
regular, 129, 136
solution of, 139, 184, 230
regular Jacobian, 134
solution of, 79, 80, 97, 178
least-squares sense, 85
nonlinear optimisation, 80
reductions to full-column rank
problems, 85
square system of, 95
unsolvable system, 85
consistent event location, 21
consistent initial conditions, XI, 9, 11,
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15, 22, 47, 78, 80, 98, 99, 110,
169, 171, 230
arbitrary, 11
back-extrapolation, 110
back-tracing, XII, 106, 110, 140,
184
computation of, XII, 89, 180
consistency equations, XII, 184
— see consistency equations
final value, 184
hybrid algorithm, 162
hybrid technique, 98, 176
implicit Euler step, 110
index-2 tractable DAEs, 101
initial backward Euler-steps, XII
initial guess, 139
numerically, 230
numerically consistent, 106, 110,
162, 163, 182
optimisation formulation, 80
perturbation analysis, 111
projection-type method, 111
projector based techniques, XII,
101
related to numerically computed
trajectory, 106
relaxation approach, 111
smoothening, 112
smoothly, 11
solution of a BVP, XII, 108
strictly, 10
topological analysis, 105
two-step method, 105
consistent initialisation, 54, 63, 168,
176, 210
consistent initialisation problem, 78,
81, 156
dynamic, 155, 156
dynamic initial, 154
initial, 154
overdetermined, 114
well posed, 156
constant of integration, 194

constraint manifold, 111
constraint qualifications, 56
constraints, 37, 39, 48, 54, 68, 75
discretisation of, 38
feasibility, 73, 74
linearisation, 72
path inequality constraints, 70
point inequality constraints, 38,
70
continuation method, 110
continuity
differential states, 110
differential variables, 82
continuity conditions, 53, 112, 114,
184
— see transition conditions
automatic determination of, 82
continuous relaxation, 161
contractive constraint, 44
control horizon, 41, 45, 50, 65, 75
control inputs, 110
discontinuous, 113
control intervals, 54
control parameterisation, 45, 53, 68,
160
differentiability conditions, 54
hybrid dynamical system, 161
shape functions, 54
global, 220
shape parameters, 53, 68
specific optimal control, 54
control variables, 82
core, 3
corrector system, 62
corresponding extended system, 9, 10,
98
overdeterminacy of, 98
slack variables, 99
critical points, 157
CSTR, 35
— also continuously stirred tank
reactor

DAE, 1, 49, 70, 78
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algebraic constraints, 1, 4, 146
algebraic variables, 4
partitioning, 86
chemical engineering, 1, 4
core, 3
corresponding extended system, 9
DAE-IVP, 2, 22, 111, 180
well-posed, 24
derivative (array) equations
— see derivative array equations
differential part, 4
differential variables, 4
continuity, 88, 113
disturbance model, 70
dynamic degrees of freedom
— see dynamic degrees of free-
dom
electric circuits, 1, 14, 104
existence and uniqueness, 2
Hessenberg, 5, 104, 105
index, 8
index-2, 108
index-3, 108
hidden constraints
— see hidden equations
hidden equations
— see hidden equations
impasse points, 4
in symbolic form, 78, 82
index
— see index
index-1

linear-implicit, 4
linearisation of, 14
mechanical multibody system, 1,
145, 149
mechanical systems, 105, 111
method of lines, 1, 105
parameter dependent, 22, 180
quasi-linear
index-2, 101
relaxed, 111
semi-explicit, 4, 33
conversion to, 8
index, 8
index-1, 108
index-2, 85
solution, 2
smooth, 11
solution manifold, 3
solvability
distributive, 11
geometric, 4
hybrid DAE, 16
of hybrid systems, 16
uniform, 4
verified a priori, 3
solvable, 3
special forms of, 4
structurally inconsistent, 95
triangular form, 8
index, 8
underlying ODE
— see underlying ODE

semi-explicit, 146 data reconciliation, 33
indiscriminate differentiation of, — see dynamic data reconciliation
89 DC operating point, 105

initial value problem, 2 dead-locks, 21, 184

large-scale DAE, 14 decomposition
linear, 82, 163 QR, 105
canonical form, 113 SVD, 105

defining parameters, 147
degrees of freedom, 14, 115
— see dynamic degrees of freedom
number of, 101

linear constant coefficient, 98, 106
linear implicit, 33, 100, 114
linear time invariant, 45, 113
linear time-dependent, 105
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derivative array equations, 7, 9, 78,
80, 89
construction of, 78, 82
automatic differentiation, 79
formula manipulation, 78
numerical differentiation, 83
index-2, 86
integration of, 78
reduced, 90, 97, 114, 117, 120,
134, 146, 169, 173, 184
set up, 121
structure of, 133
symbolical, 97
derivative equations, 7
— see derivative array equations
design optimisation, 22, 33
deterministic finite automata, 21
differentiable parametric dependency,
24
differential geometric approach, 2
differential index, 5, 6
— also index
differential part, 4
differential variables
— see DAE
differential-algebraic equations, 1
— see DAE
differential-algebraic index, 96
differentiation of the integrator, 61
direct collocation, 52, 53
direct methods, 52
— also direct shooting
constraints, 54
control intervals, 54
control parameterisation
— see control parameterisation
direct collocation, 52, 53
NLP, 53
switching events, 160
switching structure, 160
direct shooting, 85
— also direct methods
direct multiple shooting, 45, 52,

53, 110, 145, 147
continuity conditions, 53
initial conditions, 111
multiple shooting intervals, 53,
111
multiple shooting nodes, 53, 111
parameter identification, 147
relaxation approach, 111
direct single shooting, 21, 37, 53,
66, 70, 176, 220, 226, 229
basic structure, 60
main components, 176
NLP, 54
SQP, 55
transition conditions, 88
directional derivatives, 152
discontinuities, XI, 15, 33, 56, 61, 144,
178, 229
chemical engineering, XI
dead-locks, 21, 184
detection and location of, XI
hidden discontinuities, 17
in dynamical systems, 15
inconsistent switching, 20
instantaneous transition, 15
location of, 17
consistent event location, 21
discontinuity locking, 18, 181
discontinuity sticking, 20
inverse interpolation, 18
local error estimation, 18
natural interpolation, 20
switching functions, 18
mechanical multibody system, XI
no implicitly defined, 85
numerical problems, 17
restart of integration, 17
sequence, 157
state dependent, 36, 37, 213
state events, 17
state-dependent
— also state events
step events, 18
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time dependent, 35
time events, 17
time-dependent, 37
— also time events
discontinuity locking, 18, 63, 181
discontinuity sticking, 20
discrete time formulation, 76
discrete/continuous system
— see hybrid dynamical system
distillation, 25
disturbance model, 70
disturbance parameter, 123
disturbance parameters, 66, 70, 229
disturbances, 42, 51, 70, 71, 75, 229
modelling of, 43
DMC, 43
DOF
— see dynamic degrees of freedom
dog-leg
— see solvers, nonlinear
downstream customer, 48
Drazin inverse, 111
drift, 96, 98, 146
sequential projection, 146
dual-mode controller, 44
Dulmage and Mendelsohn, 115
dummy derivatives, 35, 97, 113, 153
automatic differentiation, 97
dummy algebraic variables, 97
dummy derivative pivoting, 35, 97
Pantelides’ Algorithm, 97
dynamic data reconciliation, 46, 69
wavelet-based strategy, 47
dynamic degrees of freedom, XII, 9,
11, 80, 95, 101, 116, 121, 173
— also transition conditions
assignment
structural check, 135
assignment of, 112
condition-based heuristic, 137
determination not required, 106
high dimensional models, 133
not addressed, 79

not explicitly determined, 106
number of, 81, 86, 88, 99, 113,
117, 129, 161, 162
possible candidates for assignment,
114
structural number of, 14
suitable candidates, 135
unknown declarator, 133
dynamic matrix control, 43
Dynamic Programming, 52
dynamical process, 1
dynamical systems
simulation of, 17

E-node, 93
EAL
— see Pantelides’ Algorithm
edge, 93
EKF, 46, 47
— also extended Kalman filter
EL-DEQ), 52
electric circuits, 1, 14, 104
empirical models, 44
END, 23, 60
— also external numerical differ-
entiation
engineering phase, [X
enthalpy, 113, 132
equation association list, 95
equilibration, 141
MC29, 142
Euler-Lagrange equations, 213
holonomic constraints, 193
optimal control, 52
Euler-Lagrange formalism, 146, 192
exception handling layer, 47
experimental design, 22
extended Kalman filter, 46
external numerical differentiation, 23,
37, 204
— also END

family of optimal solutions, 67
family of solutions, 69
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fast update of near optimal trajecto-
ries, 50
feasibility, 73, 74, 176
feasibility phase, 140, 179, 227
feedback, 40, 46, 52
feedback controllers, 40
final process state, 48
finite differences, 37, 60, 69, 151, 171,
185
— also numerical differentiation
finite impulse response model, 43
flash, 30
hold-up, 162
flowcharts, 176
flowsheet
— see flowsheeting
flowsheeting
flowsheet, 28, 30, 196
graph-oriented description, 30
standard models, 30
steady-state solution, 140
streams, 30
unit libraries, 30
units, 30
forcing functions, 82, 110
— also control variables
discontinuous, 82, 112, 114
step-discontinuities, 82, 110
formula manipulation
MapPLEO, 79
friction, XI
frictional force, 212
full rank system, 11, 90, 115
functions, XIII
fundamental models, 44

Gaussian elimination, 86, 89
Gaufl-Newton
— see solvers, nonlinear

GBDF, 108

final additional methods, 109

initial additional methods, 109

main method, 109

stability, 109

Gear’s Approach, 10
— also ALGO
structural version of, 101
geometric index, 6
geometric solvability, 4
global index, 8
— also differential index
graph
of a function, 3
graph-oriented description, 30
graph-theoretical methods
— see Pantelides’ Algorithm
gravitational acceleration, 193
Gronwall’'s Lemma, 45

H o control, 45
Hamilton-Jacobi-Carathéodory-Bellman,
52
hard zeros, 12
heat exchanger, 31, 131
heat transfer coefficient, 132, 208
helium, 25
Hessenberg
— see DAE
index-2, 110
hidden constraints, 9, 98
— see hidden equations
hidden discontinuities, 17
hidden equations, 9
generation of, 100
high pressure column, 27
higher index
— see index
higher index problems, 7
HJCB, 52
holonomic, 193
holonomic constraints, 149
homotopy, 140
HPC, 27
HSL
— see HARWELL SUBROUTINE LI-
BRARY
hybrid dynamical system, 15
chemical process control, 15
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consistent initial condition, 15
control parameterisation, 161
jump function, 16
MINLP, 161
mode, 15
modelling languages, 133
set of equations, 15
set of transitions, 15
solution, 17
solvable, 17
state space, 15
switching condition, 16
switching function, 16
transition condition, 16
transition function, 16
transition time, 16
hybrid methods (optimal control), 52
hybrid technique, 98

IEEE, 142
IMC, 43, 75
— also internal model control
impasse points, 4
implementation, 176
implicit Euler, 68, 90, 163
— see integrators
implicit function theorem, 100
inconsistent switching, 20
IND, 23, 60, 61, 64, 146, 147, 178, 181
— also internal numerical differen-
tiation
index, 5, 98
arbitrary, 7, 78, 113
conditions, 8
definitions of, 5
differential index, 5-7, 86, 96, 117
global property, 7
differential-algebraic index, 96
geometric index, 6
global index, 8
higher index, 34, 45, 71, 78, 112,
113
implicit, 111
higher index problems, 7

index-0, 7, 121
index-1, 7, 37, 45, 52, 61, 86, 98,
110, 120, 121, 147
discontinuous, 145
linear-implicit, 113
rank condition, 120, 153, 170
index-2, 34, 37, 61, 66, 86, 98, 120
derivative array equations, 86
discontinuous, 161
Hessenberg, 110
semi-explicit, 62, 90, 111, 116,
117, 161, 163, 168, 219, 229
index-3, 98, 149
linear implicit, 146
maximum differentiation index, 6
maximum perturbation index, 6
perturbation index, 5
reduction, 45, 173
drift, 96
dummy derivatives, 97, 153
projection, 97
stabilisation, 97
structural index, 14, 24, 96, 101,
117
arbitrarily high, 14
tractability index, 6, 62, 101
uniform differentiation index, 6
uniform index, 6
index-1 DAE, 52
indirect methods, 52, 65
adjoint variables, 66
switching structure, 160
indirect multiple shooting, 52, 160
inexact Jacobian, 105
infeasibility, 42
initial conditions, 3, 38, 52, 53, 70,
79, 80, 87-89, 130, 153, 161,
169
additional
— see transition conditions
appropriate, 10
feasible user given, 108
admissibility of, 3
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admissible, 106
appropriate, 86, 89
arbitrary, 11, 111
genuine initial value, 113
optimisation variables, 111
regularity condition, 88
steady-state, 162
suitable, 81
transition conditions, 153, 162
initial guess, 32, 139, 140
input variables, 82
— also control variables
instantaneous transition, 15
integral quantities, 113
— see conserved quantities
integrating factors, 113
integrator algorithms, XI
— see integrators
integrators
BDF
— see BDF
collocation methods, XI
Euler’s method
backward, 108, 227
forward, 108
implicit, 68, 90, 163
GBDF
— see GBDF
implicit linear multi-step, 106
multistep methods, XI, 78
local error estimation formulas,
18
one-step, XI
Runge-Kutta, 111
variable-order, variable step-size,
17
interior point, 57
— see SQP
internal model control, 43, 75
internal numerical differentiation, 23,
147, 179
— also IND
finite differences, 147

integration of sensitivity equations,
23
— see staggered direct method
stability (backward error analy-
sis), 23
inverse interpolation, 18

Jacobian, XIII, 2, 119
singular, 2
sparse, 33, 180, 184
jump function, 16, 151, 163, 164
— see transition conditions
derivatives of, 184
numerical differentiation, 230
junction conditions
— see transition conditions

KKT, 56
total differentiation of, 69
krypton, 25

Lagrange form
— see objective function
Lagrange’s equation of motion, 111
Lagrangian
function, 55, 57, 68
differentiable augmented, 55, 58
Hessian of, 57, 60, 69
multiplier, 193
multipliers, 55, 57, 68
quadratic approximation of, 57
Lagrangian DAE, 111
large-scale DAE, 14
late columns, 138
LBVP, 67
— also linear boundary value prob-
lem
LDAE, 111
— see Lagrangian DAE
least squares, 39
— also nonlinear least squares prob-
lems
Leimkuhler’s method, 230
coefficients
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15 total time derivative, 84
existence of, 84
decomposition of variables, 123
disturbance parameter, 123
error control, 125
family of approximations, 83, 122
approximation properties, 83
maximum attainable order, 84

truncation error, 84
forward differencing, 83
linear combinations, 83

pseudo-derivative operator, 124

Taylor’s series expansion, 83
time order, 83
Levenberg-Marquardt
— see solvers, nonlinear
VAO07, 179
linear boundary value problem
— see LBVP
linear DAE-IVP, 24
linear models
— see models, linear
linear MPC
dynamic matrix control, 43
internal model control, 43, 75
model algorithmic control, 43

quadratic dynamic matrix control,

43
stability, 42

linear solvers

— see solvers, linear
linear-implicit

— see DAE
linearisation, 72
linesearch backtracking, 110
liquefaction, 25
LMPC, 42, 75

— see linear MPC
load-change

— see air separation plant
low pressure column, 28

lower left block-triangular matrix, 115

lower level controllers, 44

lowest level control layer, 51
LPC, 28

LQ filters, 47
LU-decomposition, 180

MAC, 43
manifold, 3, 9

differentiable, 3

smooth, 3
mappings, XIII
mass, 113
mathematical pendulum

— see pendulum

matrices, XIII
matrix

dense, 12

Drazin inverse, 111

pattern, 12

sample patterns, 12

sparse, 13

sparsity pattern, 13

structural rank, 12
matrix norm, 138

MC41, 138
matrix pencil

regular, 111
max-function

smooth approximation of, 82
maximum differentiation index, 6
maximum perturbation index, 6
Maximum Principle, 52
maximum transversal, 93, 135, 138

MC21, 135
Mayer form

— see objective function

measurement, 39
measurements, 51, 208

mechanical multibody system, XI, 1,

145, 147, 149
friction, XI
holonomic constraints, 149
merit function, 55, 57
method of lines, 1, 105, 132
MHE, 46
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— see moving horizon estimation
MIDO, 161
— also mixed-integer dynamic op-
timisation
continuous relaxation, 161
screening models, 161
MINLP, 81, 161
— also mixed-integer nonlinear pro-
gramming problem
big-M constraints, 81
binary variables, 81
relaxed, 81
mixed-integer dynamic optimisation,
161
— see MIDO
mixed-integer nonlinear programming
problem, 81, 161
— see MINLP
MNA, 104, 105
— see Modified Nodal Analysis
mode, 15
model
automatically generated, 112
detail knowledge, 131
model algorithmic control, 43
model predictive control, IX, 39, 176
characteristic feature of, 40
constraints, X, 42
control horizon, 41, 50, 65
control structure, 40
dynamic data reconciliation, 46
feedback, X, 40, 46
linear
— see linear MPC
moving horizon, X, 41, 65
multistep algorithm, 75
nonlinear
— see nonlinear MPC
one-step algorithm, 75
optimal control algorithm, 65
optimal control problem, X
optimisation horizon, 41
parameter estimation, 46

prediction horizon, 50
state estimation, 46
— see state estimation
state estimator, 65
tuning parameters, 41
model reduction, 22
modelling, 1
models, linear
finite impulse response model, 43
state space form, 43
step response model, 43
transfer function model, 43
models, nonlinear
combination, 44
DAE, 47
higher index DAE, 45
index-1 DAE, 45
NARMAX, 44
neural networks, 44
ODE, 44
modified error control criterion, 62
modified Gau-Newton
LSQFDN, 179
Modified Nodal Analysis, 104, 105
modified nodal analysis, 62
Moore-Penrose pseudo-inverse, 79
moving horizon
— see model predictive control
infeasibility, 42
robustness, 42
moving horizon estimation, 46
moving horizon observer, 46
MPBVP, 109, 160
— also multi-point boundary value
problem
GBDF, 109
MPC, IX, 39, 40, 51, 65, 74, 75
— see model predictive control
MSS, 92
multi-point boundary value problem,
160
— see boundary value problem
multiple shooting intervals, 53
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multiple shooting nodes, 53
multirate approach, 47
multistep algorithm, 75

Nabla operator, XIV
NARMAX, 44
natural interpolation, 20
necessary conditions, 52, 56, 67
neighbourhood, 24
neighbouring extremals, X
neighbouring parameterised extremals,
50, 65
approximate Hessian, 69
disturbance parameters, 66
family of optimal solutions, 67
indirect methods, 65
KKT-conditions, 69
linearisation of, 65
repeated correction method, 67
Riccati ODE, 66
second order sufficient conditions,
66
solution differentiability, 66
truncated Taylor’s series expan-
sion, 67
neon, 25
neural networks, 44
Newton-type control, 42, 75, 230
constraints, 75
QP, 75
sensitivity information, 75
Newton-type solvers
— see solvers, nonlinear
nitrogen, 25
nitrogen cycle, 27
NLP, 43, 53, 54, 68, 111, 160
— also nonlinear programming prob-
lem
active (inequality) constraint, 56
active constraints, 68
constraint qualifications, 56
constraints, 68
family of solutions, 69
general, 55

KKT, 56
Lagrangian function, 55, 57, 68
Lagrangian multipliers, 55, 68
large-scale, 55
necessary conditions, 56
quadratic objective, 58
second order sufficient conditions,
68
sensitivity analysis, 68
warm start, 44
NMPC, 39, 42, 77, 188, 229
— see nonlinear MPC
nominal parameter, 65
nominal solution, 66
nominal trajectory, 74, 75
nonlinear least squares problems, 59
nonlinear model-based predictive con-
trol
— see nonlinear MPC
nonlinear models
— see models, nonlinear
nonlinear MPC, X, 39
cascading, 44
contractive constraint, 44
control concept, X, 229
dual-mode controller, 44
fast online update technique, X
linearisation, 75
linearisation approaches, 45
Newton-type controller
— see Newton-type controller
NLP, 43
nonconvexity, 44
relaxed control problem, 44
robustness, 44
stability, 44
guaranteed, 44
terminal equality state constraint,
44
terminal penalty, 44
terminal region, 44
nonlinear programming problem, 43
— see NLP
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nonlinear solvers
— see solvers, nonlinear
nonlinear system of equations, 105
rank-deficient, 98
nonzeros, 12
number of, 81
numerical differentiation, 162, 187, 204
— also finite differences, see Leimkuh-
ler’s method
TD12, 126
approximation of sensitivities, 23
directional derivatives, 152
error estimates, 126
limited function precision, 127
round-off error, 123, 126
truncation error, 126

object oriented programming, 178
object request broker, 178
objective, 48
least squares, 39
quadratic, 58
objective function, 71
Bolza form, 38, 52
Lagrange form, 38, 52
Mayer form, 38, 52, 70
penalty terms, 38
ODE, 1, 44, 45, 49, 66, 68, 71, 121,
132, 156
black-box routines, 18
discontinuous systems of, 143, 149
sensitivity equations, 143
existence and uniqueness, 2
sensitivity analysis, 69
underlying
— see underlying ODE
one-step algorithm, 75
open-loop, 52
operator, 48
operator training, 33
optimal control, 22, 32, 51, 152, 160
Calculus of Variations, 52
constraints, 61
direct methods

— see direct methods

Dynamic Programming, 52

Euler-Lagrange differential equa-
tions, 52

Hamilton-Jacobi-Carathéodory-Bellman,

52
hybrid methods, 52
indirect methods, 52
— see indirect multiple shooting
Maximum Principle, 52
necessary conditions, 52, 67
index-1 DAE, 52
switching structure (change in),
161
optimal control concept, 48
base control, 51
computation of optimal controls,
50
constraints, 48
fast update of near optimal tra-
jectories, 50
final process state, 48
lowest level control layer, 51
measurements, 51
objective, 48
operator, 48
parameter estimation algorithm,
50
plant, 51
process, 51
process model, 49
setpoint trajectory tracking con-
trol, 50
state estimator, 50
optimal control problem, 38, 85, 111
constraints, 179
disturbances, 70
disturbed, 70
general, 178
initial conditions, 38, 70
long term, 37
NLP, 54, 71
nominal trajectory, 74
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objective function, 38, 70
parameterised, 59-61
path inequality constraints, 38, 70
point inequality constraints, 38,
70
regulator task, 75
optimisation
algorithms, 178
general NLP, 178
quadratic objective, 178
box constraints, 179
counstrained, 178
parameter identification, 145, 179
optimisation formulation, 80
box constraints, 80
desired initial values, 80
MINLP, 81
approximated, 81
complementary conditions, 82
optimisation horizon, 41
— also prediction horizon
optimisation problem, 73
ordinary differential equations, 1
— see ODE
oxygen, 25

Pantelides’ Algorithm, 10, 34, 96, 98,
113, 114, 117, 119, 120, 173,
184, 194, 196, 200, 230
— also PALG, SPALG
assignment, 92
construction of, 93
combinatorial problem, 91
depth-first search, 94
differential index, 96
dummy derivative method, 97
dynamic degrees of freedom, 95
EAL, 95, 118
equation association list, 95, 118
graph-theoretical methods, 93
— see AUGMENTPATH
MC21, 93
assignment, 93, 112
augmenting path, 93

bipartite graph, 93
complete assignment, 93
E-node, 93
edge, 93
exposed node, 93
matching edges, 93
partial assignment, 93
reassignment, 93
V-node, 93
index-1 system, 169
minimally structurally singular, 92
MSS, 92
necessary condition, 92
new constraints upon differentia-
tion, 90
pattern of the Jacobian, 95
reduced consistency equations, 117
square system, 95
structural index, 96
structurally nonlinear differentia-
tion, 95
structurally singular, 92
termination of, 94
underdetermined system, 95
unnecessary differentiations, 121
VAL, 95, 118
variable association list, 95, 118
parameter estimation, 22, 39, 46, 50,
178
— also parameter identification
parameter fitting, 33
parameter identification, 50, 145, 147,
207
— also parameter estimation
parameterisation of controls
— see control parameterisation
parameters, 21
parametric sensitivity analysis
— see sensitivity analysis
path inequality constraints, 38, 70
pattern, 12, 95
PDE, 1
— see method of lines
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hyperbolic, 132 quasi steady-state, X, 45, 130, 139,
penalty, 75 197, 200
penalty parameters, 57 — also steady-state
penalty terms quasi-infinite horizon NMPC, 44, 45
constraints, 38 quasi-linear
pendulum, 192 — see DAE
perturbation analysis, 111
perturbation index, 5 rank condition, 120, 153, 170
phase changes, XI rank-deficient, 85, 90
physical properties, 140, 168 real world problems, 190
PID controller, X, 39, 44 real-time, 74, 229
plant, 51 real-time requirements, 50
point inequality constraints, 38, 70 receding horizon estimation, 46
potentials, 113 rectification, 25
powers of two, 142 column, 220
pre-solvers, 184 reduced
precalculated information, 74 derivative array equations
prediction horizon, 37, 50, 75, 77 semi-explicit index-2, 119
— also optimisation horizon reduced consistency equations, 90
extended, 219 reduced derivative array equations, 90
predictor polynomial, 62 structurally nonsingular, 94
pressure, 132 structurally singular, 94
process, 51 redundant coordinates, 146
process model, 49 reference parameter
process response time, 219 — see nominal parameter
projection, 97 reference trajectory, 75
projector, 101 regularity condition, 88
by Householder decomposition, 105 regulator task, 75
by Singular Value Decomposition, reverse-communication, 141
105 RHE, 46
pseudo-derivative operator, 124 — see receding horizon estimation
pure integrator, 162 Riccati ODE, 66
Riemann sum, 68
QDMC, 43, 75 robustness, 42, 44
QP, 57, 73, 75, 188 Rolle’s Theorem, 21
— also quadratic programming prob-  yound-off error, 12, 123, 126, 142, 174
lem estimation of, 126, 127
LSSOL, 189 free of, 14
QR, 105 Runge-Kutta, 111
quadratic dynamic matrix control, 43
quadratic programming problem screening models, 161
— see QP second order derivatives, 60
quasi GauB-Newton second order sufficient conditions, 66,

LSQFDQ, 179 68
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— see SSC 61
semi-explicit dynamic degrees of freedom, 173
— see DAE integration of, 23, 37, 60, 61
sensitivities, XII, 22, 37, 68, 74, 76, truncation error control, 64
153 linear DAE-IVP, 24

adjoint equations, 23, 60
computation of, 180
consistency, 174
consistent initialisation problem,
156
dynamic, 155, 156, 162
dynamic initial, 154
identical, 156
initial, 154
critical points, 157
for discontinuous DAEs, 145, 149,
176

for discontinuous systems of ODEs,

143, 145, 149
in discontinuous systems, XII
initial values of, 144
loss of differentiability, XIII
numerical differentiation, 23
of the switching time, 145, 155,
170
sensitivity equations, 23
— see sensitivity equations
transition conditions, 144
Wronskian, 147
sensitivity analysis, 22, 32, 74, 178,
229
for NLPs, 68
sensitivity DAE, 24, 37, 173, 230
— see sensitivity equations
sensitivity differentials, 67
sensitivity equations, 23, 63, 143, 144,
173
BDF, 64
consistency equations
reduced, 174, 230
derivative array equations
reduced, 173
differentiation of the integrator,

not solvable, 24
staggered direct method, 61, 64,
180
structural index, 24
structural properties, 173
transition conditions, 174
truncation error control, 180
sensitivity functions, XII, 22, 59, 60,
178, 180, 229
— also sensitivities
sensitivity matrices, XII, 22, 63, 69
— also sensitivities
sequential linear programming prob-
lem, 82
— see SLP
sequential quadratic programming, 57
— see SQP
sequential-modular, 32
setpoint trajectory tracking control,
50
shape functions, 54
global, 220
shape parameters, 53, 68
short-cut method, 74
simplex algorithm, 178
E04CCF, 178, 179
simulation, 32
simulation tools, 32, 112
no symbolic manipulations, 121
sequential-modular, 32
simultaneous equation-oriented, 32,
140
simultaneous-modular, 32
simultaneous equation-oriented, 32, 140
simultaneous-modular, 32
singular value decomposition, 79
SLP, 82, 111
— also sequential linear program-
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ming problem
smoothening, 112
soft zeros, 12, 115
solution differentiability, 66
solution manifold, 3, 106
solvability
— see DAE
solvers, linear
MA28, 138, 141
MAA48, 138, 141, 180
direct, 180
equilibration
— see equilibration
LU-decomposition, 180
Moore-Penrose pseudo-inverse, 79
sparse matrix techniques, 62, 105
solvers, nonlinear
SNOPT, 140, 184
affine-invariant Newton, 142, 184
— also NLEQ1S
continuation method, 110
dog-leg, 141, 142, 184, 198, 199,
201, 203
— also HSL (NS02)
GauB-Newton, 79, 82
global convergence properties, 140

Levenberg-Marquardt, 79, 140, 141,

184, 201, 203
— also HSL (NS13)
matrix equilibration, 141
modified Newton, 110
Newton-type, 32, 105
quasi-Newton, 128, 180
scaling, 141
sequential linear programming, 79
special iterative, 79
steepest descend residual minimi-
sation, 79
sparse matrix techniques, 105
sparsity pattern, 13
specific optimal control, 54
SQP, 37, 45, 53, 55, 111, 160, 184
— also sequential quadratic pro-

gramming
NLSSOL, 59, 179
NPSOL, 55, 179
SNOPT, 55, 179
SOcCs”, 55
active set, 57
algorithms, 178
approximated Hessian, 58
C? differentiability, 55, 161
direction of search, 57
discontinuities, 56
feasibility phase, 140
interior point, 45, 57
Lagrangian function
differentiable augmented, 57
line-search, 55
merit function, 55, 57
penalty parameters, 57
second order derivatives, 60
state-of-the-art, 55
step length, 57
test function, 57
trust region, 55
SSC, 66
— also second order sufficient con-
ditions
stabilisation, 97
stability, 42, 44
definition of, 42
guaranteed, 44
stability region, 75
staggered direct method, 61, 64, 180
standard models, 30
state estimation, 46, 50
extended Kalman filter, 46
moving horizon estimation, 46
arrival cost, 46
multirate approach, 47
real-time requirements, 50
receding horizon estimation, 46
state events
— see discontinuities
state space form, 43
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8.7 Index

stationary point, 9
steady-state, 32, 111, 112, 162
— also quasi steady-state
step events
— see discontinuities
step response model, 43
step-discontinuities, 82
streams, 30
structural analysis, 230
structural calculus, 12, 101
hard zeros, 12
nonzeros, 12
pattern, 12, 95
soft zeros, 12, 117
structural differentiation, 13
linear, 13
nonlinear, 13, 95
structural index, 14
structural number of degrees of
freedom, 14
structural properties, 14
structural rank, 12
structural representation, 12
structural differentiation, 13
structural index, 14
— see index
structural number of degrees of free-
dom, 14
structural properties, 14, 120
structural rank, 12
structural representation, 12
subset of equations, 90
SVD, 105
switching condition, 16, 155, 170
switching function, XI, 16, 38, 146,
149, 151, 161
generate code automatically, 18
transversality condition, 145, 155,
170
switching functions, 33, 70, 143, 153
e-band, 21
active, 164, 171
critical points, 157

design of, XI
finite differences, 171
higher order time derivatives, 21
multi-dimensional, XII
numerical differentiation, 187
real-valued, XII
roots of, 143
touching point, 157
touching points, 157
transversality condition, 157
vector of, 156
switching manifold, 20, 157, 184
switching structure, 160
system output map, 76

Taylor’s series expansion, 83, 122
— also truncated Taylor’s series
temperature, 132
terminal equality state constraint, 44
terminal penalty, 44
terminal region, 44
test function
— see merit function
thermal separator, 30
time constants, 29, 48, 65, 219
time events
— see discontinuities
time scales, 42, 45
total control concept, 47
total time derivatives
approximation of, 98
reliable and fast generation, 121
tractability index, 6
tractive force, 193
trajectory tracking control, 74
transfer function model, 43
transition condition, 16
transition conditions, 82, 88, 89, 129,
130, 153, 162, 168, 169, 174,
184
— also dynamic degrees of free-
dom
appropriate, 82, 98
appropriately specified, 90



Appendix

253

assignment problem, 112
hypothetical equations, 115
non-uniqueness, 113
uniquely determined, 113, 197

automatic generation of, 82, 112,

185, 230

autonomous and explicit, 156

background knowledge, 131

by BDF integrator, 162

check, 114

chemical engineering, 113

circumvent by NLP, 113

combinatorial complexity, 114, 129

complete enumeration, 114

condition-based heuristic, 137

continuity, 88, 110, 112-114, 129,

130

general case, 131

higher index, 112

inappropriate, 85

jump function, 144, 146, 149

knowledge about the problem, 115

possible candidates, 114

potentials, 113

provided by user, 112

smooth virtual transition, 113

specification of, 112, 133

user given
appropriate, 101
relaxed quality requirements, 80

transition function, 16

— see transition condition

transition time, 16

transversality condition, 145, 155, 157,
170

truncated Taylor’s series expansion,
65, 67, 111

truncation error, 126, 203

estimation of, 126, 127
truncation error control, 64, 180, 201
two-stage controller, 44

underlying ODE, 8, 9, 152
generation of, 100

not unique, 9
uniform differentiation index, 6
uniform index, 6
uniform solvability, 4
unit libraries, 30
units, 30
unsolvable system, 85
UODE, 8, 54, 82, 98

— see underlying ODE

V-node, 93
VAL

— see Pantelides’ Algorithm
valve, 36
variable association list, 95
variational calculus, 67

— see Calculus of Variations
vectors, XIII

warm start, 45
— see NLP
wavelets, 47
well-posed, 24
Wronskian, 147

xenon, 25
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