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VI NOTATION

Used notation and symbols

The rules for the typesetting and the location of indices are inspired by the conventions used in the book
of Roberson and Schwertassek [115] and explained below in Table 1. Used symbols and their meaning
are listed alphabetically in Table 2 on the next page.

TABLE 1: Notational conventions adopted in this work.

entity typeset/convention scheme remark
physical vectors and dyadics (1st and
2nd rank tensors) w.r.t. a certain ref-
erence frame/point y.

roman, bold, left sub-
script index optional

yx if y omitted then y is cen-
ter of mass

scalar or matrix (n-dim. array of
numbers)

italic x Dimension from context

one-dimensional matrix, components round brackets around
array

(·) per default column ma-
trix

two-dimensional matrix, components square brackets around
array

[·]

matrix representation of vec-
tor/dyadic yx resolved w. r. t. a vector
base ze

italic,left superscript in-
dex

z
yx

block matrix roman, greek or latin,
mostly capital

X prominently blocks ∈ R6

and ∈ R6×6

individual matrix entry right subscript index set xij
block i, j of block matrix right subscript index set

in square brackets
X [i,j] dimension from context

matrices concerning MBS eq. in state
or joint space form

calligraphic, capital X

matrix in coordinate representation C left upper index in 〈〉
brackets

〈C〉x C is a letter abbrevi-
ating the representation,
see 2.1.2 on page 11

matrices involved in inboard and out-
board sweeps in spatial recursions

left upper index.
↑denotes outboard, ↓

inboard matrices

x↑,x↓

class identifier sans serif Class
message symbol in a dataflow proto-
col of recursive algorithms

sans serif xn x denotes a matrix, n a
port index

constructs in a programming lan-
guage

typewriter Code

graph sets Fraktur G



NOTATION VII

TABLE 2: List of important symbols.

symbol entity unit/dim. explanation/definition
〈A〉 absolute coordinate representation denotes absolute coordinate repre-

sentation for the following matrix
e unit column vector ∈ RN

〈B〉 body-fixed coordinate representation denotes body-fixed coordinate repre-
sentation for the following matrix

c index denoting center of mass (frame)
of a rigid body

C connectivity matrix see (2.28)
C joint space matrix of gyroscopic

forces
RNd

∆ block matrix of stacked Np relative
spatial joint velocities

∈ R6Np

E energy [J] right lower index denotes type
xe vector basis valid in frame Fx Right handed orthonormal system.
Eφ manipulator rigid outboard shift trans-

formation operator
∈ R6Np×6Np N ×N blocks

Eψ articulated shift transformation opera-
tor

∈ R6Np×6Np

f spatial force matrix ∈ R6 see Table 2.1
f block matrix of stacked Np spatial

force matrices
∈ R6Np

F force vector
Fn coordinate frame = tuple of a reference point On and a

vector base {On, n
e}

G joint space matrix of gravitational
forces

RNd

H joint Jacobian ∈ R6×m m is number of joint’s motional d.o.f.
H stacked joint Jacobian matrix ∈ R6Np×m m is total number of motional d.o.f.
I unit matrix
I index denoting the inertial reference

system
〈I〉 inertial coordinate representation denotes inertial coordinate repr. for

following matrix
xJ tensor of moments of inertia w. r. t. a

reference point Ox

∈ R3×3 footnote on page 9

J manipulator Jacobian matrix ∈ R6×Nd see Section 3.2.2.1
Jc constraint Jacobian ∈ RNcc×Nd see Section 3.2.4
l vector of internal angular momentum
L vector of angular momentum
Λ operational space inertia ∈ RNcc×Ncc see (3.62)
m mass [ kg]
M spatial inertia matrix ∈ R6×6 see Table 2.1
M stacked block-diagonal inertia matrix ∈ R6Np×6Np

M joint space manipulator mass matrix ∈ RNd×Nd
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symbol entity unit/dim. explanation/definition
Nx number/dimension of s.t. denoted by x ∈ N dimension of column vector
Ncc total number of contact constraints ∈ N

Nd total number d.o.f. in MBS ∈ N

Np total number of interaction ports in a multi-
body component diagram

∈ N

N+ total number of bodies (or any other entities)
in MBS

∈ N

ω vector of angular velocity
Ω spatial angular velocity matrix ∈ R6 see Table 2.1

O(Nx) the complexity of a numerical multibody algo-
rithm.

N is the number of bodies, x
the order

P articulated body inertia matrix ∈ R6×6

φy,x rigid body transformation matrix from frame
Fx to Fy

∈ R6×6 see (2.18)

Φ stacked rigid manipulator velocity transforma-
tion

∈ R6Np×6Np see (2.35)

Πx spatial momentum matrix w. r. t. a frame Fx ∈ R6 see Table 2.1
Πi internal spatial momentum matrix ∈ R6 see Table 2.1
ψy,x articulated shift matrix from frame Fx to Fy ∈ R6×6 see Section 3.1.3
ψi,i−1 articulated shift matrix from frame Fi+1 to Fi ∈ R6×6 see Section 3.1.3

Ψ stacked articulated manipulator force transfor-
mation

∈ R6Np×6Np see Section 3.1.3

q column vector of joint position variables, in
case of 1 dof joints

∈ RNd

qp, qv column vectors of positional and velocity state
variables

qa column vector of acceleration variables
rx,y position vector from location Ox to Oy
2R

1
rotation matrix ∈ R3×3 Rotates from F2 to F1, see

(A)
R diagonal matrix of gear ratios see Section 3.2.1
T transposed matrix r.u. index

Tφ stacked rigid body transfer matrix ∈ R6Np×6Np

τ torque vector
θ column vector of drive positions
u column vector of generalized applied forces
v vector of translational velocity
V spatial velocity matrix ∈ R6 see Table 2.1

1, 2, 3, n indices denoting interaction ports in multibody
entities

+ symbol denoting the total MBS
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Outline

The work aims on resolving some problems arising from the intermingling of mathematical modeling of
robotic mechanisms, numerical schemes, and implementation and integration into a whole robot control
software architecture in common practice. The solution proposed in this thesis is a carefully designed
object-oriented class hierarchy supporting the robot control engineer in the processes of specifying, im-
plementing, and performing multibody computations required in robot control systems.

The standard approach to multibody computations is to realize separate models for different applications
of the same robot resulting in stand-alone numerical schemes—of course relying on individual ideal-
izations and formalisms. This common procedure is nowadays no more sufficient as the demand for
model-based robot control is growing and integration of an increasing number of schemes becomes a key
enabler. The problem of integration is tackled here by means of an object-oriented methodology consol-
idating the several conceptual levels of robot modeling, involving abstract, mechanical, numerical, and
software representations of the same system under consideration, the robot mechanism.

The common ground for the numerical schemes as well as their implementation is a new paradigm for the
precise description of the robot’s mechanical components and the desired computations. The numerical
and mathematical description of the governing equations is captured by a new port-based extension of the
mathematical framework of symbolic spatial operators. A series of multibody algorithms, standard ones
as well as some new for special purpose are recasted in object-oriented form and categorized according to
this paradigm. A new dataflow-driven model of computation is proposed for the efficient implementation
of recursive algorithms, which directly applies to object-oriented software systems. This alleviates the
coupling of several models, as shown by some selected example applications, and justifies the effort of
applying this methodology for robot dynamics computations.





1

Chapter 1

Introduction

1.1 Motivation

The description of robotic motion, comprising fast movements of manufacturing robots as well as legged
locomotion of a humanoid robot, requires models describing approximations of particular aspects of re-
ality. Models are indispensible when robots move and when they interact with their environment. Pro-
cessing and interpretation of perception data or strategies to autonomously execute predefined tasks, all
must be specified and performed in terms of abstractions of the real robot and its world. When speaking
of a model, however, its final representation will be segments of code running on one or more digital
computers that control the energy applied to the actuators.

A very powerful abstraction amenable to further analytical treatment as well as to implementation on
digital computers is a mathematical representation of general physical laws and processes governing the
physical properties of the robot. We further refer to such a representation as a mathematical model.

The dominant features of reality to be modeled in robotics are the macroscopic mechanical properties
of a robot’s mechanism. This comprises its desired motion, its actuators, sensors and interaction with
the physical environment a robot exists in. A mathematical model describing all this is referred to as a
mechanical model.

A computer program or portions of code that can be executed are called a computational model if they
represent certain aspects of a mathematical or mechanical model. The most prominent is the numerical
calculation of kinematical and dynamical quantities determining robot motion.

If relevant properties of a model are caught by an abstract representation, this representation by itself is
a model, referred to as abstract model or a model specification. The model specification is sufficiently
detailed, if one can deduce all required properties of the model from the specification.

The objective of this work is twofold. First, a seamless and modular way is shown how computational
models emerge from corresponding abstract mechanical models. This problem belongs to the domain
of computational mechanics. The resulting computational models provide the physical state of the robot
required by hard- and software controlling its motion, cf. Figure 1.1. It should be noted, that models
can be involved in each part of a robot software down to the level of actuator control. Here, models are
discussed which describe aspects of the complete mechanism. Second, design principles are proposed how
the involved computational models can be defined and decomposed to integrate well in a robot control
system architecture. This process of integration into a large software-based system requires methods
from the domains of multibody system dynamics, systems and software design, and applied robotics,
each imposing specific constraints on the proposed solution.
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Robot software

System control software

Man machine interface

Operational software layer

RT control layer

Operational software layer

Descriptions

Robot Data Problem

Computational model

Dynamics Kinematics

Criteria

InfrastructureRobot

Robot

Control

System

Actuator control software

FIGURE 1.1: Categorization of a robot software system according to [73]. This work concentrates on those abstract
and computational models living mainly in the operational software layer on the right side.

The science of how to create computational models of complex mechanical systems is called multibody
system (MBS) dynamics. The main objective is to investigate the evolution of physical quantities with
respect to time, briefly denoted by the dynamics, to establish equations of motion and to derive numerical
schemes for their efficient evaluation. The astonishingly complex non-linear dynamics of this kind of
systems stems predominantly from the coupling of small and simple systems to larger ones, usually bodies
connected by joints. The research field of rigid MBS has reached a maturity in the last three decades,
indicated by several landmark books by Wittenburg [149], Featherstone [40], Roberson and Schwertassek
[115], Murray et al. [98], to name only a few. An immense variety of formalisms and algorithms to create
computational robot models for a vast range of possible applications has been developed by scientists in
the field of computational mechanics, see, e. g., Schiehlen [123].

At first sight it would be sufficient to establish the equations of motion of the robot just symbolically and,
if available, apply a sufficiently powerful symbolic formalism to derive all desired further equations and
to generate code. There are some approaches, e. g., [95] , that follow this idea, but fail in many real-world
applications due to the following practical constraints. In case of a robot control system, which is often an
embedded system with hard real-time constraints, one is faced with robotics domain specific constraints:

(i) Efficiency: There can be various possibilites to solve a system of equations numerically. Each
variant may be efficient for a certain regime. The most prominent example in robot dynamics
are so-called O(N)-formalisms and composite rigid body algorithms. The former outperforms
the latter only for systems with more than five bodies [91]. This valuable domain-knowledge is
hard to capture in a completely automized procedure. Furthermore in a complex software system
the required reuse of results imposes additional constraints on generated code not implicated in a
symbolic approach.

(ii) Limited resources: Resources might be limited, so either symbolic code generation requiring a
compile-to-code step is not possible. Or in presence of switching or hybrid behaviour it is hard to
store models for each system state due to combinatorial explosion.

(iii) Maintenance: Totally automatically derived code is hermetic in several senses, because in most
cases the numerical scheme itself is an neglectable amount of code in comparison to interfacing the
results to the rest of the application, it is often impossible to trace errors and to debug because there
is no transparent relationship between the equations and the code.
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(iv) Safety: Robotics is an extremely safety critical domain because man-machine interaction mandates
avoidance of damage and injury to humans. Still it is hard to formally verify the correct function of
completely automatically generated code and often manual coding is still preferred in practise.

Each dynamics algorithm has its strength and advantages but relies on certain modeling assumptions and
axioms. In implementation, e. g., in a real-time control system for one certain type of robot, maximum
performance is mandatory and the system designer is forced to integrate various algorithms and balance
precision, generality, run-time characteristics, and implementation effort of a model or formalism. Effi-
cient solutions often exist but, which is typical of robotics, often are problem specific, see e. g., [134, 150].
In research and industrial environments this balancing currently is repeated each time a new type of robot
or control system is developed depending on the current state-of-the-art, and often software is developed
by manual coding. One flexible and efficient solution to this problem is re-use and configuration instead
of new implementation.

The central topic of this work are these numerical schemes for multibody computations with emphasis on
the class of recursive methods, because they have shown to be most efficient. The idea is to go beyond
’pure’ implementation of numerical algorithms, where function and efficiency are dominant aspects, and
extend to a systems view. A dynamics algorithm inevitably is part of a larger problem architecture. It ex-
ists within a software and hardware architecture as well, where not necessarily mathematically described
aspects are of concern to the user. The classical simulation environment used by mechanical engineers
is just one concrete realization by means of time-integration. Obvious aspects are the interaction with
a changing physical environment, communication, flexibility, time-to-market, especially in the field of
real-time robot control. To put it in other words: A mathematical formalism and its realization is one way
to model a complex technical system. Hatley and Pirbhai stress this important aspect that modeling may
not be restricted to a numerical formalism and its implementation. A complex technical system requires
to model the requirements and the design:

[. . . ] components that make up a system—both hardware and software components—
are highly interrelated, and, in order to successfully perform their intended function, they
must integrate well. The system specification process, therefore, must define the system as a
whole, as well as its partitioning into hardware and software components. It must define what
problem the system is to solve (its requirements) and how that system is to be structured (its
architecture or design structure). [51]

Here we follow a similar idea to focus on design principles to systematically solve the problem of per-
forming multibody computations in robot control. Structured methods can help to approach the vision
of a unified MBS model in a robot control system, which does not mean the naïve concentration on one
outstanding formalism. The focus is not just the model itself, but also its behaviour and its meaning in
various contexts. Though the procedure is the generation code solving MBS equations from a simple de-
scription of the system elements, the viewpoint is that of a general mapping from multibody-formalisms
to a space of abstract (software) entities without sacrificing the power of specialized domain-specific MBS
algorithms.

There are several possibilities to structure this kind of problem. This work follows object-oriented (oo)
modeling and component-oriented design to simplify model and code generation and software reuse. One
main motivation to employ object-oriented analysis is that the analogy between the physical model and the
software model is very fruitful [1], because formulating a problem in terms of notions from the problem
domain increases comprehensibility. An object-oriented model is a key enabler for another reason: it can
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be combined with general principles of software engineering, such as separation of concerns, correctness,
reliability, and robustness [37].

As the number of robots and other automation subsystems grows, integration becomes increasingly diffi-
cult. Software integration costs alone for the United States’ robotics industry are estimated at $1 billion
annually [114]. Therefore dynamics computations must integrate in software and hardware architectures
with, e. g., hard timing constraints and limited resources. Embedded code will increasingly consist of
interacting software components [139, 82]. Chen and Yang [25] report the need to integrate several com-
putational models of the robot in one application. Their scope is to use the same algorithms and codes for
simulation as well as for control purpose. The problem of covering the whole of multibody algorithms
in a robot control system (RCS) is analogous to MBS equations themselves where the high complexity
stems from the interconnection of smaller blocks of low or medium complexity. Combining relatively
simple blocks containing complicated parametrization and inner dynamics leads to very heterogenouos
architectures being non-trivial to design, implement, debug, and maintain. Especially specification and
parametrization of the computational dynamics models are often underrated, but are crucial points in code
generation and formalism transfer and of real practical relevance.

One further goal of this work is to provide a reusable context for components performing multibody
computations, i. e., to enable the reuse of algorithm design and code. A lack of reusability is only par-
tially a problem of a lack of documentation. By virtue of so-called frameworks object-oriented systems
reach a maximum of reusability [69]. One challenge is that frameworks are among the most complex
of all software design approaches [44]. A framework should apply to all imaginable applications in the
domain under consideration. This requires profound domain knowledge, i. e., mechanics of robots, multi-
body formalisms and software architectures, to create a comprehensive design of flexible and extendible
characteristics.

1.2 Contents and contributions

Main thesis

The preceding motivation leads to the main thesis which is the attempt to reduce the gap between the
heterogeneous worlds of

(i) modeling (model specification) of robotic mechanisms, comprising abstraction and meaning of the
abstract representations,

(ii) existing and upcoming multibody formalisms and algorithms and their efficient implementation and
coupling, and

(iii) numerical requirements from, e. g., robot control schemes, simulation, and trajectory optimization
methods,

(iv) real-world robotic software applications, demanding (a) modular and extensible, (b) interoperable
and (c) leight-weight code running off-line or on real-time systems.

The vision drawn in this work is a general purpose robot dynamics framework to support a robot control
design engineer in (i) robot model specification, (ii) automatic code generation and manual implemen-
tation from an optimally chosen mechanical model and multibody formalism, and (iii) integrating the
computational models and components in an evolving software architecture for control, optimization, and
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simulation. The focus is on basing on a sound mathematical formalism, using object-oriented design
principles and reaping maximum performance.The desired result from this modeling of robot models,
however, is not a general purpose multibody program demanding the least domain knowledge possible
from the user and covering as many problem classes as possible.

Modeling robotic mechanisms and algorithms

Without multibody domain expertise it is hard to define practical requirements for software architectures
such as frameworks. Ideally the developed approach has to cover all existing and upcoming cases of ap-
plication. Chapter 2 formulates the relevant aspects of multibody computations in robot control ranging
from mechanics, to formalisms and algorithms. The physics (classical mechanics) of one body and sev-
eral bodies are discussed in Section 2.1 to show the importance of coordinate representations, dynamics
formalisms [115] and their realizations.

Section 2.2 takes a closer look from an abstract, high-level viewpoint with emphasis on topological is-
sues and structured methods [51]. The complexity arising in MBS model specification is investigated. A
general paradigm for the specification based on entity-relationship-attribute (ERA) paradigm [26] and as-
sociated semantics are developed. Identifying common implicit assumptions in abstract models of robots
improve formalism transfer and consistency. To grasp these assumptions this work introduces the new
notion of a MBS context. Entities relevant for code generation and implementation are identified which
form the basis of the methodology.

To deal with the vast number of numerical multibody algorithms a rough classification is proposed in
Section 3.1.1 to embed the schemes in a ’component space’ spanned by chosen formalism, coordinate
representation and desired output values. A number of representative existing multibody algorithms cov-
ering a large range of applications are introduced to this classification scheme accompanied by some new
specialized algorithms. Several new useful mathematical MBS expressions, e. g., for control applications
are derived.

The crucial symbolical description of multibody equations is based on the well-known spatial operator
algebra (SOA) by Rodriguez et al. [117]. In order to overcome the restrictions of this powerful math-
ematical formalism the Port-Based Spatial Operator Algebra is introduced in Section 2.3 which reaps
the advantages of intuitive object-oriented modeling and implementation techniques and the power and
expressiveness of the symbolic operator formulation. This allows for a uniform specification and pre-
sentation of SOA operator expressions of general multibody-systems including more general components
and topologies. The ability to establish spatial operators from topological and component properties pays
off in sections 3.1 and 3.2 either for symbolic manipulation or object-implementation while preserving
the valuable algebraic properties of the SOA. A dataflow interpretation of recursive algorithms in Section
2.3, which is given for the first time, prepares the ground for efficient code-generation and implementation
of this class of algorithms.

Operational architecture and applications

The representation of robot model specifications in an object-oriented system is investigated in Section
4.2. This section introduces an ontology of interrelated classes describing the mechanism, the desired
numerical algorithm and modeling assumptions. To reach a maximum in generality, this work proposes
a clear separation between model specification and transformation issues such as code generation. This
enables the software designer including characteristics that are concern of the user and avoids placing
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constraints on the design level, e. g., choice of coordinate representation or the time and place of code
generation. An abstraction level being to high for this purpose [51].

The specification model is subjected to several kinds of mapping in Section 4.2. The discussed map-
pings are code generation for dataflow networks, model optimization and textual representation. A new
object-oriented architecture is proposed in Section 4.2.1 to create executable algorithm objects from a
given specification model to decouple the various components. This alleviates extending applications but
still allowing interoperability between new and old components. The user of the architecture may at ev-
ery level of abstraction interact with the model specification if required by the concrete application, e. g.,
optimize topological properties, without the need to go down on lowest level, the equation level.In Chap-
ter 4.3 some fundamental algorithmic robot dynamics building blocks required by control applications,
multibody scenarios and boundary conditions are formulated in terms of tools developed in Section 2.2.
A framework becomes concrete by choosing an object-oriented programming language [70, 69]. Require-
ments for a C++ realization are discussed in Chapter 4.4. The architecture presented is applied to several
problems arising from industrial and scientific problems in Chapter 5 substantiating the applicability of
this work especially in heterogenuous robot control applications.

Finally several appendices containing lists of used symbols, a small glossary, an index and tables of useful
mathematical identities hope to prevent the reader from getting lost in notation and connotations.

1.3 Literature survey

Software for multibody computations in robotics

The main focus is on symbolic recursive formalisms to compute the highly non-linear dynamics of robots
for they are known to be numerically efficient, which is indispensible in real-time control of robots.
The first recursive technique reported was developed by Vereshchagin [144] in 1974. For a review and
classification of recursive schemes see Jain [60].

The existing packages can be subdivided according to the offered computations and the type of appli-
cation, either an executable generating code, or a programming library usually realized as collections of
source code. The main objectives of nearly all commercial and non-commercial tools are the genera-
tion of equations of motion from simple input model description and time integration (simulation) of the
differential equations.

For a survey of dynamics formalisms developed until 1988 refer to the book of Roberson and Schw-
ertassek [115], a number of packages prominantly for simulation purpose are reviewed in [123]. The
disadvantages of the large commercial general purpose tools are lack of computational efficiency and
flexibility, consumption of resources and high effort to integrate own optimized and specialized compo-
nents, all paramount when migrating to embedded systems like robot controls. This work does not intend
to provide yet another simulation package, but to support the robot domain specialist in implementing
various methods and formalisms.

This basic idea of providing components for multibody computations is taken up in the package AU-
TOLEV [122]. This collection of functions helps the multibody dynamics domain specialist in formulat-
ing the equations of motion, but is restricted to Kane’s equations and generation of a complete simulator
code. The main advantage is full control over the equation formulation process, inevitable when exploiting
maximum performance.

The package MOBILE [74] for simulation of various types of mechanical systems is based on object-
oriented principles and implemented in C++. A component oriented design helps the domain engineer in
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describing the multibody system properties and code generation by means of source code. This approach
focuses on time integration, specialized for medium to heavily constrained mechanical systems. These
aspects are not prevailing in robot control.

DYNAMECHS is a multi-purpose collection of robot dynamics algorithms implemented in C++ by McMil-
lan et al. [92]. It is designed for simulation of under-water vehicles and legged robots and comprises some
popular dynamics algorithms for certain types of multibody systems. It is merely driven by implementa-
tion of multibody formalisms but does not emphasize a high-level design.

A C++ package intended for use in robotics is ROBOOP [46]. It comprises several classes for kinematics
and dynamics computations, but is restricted to certain types of robots and choices of coordinates. A
similar library is by Corke [28], implemented in Matlab scripting language. DARTS [61] is a collection of
functions written in C, forming an engine used for robot simulations especially for space applications [16].
The idea to use the same algorithms and codes for simulation as well as for control purposes has been
reported by Chen and Yang [25]. Their approach is restricted to the class of tree-structured robots und
one special dynamics formalism.

There is a great number of commercial tools mostly dedicated to simulation, i. e., time integration, of
general multibody systems, often providing export of symbolic code, too. To name only a few prominent
examples: SIMPACK [120] is based on an O(N)-formalism, ADAMS [103] based on Kahn’s equations.
SIMMECHANICS [89] by The Mathworks are multibody blocksets which enables control system design
for mechanical systems within the SIMULINK environment.

Software architectures for robot systems

From the perspective of a high-level software design for robot control software the project open source
robot control software (OROCOS) [22, 88] is closest to the ideas of modeling and software design de-
veloped in this work. The long-term objective is to provide generic and public-domain C++ software
components for all concerns of robot control. The block of kinematics and dynamics computations was
not developed during the period this work was performed.

SMART [11] is a component-oriented control architecture for tasks on a higher level than model com-
putations such as collision avoidance, trajectory generation, integration of sensor and haptic devices,
especially for the field of teleoperated systems. It is possible to adapt the software system by reconfig-
uring various modules representing operational modes. Code is generated, compiled, downloaded and
initialized including a re-synchronization of the robotic system even on a system with several CPUs.

RIPE by Miller and Lennox [93] is a set of C++ base classes intended to represent a robotic system,
by base classes ’WorkPiece’, ’Station’ and ’Device’. Those generic classes can be derived by a user to
implement specific features of a real system.
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Chapter 2

Principles of dynamics computations:
modeling robots on mechanical, abstract, and
algorithmic level

Abstraction is not just simplifying or eliminating detail, but focusing on specific details. The introduction
indicated that a robot model has different meanings depending on the considered level of abstraction
and perspective. In the context of robot control certainly the model closest to physical reality, i. e., the
representation containing most relevant detail, is a mathematical representation of robot kinematics and
dynamics. Most control schemes require information about the actual physical state of the controlled
machine. On the one hand, measurements reflect true aspects of the current state, on the other hand
physical-based models of the technical system allow prediction. Measurement and prediction are two
complementary approaches to provide this kind of information:

[. . . ] chances of establishing a good model depend strongly on a deep understanding
of the physical-technical processes of the object to be modeled. A good model means a
representation of mechanical properties and therefore a good correspondance to practice and
its measurements. [111]

The meaning of model here is restricted to the notion of a mechanical model, i. e., denoting a mathematical
representation of physical laws and processes governing the motion of the robot, crucial in model-based
control schemes often requiring some information about the dynamics.

This chapter forms the fundamental analysis of requirements as to what the methodology has to provide,
by summarizing the basic ideas of physical modeling and dynamics formalisms for multibody computa-
tions used in the field of robotics. Wittenburg [149] stresses that a concise method to state a formalism
and the system equations is inevitable when comparing and classifiying algebraical and numerical prop-
erties in multibody system dynamics. Among the many choices reported in literature this work borrows
heavily from the spatial operator algebra (SOA) by Rodriguez et al. [117]. This (i) provides a uniform
description and analysis of existing algorithms, (ii) reveals structural properties of the involved mathemat-
ical quantities—invaluable in the object-oriented modeling process in Section 2.2.2—and (iii) presents a
powerful means for derivation of new algorithms, e. g., [60].
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2.1 Dynamics preliminaries

A multibody system is the idealization of a mechanical system by a collection of interacting material bod-
ies. Interaction is modelled by mechanisms constraining the relative motion (joints) between contiguous
bodies and external forces applied through springs, etc. [149]. The most successful mechanical model of
robots has been proved to be a collection of rigid joint-connected bodies with prominently holonomic,
scleronomic constraints between the bodies [98].

The major ingredients of multibody computations depend strongly on the desired application. For robot
control purpose so-called inverse models and the topics from the following list are of major concern
according to Roberson and Schwertassek [115], Wittenburg [149] and will be discussed in the following:

(i) physical properties of the robotic mechanism

(a) mechnical properties of the components (bodies, springs, . . . )

(b) system topology = interconnection and interactions between the components

(ii) applied dynamical formalism, e. g., those presented in [115, 72]

(iii) set of dependent variables and coordinate representations

(iv) type and motion of reference frames (kinematic and dynamic, base frame) [115]

In some cases, especially in time integration, additionally the initial configuration and state of the mech-
anism is required. A crucial fact in robotics is the physical environment of the robot. Is it mounted on
the ground or does it operate in free-floating mode? Is it subject to external forces such as gravity? Is
it cooperating with other mechanisms or robots? Or is it just favourable to describe the motion w. r. t. a
certain reference frame? Which physical values can be measured?

The basis of the description of the dynamics of coupled mechanical systems is a description of the equa-
tions of motion of a single rigid body. The following section describes the equations of motion of an
unconstrained rigid body, including internal angular momentum, and introduces the notion of a coordi-
nate representation, which will turn out to play a crucial role in design and efficient and reliable imple-
mentation of multibody algorithms. The presentation follows in parts that in [115] and takes a Eulerian
viewpoint.

2.1.1 Classical mechanics of a single gyrostat

A rigid body containing internal angular momentum, e. g., stemming from an embedded rotating mass,
is called a gyrostat [149]. In this section it will be sufficient to rely on the setup in Figure 2.1 showing
a gyrostat with several Cartesian frames1): one inertial reference frame FI , one arbitrary reference frame
F0 and three frames fixed to the body, a center of mass frame Fc and two body-fixed frames FA and FB .
For the moment the motion is considered unconstrained and free of external forces such as gravitation.
The body has constant mass m, a constant inertia dyadic2) w. r. t. Fc cJ, and the vector of internal relative

1) A Cartesian frame in Euclidean space is characterized by the location of its origin O and the orientation of three
orthogonal(-normal) axes :e = {e1, e2, e3} forming a dextral system, a vector base. The symbols used throughout this work
are Fx or {Ox,

x
e} to denote location and orientation explicitly. All frames used in this work are Cartesian.

2) A continuum distribution of mass results in a tensor of moments of inertia cJ with matrix components c
cJαβ =

∫
body

ρ(x)·

(x2
αδαβ − xαxβ) · dV , α = {1, 2, 3} when resolved w. r. t. a body-fixed basis. ρ(x) is the mass density. The formed matrix is

symmetric positive-definite.
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angular momentum w. r. t. Fc is cl. Please note, that in this work Cartesian tensors of first and second
rank are consistently referred to as vector and dyadic, in contrast to m-dimensional matrices, except for
matrices ∈ Rm×1 which are referred to as column vectors. Bold typeface 1x indicates a tensor with a
reference point O1, italic typeface 2

1
x denotes a matrix representation of 1x w. r. t. vector basis 2e.

o

I

c

c

c
l

FIGURE 2.1: Schematic setup of one inertial frame FI , one reference frame F0 and two arbitrary frames FA and
FB attached to a gyrostat with center of mass frame Fc. Important to note that only FI must be inertial. The tilted
cylinder symbolizes the internal angular momentum cl.

The fundamental laws of rigid body motion by Newton and Euler state that the net force F and net torque
Iτ on the rigid body3) equal the absolute total time derivatives of its linear and angular momentum Ip and
IL:

F =
dIp

dt
, (2.1)

Iτ =
dIL

dt
. (2.2)

Please note for the vectors Iτ , Ip, IL the frame FI is used as a reference, which must be an inertial frame.
Any tensorial quantity tied to an inertial frame is called absolute. A tensor whose reference is non-
inertial is called relative. Analogously an absolute derivative is the derivative of a vector calculated
w. r. t. to an inertial frame (usually symbolized FI) . An absolute derivative is denoted by ẋ or dx

dt
. A

derivative calculated w. r. t. an arbitrary noninertial frame F1 (or vector basis 1e) is called relative [115],
apparent [41], or local [49] time derivative. It is further referred to as relative derivative and is denoted
by

1dx

dt
. If the vector basis is obvious from the context the circle derivative

◦
x is used. A vector’s absolute

and relative derivative w. r. t. a frame F1 are related by

dx

dt
=

1dx

dt
+ ωI,1 × x , (2.3)

where ωI,1 is the absolute angular velocity of frame F1. The relative time derivative can be viewed as
derivation w. r. t. a moving but non-rotating frame. When deriving dynamics equations it is more conve-
nient to choose a reference point other than OI . For a general reference point O0 and using r := rI,c and
s := rI,0 the Equations 2.1 and 2.2 become

F = mr̈ , (2.4)
d0L

dt
= 0τ −m(r− s)× s̈ . (2.5)

The most important and compact choice is to use the center of mass as reference point O0 ≡ Oc which
implies (r − s) = 0 and using the well-known relationship between translational momentum and mass

3) In this work action [115] is used to denote the concepts of force and torque.
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and angular momentum and inertia tensor [149] to obtain the linear and angular momentum equations

Ip = mv , (2.6)

cL = cJω + cl , (2.7)

where ω := ωI,c is the absolute angular velocity of the body and v = ṙ the absolute velocity of the
center of mass. After differentiating (2.6) and (2.7) w. r. t. time and using that

cdω

dt
= dω

dt
the dynamical

equations in terms of velocities are

F = m
dv

dt
, (2.8)

cτ = cJ
dω

dt
+ ω × (cJω + cl) +

cdcl

dt
. (2.9)

So far all expressions shown were based on pure coordinate free tensorial notation. A matrix represen-
tation is obtained if tensors (arbitrary vector v and dyadic D) are resolved w. r. t. an orthonormal vector
basis xe := (xe1, xe2, xe3)

T

v = xe
Txv = xvT

xe

D = xe
TxDxe

where xeαxeβ = δαβ are the simple Cartesian metric coefficients and hence xe
T
xe = I3×3 is just the unit

matrix. The orientation of the center of mass frame is given by the direction cosine matrix
c
e = cR

I
(t)

I
e.

2.1.2 Coordinate representations

Symbolic manipulation and reformulation of the physical laws (2.1) and (2.2) is possible in tensorial form.
A matrix representation of the dynamics equations is optional for symbolic treatment, but mandatory for
numerical evaluation and implementation on a digital computer. Three key requisites determine the ways
of calculating the dynamics:

• reference point O0 used for calculating the dynamics in (2.4) and (2.5)

• vector bases required for resolving vectors and dyadics

• absolute or relative derivatives

The notion of a coordinate representation denotes one certain choice of each of the three categories. Some
prominent used in robotics are inertial, body, and absolute representation [49]. In order to indicate that
a matrix belongs to a certain representation R a left superscript 〈R〉X is used. The symbol R denotes one
particular representation, in this work three are used, namely R ∈ {I, B,A}.

The goal of this section is to emphasize the existence and importance of coordinate representations used to
formulate dynamics algorithms. The design of a dynamics software architecture must consider coordinate
representations to enable consistent code generation, code reuse, and interpretation and exchange of com-
putational results during run-time. The prominent representations mentioned are reviewed shortly below,
to introduce expressions which form the basis of a family of multibody formalisms. Though describing
the same underlying physics, different representations result in different spatial operators, time deriva-
tives, dynamical equations, and, finally, in different matrices, since the operators will describe quantities
at different points in space and w. r. t. to different vector bases. Each approach has distinct advantages and
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properties concerning symbolic und numerical complexity, computational efficiency, and numerical stabil-
ity as discussed later in Section 3.1 and 3.2. Studies comparing the influence of coordinate representation
on computational efficiency of certain classes of recursive methods can be found in [87, 40, 136, 115].
Unfortunately there exists no uniform notation and choice of coordinate representation in robotics litera-
ture to describe mechanical quantities, so this section has to (re-)state clear definitions here.

2.1.2.1 Inertial coordinate representation of dynamics

In inertial representation the dynamics is calculated (i) w. r. t. a location Ox fixed in the body, (ii) with
all tensors resolved w. r. t. inertial system Ie

T, and (iii) using absolute time derivatives. The advantage of
this traditional formulation of the dynamics is that all quantities have a direct physical meaning. For com-
pact symbolic expressions we adopt the spatial notation (not to be confused with spatial representation
of Featherstone [40]) similar to that introduced by Rodriguez et al. [117] where matrices ∈ R6 (two matri-
ces ∈ R3 stacked, called spatial vector) and ∈ R6×6 are used. The most prominent are defined in Table 2.1
on the current page. All tensors are resolved w. r. t. the inertial frame FI , the absolute translational velocity
is defined by Iv

I,c := d
dt

Ir
I,c.

TABLE 2.1: Prominent spatial matrix operators in inertial coordinate representation. Here the center of mass Oc is
used as reference point.

spatial velocity 〈I〉Vc :=

(
Iω

I,c
Iv

I,c

)

spatial angular velocity 〈I〉Ωc :=

(
Iω

I,c

03

)

spatial force 〈I〉fc :=

(
I

cτ
IF

)

spatial inertia 〈I〉Mc :=

[
I

cJ 03×3

03×3 mI3×3

]

spatial momentum 〈I〉Πc :=

(
I

I
L

I

cp

)

internal spatial momentum 〈I〉Πic :=

(
I

cl
0

)

The momentum equations (2.6) and (2.7) can be written compactly
〈I〉Πc = 〈I〉Mc

〈I〉Vc + 〈I〉Πic . (2.10)

The dynamical equations (2.8) and (2.9) w. r. t. Fc are as follows

〈I〉fc = 〈I〉Mc
〈I〉V̇c +

(
〈I〉Ω̃c

〈I〉Mc −
〈I〉Mc

〈I〉Ω̃c

)
〈I〉Vc + 〈I〉Π̇ic . (2.11)

Proof: Taking the time derivative of (2.10) leads to
〈I〉Π̇c = 〈I〉Mc

〈I〉V̇c + 〈I〉Ṁc
〈I〉Vc + 〈I〉Π̇ic .

Comparing this expression to (2.9) shows that

〈I〉Ṁc
〈I〉Vc =

(
Iω × I

cJ
Iω

03

)
=

(
Iω̃ I

cJ
Iω − I

cJ
Iω̃ Iω

Iω̃mI3×3 −mI3×3
Iω̃

)
.
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Here the tilde operator4) has been introduced to express the vector product by pre-multiplication of an
anti-symmetric matrix p̃ ∈ R3×3 such that p× q = p̃ · q, p, q ∈ R3

p̃ :=




0 −pz py
pz 0 −px
−py px 0


 . (2.12)

The six-dimensional complement of (2.12) which operates on spatial vectors is called spatial cross prod-
uct [66] and defined by

X × Y = X̃Y =

(
ãc

b̃c+ ãd

)
where (2.13)

X̃ :=

[
ã 03×3

b̃ ã

]
with X :=

(
a
b

)
, and Y :=

(
c
d

)
. (2.14)

Using 〈I〉Ω̃c = diag(Iω̃, Iω̃) and observing 〈I〉Ṁc
〈I〉Vc = (〈I〉Ω̃c

〈I〉Mc −
〈I〉Mc

〈I〉Ω̃c)
〈I〉Vc leads to the result. �

The two kinds of tilde operators satisfy a number of useful identies which are listed in Appendix B. The
dynamics of an arbitrary body-fixed location Ox is as follows:

〈I〉fx = 〈I〉Mx
〈I〉V̇x +

(
〈I〉Mx

〈I〉Ω̃x + 〈I〉Ṽx
T 〈I〉Mx

)
〈I〉Vx + 〈I〉φT

c,x
〈I〉Π̇ic . (2.15)

Proof: The transformations for velocity and torque when changing from body-fixed reference point Oy to
Ox, where l := ry,x is the vector from Oy to Ox, are [115]

Iωx = Iωy vI,x = vI,y − l× Iωy (2.16)

xτ = yτ − l× xF xF = yF (2.17)

These equations reflect that angular velocity is the same in the whole rigid body and that the body accel-
erates identically as a particle of equivalent mass. These fundamental transformation properties can be
expressed by introducing the rigid body transformation operator

〈I〉φx,y :=

[
I3×3 03×3

−I r̃y,x I3×3

]
(2.18)

which transforms spatial velocities from Fy to Fx and, when transposed, spatial forces from Fx to Fy, thus
writing

〈I〉Vx = 〈I〉φx,y
〈I〉Vy

〈I〉fy = 〈I〉φT

x,y
〈I〉fx . (2.19)

Because l is constant w. r. t. the body it follows from (2.3) dl

dt
= Iω× l. Using (B.8) leads to the important

operator derivative
〈I〉φ̇x,y = 〈I〉Ω̃y

〈I〉φx,y −
〈I〉φx,y

〈I〉Ω̃y . (2.20)

The spatial inertia transforms similarly to the spatial force

〈I〉Mx := 〈I〉φT

c,x
〈I〉Mc

〈I〉φc,x =

[
I

cJ −m
I l̃I l̃ mI l̃

−mI l̃ mI3×3

]

4) The vector product r = p × q can be viewed as the double contraction of the total antisymmetric pseudo-tensor εijk

(Levi-Civita symbol) by ri =
∑

jk εijkpjqk so the operator p̃ becomes a single contraction of εijkpj w.r.t. to second index j.
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where its total time derivative, using (2.20), writes

〈I〉Ṁx := 〈I〉Ω̃x
〈I〉Mx −

〈I〉Mx
〈I〉Ω̃x .

Omitting 〈I〉 superscripts for brevity, the last required operator identity is

−ṼxMxVx = φT

c,xΩ̃xφ
−T

c,xMxVx (2.21)

which can be shown by multiplication of the matrices and using (B.8) and (B.4). Using Ωc = Ωx and
〈I〉φc,x = 〈I〉φx,c

−1 one writes

fx = φT

c,xfc

= φT

c,x

(
McV̇c + ṀcVc + Π̇ic

)

(2.20)
= φT

c,x

(
Mc

[
φc,xV̇x +

{
Ω̃xφc,x − φc,xΩ̃x

}
Vx

]
+

[
Ω̃xMc −McΩ̃x

]
Vc + Π̇ic

)

= MxV̇x + φT

c,xMcΩ̃xVc −MxΩ̃xVx + φT

c,xΩ̃xMcVc − φ
T

c,xMcΩ̃xVc + φT

c,xΠ̇ic

= MxV̇x −MxΩ̃xVx + φT

c,xΩ̃xφ
−T

c,xMxVx + φT

c,xΠ̇ic

(2.21)
= MxV̇x −

(
MxΩ̃x + ṼxMx

)
Vx + φT

c,xΠ̇ic �

(2.15) is one of the key results of this section. It is the starting point when deriving other representations,
some discussed below, and serves as a basis when treating multiple rigid bodies.

2.1.2.2 Body representation

A more concise notation of the dynamical equations is the body representation [149, 109, 49, 113].
Dynamics is calculated (i) in a body-fixed frame Fx, (ii) where tensors are represented w. r. t. to a body-
fixed frame, usually the same frame Fx, (iii) calculating time derivatives in terms of body-local (relative)
derivatives. Matrices belonging to this representation are denoted by a left superscript 〈B〉. In case of a
single gyrostat the transition from inertial to body representation is merely done by considering possibly
different vector bases when transforming between two body-fixed locations Fx and Fy and expressing
absolute time derivatives by (body) relative derivatives [2]. The rigid body transformation operator (2.18)
now writes

〈B〉φx,y :=

[
xRy 03×3

−xRy
y l̃ xRy

]
, (2.22)

where again l := ry,x. With help of the obvious spatial generalization of (2.3), i. e.,

dV

dt
=

◦

V + Ω̃xV (2.23)

the dynamics w. r. t. Fx in body coordinates is

〈B〉fx = 〈B〉Mx
〈B〉

◦

V x −
〈B〉Ṽ T

x
〈B〉Mx

〈B〉Vx + 〈B〉φT

c,x
〈I〉Π̇ic . (2.24)

In further symbolic manipulation it might be useful to decompose the rigid body transformation operator
in parts for pure rotation and pure displacement:

φR(R) :=

[
R 03×3

03×3 R

]
and φD(l) :=

[
I3×3 03×3

−l̃ I3×3

]
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so (2.22) goes over into 〈B〉φx,y = φR(xRy)φD(yl) and (2.18) into 〈I〉φx,y = φD(Il).

The strong relation between Lie groups and this body representation of dynamics has been pointed out
by Park et al. [109]. Following geometrical arguments in the book of Murray et al. [98], one can show
that the rigid body transformation operator is a matrix representation of the adjoint operator Ad on SE(3)
and the spatial cross product operator definition in (2.13) is a representation of the ad operator on the
corresponding Lie algebra se(3).

2.1.2.3 Absolute representation of dynamics

The main idea of this representation is to calculate the dynamics at a point fixed in the inertial frame, so
that s̈ becomes zero in (2.5). This is in contrast to inertial and body representation where a point attached
to the rigid body was used as reference point. Screw-theory based multibody dynamics was elaborated in
the book of Featherstone [40] and related to body representation and Lie group interpretations by Murray
et al. [98].

The absolute representation is characterized by (i) using OI , the origin of the inertial frame FI as reference
point for dynamics, (ii) applying the same frame to resolve all tensors, and (iii) employing total time
derivatives for spatial operators. A spatial operator in absolute representation is denoted by a superscript
〈A〉. It can be obtained from the inertial one using the rigid body transformation operator (2.18). The spatial
velocity then is

〈A〉V = 〈I〉φI,x
〈I〉Vx . (2.25)

The time derivative of a spatial vector in absolute representation is

〈A〉Ẋ = 〈A〉
◦

X + 〈A〉Ṽ〈A〉X (2.26)

which implicates 〈A〉V̇ = 〈A〉
◦

V . The spatial inertia in absolute representation is the spatial inertia w. r. t. the
origin of the inertial frame OI

〈A〉M := 〈I〉φT

x,I
〈I〉Mx

〈I〉φx,I

and exploiting 〈I〉φ̇x,I = (〈I〉Ω̃x −
〈I〉Ṽx + 〈I〉Ω̃x

〈I〉φ̇x,I −
〈I〉φ̇x,I

〈I〉Ω̃x) gives the time derivative of the spatial
inertia

〈A〉Ṁ = −〈A〉Ṽ T〈A〉M − 〈A〉M〈A〉Ṽ .

The net force acting on the body is the time derivative of the spatial momentum about the origin of FI

which leads to the dynamics in absolute representation

〈A〉f = 〈A〉M〈A〉V̇ − 〈A〉Ṽ T〈A〉M〈A〉V + φTc,I
〈I〉Π̇ic . (2.27)

One appealing property of the absolute representation is that quantities belonging to different bodies and
locations can be related immediately without applying transformations such as (2.22). As shown later
this leads to an enormous simplification of symbolic expressions describing multiple bodies. On the other
hand the physical interpretation of quantities in absolute representation is not as intuitive as in the inertial
one.

The only mechanical ’device’ discussed so far was the single gyrostat. Its dynamics in three-dimensional
Euclidean space is influenced by the gyrostat’s internal characteristic properties (i) mass, (ii) moments
of inertia, and (iii) internal angular momentum. A robot consists of various interacting components with
different behaviour and properties. The following section attempts to capture the description and be-
haviour of such multibody systems in a conceptual and a mathematical way – both prerequisites for a
computational robot model.
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2.2 Paradigm for abstract robot model specification

This section shows a generalized way of specifying the robot system’s mechanical properties. This is
motivated by the idea that specifiying the properties has a counterpart in the process of establishing the
system’s equations, to guide generation and organization of code on a later stage. As a consequence this
section does not follow the classical introduction of multibody formalisms and starts from more general
considerations.

In robotics the starting point for formulating the equations of motion often are mechanical systems com-
posed of links. The notion of a link is very useful when dealing with kinematic chains where a number of
material bodies are connected sequentially by holonomic joints. In robotics literature a link represents a
body and two locations fixed in the body where adjacent bodies are supposed to be connected by a joint.
There are two reasons why often coordinate frames are associated with joint locations. On the one hand
the convenient and popular convention according to Denavit and Hartenberg [34] describes how frames
can be located in the joints. On the other hand many multibody algorithms can be efficiently formulated
in joint reference frames [40]. When taking a closer look there remain some open questions even for the
specification of this simple case of chain-structured mechanisms: Is the robot’s base itself a link? Does
an endeffector or a payload need two joint locations? How should the bodies be indexed?

For simplicity most researchers treat robotic mechanisms uniformly as joint-connected bodies, more pre-
cisely pairs of one adjacent joint and one body. They assign special meaning to, e. g., link 0 which is
treated as the reference system, or introduce specific and context-depending rulesfor model interpretation,
or zero-mass or zero-length links. This is very convenient and is an appropriate representation if one stays
within one single formalism. But relying on different paradigms and implicit assumptions is awkward for
formalism transfer, efficient code generation, and coupling between several algorithms. One example are
the algorithms presented in [67], where the crucial information which coordinate representation is used is
implicitly contained in the mathematical formalism. Some situations limiting flexibility and applicability
of the existing formalisms, such as SOA formulation, to more general multibody systems are:

• there are more or less than two frames associated with bodies

• the need for MBS topologies such as tree-structures and loops

• presence of general entities and physical effects in the system such as internal and external forces,
internal angular momentum, or artificial muscles in biomechanics

• environmental conditions, such as cooperating robots, inhomogeneous gravitational fields, or boy-
ancy

In order to obtain a sufficiently general system model this section tries to answer the questions:

• What are the major components of the mechanical robot model?

• What is its static and dynamic behaviour?

A proven method to achieve the required flexiblity for a modeling language is to model the language itself
by an abstract higher-level formalism. Tools that support that kind of meta-formalism are DOME [55] or
ATOM3 by Vangheluwe and de Lara [143]. Having an object-oriented implementation at a later stage in
mind the following section starts from an abstract level. We generalize from a purely data-driven to an
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abstract model specification by formally capturing the structure of a robot model to handle more com-
plex systems and maintain extensibility. The shown appoach is similar to the PSPEC approach proposed
by Hatley and Pirbhai [51] for real-time system specification which contains all the information necessary
for the designer to know what to do without saying how to do it.

The entity-relationship (ER) model introduced by Chen [26] is applied to formulate the parts of a mechan-
ical robot model in a component-oriented and port-based way. This concept of a component is denoted by
MBS entity. Components and contexts known from robot and multibody system dynamics are analyzed
w. r. t. to the MBS entity paradigm to capture and classify the behaviour and all concerned relevant in-
formation and relations. The advantage of this approach is an abstract high-level view on the properties
of the components and relations between the parts revealing explicitly as much information as possible
without doing, e. g., a simulation run. By this the following ameliorations are attained:

• Efficient code generation for various algorithms, e. g., according to a dataflow model of computa-
tion, may be based on different assumptions about the model. These can be expressed explicitly
and are not entangled within code or a mathematical formalism.

• Enhancing the potential for optimization of the given model description according to different cri-
teria.

• Dynamics computations might not be the only software task to be driven by a robot specification in
a robot control system, so the reduction to just links limits the applicability of the model. Integra-
tion of components, implemented by persons with different objective and background, is enabled
because created objects are based on the same reference model.

• Checking for model correctness by formal methods.

• Clear textual or graphical representations enabling persistence of model description and system
state.

• When formulating mathematical equations by means of spatial operators introduced in Section 2.3
and defining topology and causality of the multibody model graph the ER paradigm is beneficial.
The goal is to preserve the advantageous algebraic properties and explicitness of spatial operators
expressing physical properties directly.

2.2.1 Component specification model

Multibody systems such as robots naturally offer a component-oriented view for two reasons. On the
one hand real mechanisms consist of distinct rigid bodies, joints, force-element, drives and other devices.
Problems from biomechanics also allow such a subdivision into bones, muscles, tendons. On the other
hand the mathematical equations describing these systems show a similar structure which is exploited
by dynamics formalisms, which will be shown in Section 3.1. As discussed above researchers often
reduce this set of components to one member, the link, e. g., see [60], or restrict their properties for
specification of the robot in order to formulate, e. g., dynamics algorithms for that class of components.
This procedure is completely legitim, but one might run into problems to drive several algorithms by
one single specification, because assumptions about the behaviour of components were made implicitly.
Basing the components’ description on an abstract representation which captures formally all properties
and behaviour and their relations is the solution proposed in this section.5)

5) This section is an advanced version of parts of the paper [56].
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The entity-relationship (ER) model [26] offers in a natural way an abstract view on systems primarily
formed by components. The concept is based on the general idea to represent the data in two logical parts,
entities and relations. An entity e is defined as a ’thing’ which can be distinctly identified, a relationship
r is an association between two entities. Both can be augmented by attributes, which may represent
arbitrary data. Entities are classified into different entity sets Ei. There exists a predicate associated with
each entity set to test whether an entity ei belongs to it. A relationship set Ri is a mathematical relation
among n entities, each taken from an entity set {[e1, . . . , en] |ei ∈ Ei} and each tuple [e1, . . . , en] is a
relationship. A graphical representation for ER models is offered through ER diagrams. In this work the
relations between concrete realizations of MBS entities, objects, are graphically represented by Unified
Modeling Language (UML) [100, 101, 127] class diagrams, where an entity is represented by a UML
class symbol and a relation by a UML association symbol.

The UML is a mainly graphical notation or syntax that object-oriented methods use to express software
designs. The portions of the UML applied in this work relies on the presentation in [43]. Figure 2.2 shows
the graphical constructs used in this section. ER diagrams are expressed here using UML class diagrams
which describe the types of entities in a model and the various static relationships that exist between them.
The two principal kinds of static relationships between classes are association and subtype.

A class is depicted by a rectangular box. The association represents a conceptual relationship classes.
It has two ends, which can be explicitly named by a label called role name. It has a multiplicity, which
is an indication of how many objects may participate on each end in the given relationship. Multiplicity
can be a whole number or a range denoted by x..y, x, y ∈ N, and * denotes an infinite number. On a
less conceptual level a class may have a number of attributes and operations listed in separate blocks
inside the box. From a conceptual perspective attributes are like associations, the difference shows up in
the implementation perspective not considered here. Operations are the processes that a class knows to
carry out. The composition expresses that a part belongs one whole, the class where the line ends in a
black diamond. The dependency among components show how changes to one component may cause the
depending components to change. The generalization of Supertype to Subtype states that Subtype1 is a
subtype of Supertype, i. e., an extension where attributes of the supertype are replicated and new ones can
be added and operations of the supertype may be either replicated or overridden by new operations.

Class A Class BClass

Class A Class B

Supertype

Subtype1 Subtype2

 Note

object name:Class Name

Class A Class B

Association

role A role B

Composition

Dependency

Class 0..1

Class 0..*

Multiplicities

Generalization

Class/Object

Class

attribute : type

operation(arglist: void) : type

FIGURE 2.2: Groups of graphical constructs used in UML class diagrams, required to express Entity-Relationship
(ER) diagrams. For the interpretation of the constructs please see text. Right side: A is associated to B, B is
composed of A, B depends on A.

The first step in the design of an ER model of robotic mechanisms is to identify the entity sets and rela-
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tionship sets which are necessary. The analysis performed in Section 2.1.1 suggests to base the component
model, visualized in Figure 2.3, on the following entity sets which graphically are expressed by the UML
symbol for a Class:

• MBS entity (ME)

• Interaction port (IP)

• Physical state (PS)

• Physical property (PP)

• Coordinate Frame (CF)

• Constraint Relations (CR)

The components from the multibody and robotics domain are subsumed under the entity set MBS entity
(ME). The robot and parts of its environment are restricted to be constructed from a finite set of primitive
domain components that is sufficient to cover a large class of robots, either representing technical devices
or physical phenomena:

• joints (revolute, prismatic, etc.)

• rigid links and bodies

• spring, dampers, and external forces

• drivetrains

• mechanical unilateral contact

• custom-specific or more abstract parts

An analysis based on the ER model for a selected number of fundamental components including their
substructure is given in the following sections. The MBS entities and attributes are indicated by a different
typesetting, using sans serif.

MBS entities are supposed to interact via distinct interaction units called interaction ports (IP). The kind
of interaction is not specified on this abstract conceptual level. Concrete examples are mechanical con-
nections, e. g., fixed, unilateral contact, or interaction that may takes place on a pure logical level. Context
dependent port semantics will be applied to determine the interpretation of a port.

In mechanics a body denotes an entity carrying mass and mostly having a geometrical extension. So each
ME is related to some physical property, such as mass, angular momentum, etc., which are captured by
the entity set physical property (PP). PPs are time-independent in a physical sense which distinguishes
them from physical state (PS) attributes. These represent state information, e. g., joint angles, forces, etc.

As shown in Section 2.1.1 in multibody dynamics most physical phenomena such as force and torque, are
of tensorial nature. Tensors often are inherently related to reference frames and require coordinate frames
to be resolved in matrix form. Though coordinate frames are an idea of geometric nature, these are of
such fundamental interest in MBS dynamics to motivate the entity set of coordinate frames (CF).

The substructure of an ME represented by the attributive entity sets IP, PP, PS, and CF, is related by
composition relationships. This idea from object-oriented modeling can express well that, e. g., the idea of
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a mass value without any related body is of limited physical sense in a robot model. Optionally, the PP can
depend on each other. The constraint relationship set models this dependence which might be (i) a mutual
dependency, e. g., mass and moments of inertia can be calculated from geometrical shape and mass density
of a body (see footnote on page 9), (ii) parameter values may restrict the range of other parameters in order
to get a physically meaningful model, e. g., requiring the matrix of moments of inertia being positive
definite. Both relations may be expressed for instance by symbolic expressions. Some PP such as inertia
matrix require the existence of a reference point or frame to be meaningful. This reference relationship set
expresses that a PP has a discrete number of reference frames. In a numerical computation the components
of vectors and tensors must be resolved w. r. t. a vector basis (see 2.1.2) to obtain numerical values. The
relationship set representation states which vector bases are used to represent the matrix entries. More
generally speaking, this allows for interpretation of the model specification but not determines physical
reality. IP entities are supposed to represent the points where ME entities can interact. When dealing
with mechanical interaction, inevitably a location in space is required to define where the interaction
takes place. In numerical schemes a complete coordinate frame CF is required to resolves vectors. The
association between a CF and IP entity manifests this. Note that not each CF has to be associated to
an IP because reference frames might not be ’exposed’ to the outside of a component and may remain
a conceptual idea required on a logical level. The relationship set defined on the single entity set ME
is the component relation. This relation models the hierarchical decomposition of entities into parts. If
cardinality is greater than zero such an ME is referred to as MBS assembly. A component relation might
induce some additional constraints on the structure of an ME which are discussed below.

In this conceptual view, it is not mandatory to apply another feature of the ER model, attributes and asso-
ciated value sets representing any kind of data belonging to entities and relationships. Concrete examples
forming the basic classes for a robotics domain component library are given in the next section where
entities of the multibody domain are modelled using Figure 2.3. In the first step properties are empha-
sized, resulting in an abstract data model, and in the second step emphasis is on behaviour (transformation
model).

MBS entity

Physical property

Interaction PortCoordinate Frames

MBS ConnectionMBS Context

Physical State

ConstraintRelation

0..*

1..*

Reference
0..1

Representation
0..1

0..*0..*

ReferenceRepresentation

0..1

0..*

0..*

2..*

FIGURE 2.3: Conceptual Entity-Relationship model of an MBS entity and its constituents in graphical UML nota-
tion.

2.2.1.1 RigidBody entity

In mechanics a body denotes an entity carrying mass, having a geometrical extension, and locations where
some actions can be applied. In the domain of multibody system dynamics one can take the attributes mass
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m and inertia J for granted. The nature of a body is the ability to couple to a gravitational field and to
react to external action by inertial forces as discussed in 2.1.1. The interesting thing is, that even this
well-accepted view is implicitly based on modeling assumptions. Considering the gravitational (volume)
forces these properties are only sufficient to some extent to calculate the dynamics correctly. Only for
homogeneous fields the center of mass, which is the point upon the net inertial forces act, is identical to
the center of gravity, onto which the net gravitational volume force acts. So without further semantical
information stemming from some kind of context and some additional physical information about the
mass distribution of the body this model is valid for homogeneous fields.6)

Modeling these concepts within the MBS entity paradigm yields Figure 2.4. The most general model
RigidBody contains physical property attributes denoted by PP:mass and PP:inertia. The latter requires a
reference point and a vector base represented by CF:Rep and CF:Rep. There are a number of NF frames
CF for designating locations attached to the body which are exposed to the same number of interaction
ports IP:x. The constraint relation between the frames CF:Ref and CF:x might be implicit or explicit. If
one identifies CF:Ref with the center of mass system this is a MBS entity model of the body depicted in
Figure 2.1 for NF = 2.

ME:RigidBody

PP:massPP:Inertia

CF:Ref IP:x

CF:xCF:Rep

0..1

position constraint 1..*representation

position constraint

FIGURE 2.4: ER model of the MBS entity RigidBody.

The most concise specialization of this model is MBS entity RigidBody<1,Type1>, which is shown in
Figure 2.5. It represents a body with one interaction port called IP:1 and one frame FCF :1 represented
by CF:1 associated with it. This component can only act as a leaf in a multibody graph structure. The
reference system of the inertia PP:I is the center of mass frame CF:CM located in the center of mass and
equivalent to FCF :1. The vector basis used to represent the entries of J is also 1e. The specialization tag
<1,Type1> denotes the number of frames NF = 1 and Type1 the equivalence of the center of mass frame
and FCF :1.

ME:RigidBody<1,Full,Type1>
IP:1CF:1

PP:Inertia<Full>

I11 : double

I22 : double

I33 : double

I21 : double

I31 : double

I32 : double

PP:mass

m : double
CF:CM

representation

reference

equivalence

FIGURE 2.5: ER model of the specialized MBS entity RigidBody<1,Type1>.

6) Hence, this assumption holds for all ground-based robots and technical processes, but not for geostationary satellites of
large extent.
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From Figure 2.4 the mathematical operators as discussed in Section 2.1.1 can be extracted. From the
viewpoint of a mathematical formalism using spatial notation the proposed rigid body provides a spatial
inertia matrix MCF w. r. t. a frame FCF and rigid body transformations φCF :x,CF :y between various frames
where x 6= y, x, y ∈ {1, . . . , NF} , where the set {FCF :1, . . .} must be exposed by the interaction ports.
This is one kind of behavioural description of a rigid body.

To provide more modeling flexibility it should be possible to derive models which provide a different
view [38] on the body data, e. g., to supply information about the mass density and geometrical data.
The number of PP will increase, and due to the redundancy some constraints for deriving the body data
has to be provided. The only difference is in the data model. It must be emphasized, however, that
such a component must have the same behaviour as a rigid body otherwise it would represent a different
entity. To capture this fact by the modeling paradigm is exactly the reason to take this abstract point of
view. It should be noted that the model chosen above is motivated by separating the characteristics of the
rigid body. A more user-friendly specialization of the RigidBody entity should provide attachment points
different from the center of mass.

2.2.1.2 Displacement entity

Describing one reference location O1 on a rigid body by means of a second one O2 on this body, often
required in robotics, implies a time-invariant shift between two locations by a vector r1,2. In mechanics
terms this behaviour shifts an attachment or reference point or the point of application of actions to a
different location. Introducing two coordinate frames F1 and F2 there also is the possibility to change
the local vector basis 2e = 2R

11e which does not affect the physical behaviour of shifting the reference
point. This behaviour offers several interpretations depending on the modeling concepts used ranging
from massless rigid rod or rigid body to homogeneous transformation or a link with zero degree of free-
dom. Mathematically spoken, a displacement entity puts a positional constraint between two coordinate
frames which depends on time-invariant local positional parameters. Figure 2.6 shows an ME diagram of
that dependencies.

Displacement

IP:1

IP:2

CF:1

CF:2

PositionConstraint

FIGURE 2.6: ER model of the MBS entity Displacement.

The positional parameters denote a set of time-independent parameters describing how the relative trans-
lation and orientation between the two frames CF:1 and CF:2 is parametrized. The most common used
in robotics are Denavit-Hartenberg (DH) parameters [34] and related sets by Craig [29] and Khalil and
Kleinfinger [76] and separate parameterizations of translation and rotation, e. g., through Euler-angles
or quaternions [98]. A model of a simple displacement is shown in Figure 2.7, which represents a sim-
ple translation parametrized by matrix CF :1rCF :1,CF :2. This is referred to as Displacement<Type1> and
equivalent to the component called ’FrameTranslation’ in [94].

Extracting mathematical operators from the model described in Figure 2.6 shows a behaviour which is
very simple in terms of spatial operators. The operator concerned by this kind of ME is the rigid body
transformation operator φCF :1,CF :2 through positional constraint.
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PositionConstraint<Type1>

r : Vector3
Displacement<Type1>

IP:1

IP:2

CF:1

CF:2

FIGURE 2.7: ER model of the specialized MBS entity Displacement<Type1>.

2.2.1.3 Joint entity

Constrained motion between two bodies results (i) from direct physical contact of two bodies or (ii) from
an interconnection of two bodies by means of kinematically constraining mechanisms, whose mass and
inertial properties have been lumped with the bodies connected. Important examples often applied in
mechanical engineering are revolute, prismatic, universal, and ball joints. It is possible to model the
effects of rigid body contact and a constraining mechanism as two coordinate frames F1 and F2 whose
relative motion is kinematically constrained and the contiguous bodies are thought to be attached w. r. t. to
the two frames. In both cases (i) and (ii) the idea of the kinematic equality constraint as a separate entity
is called a joint. Situations where more than two points or frames have to be contrained at once or the
constraint must be expressed in terms of an inequality relation is rarely encountered in robotics and are
not investigated in this work. The ideas developed in this section are based on the general mathematical
treatment of representations of joints in multibody systems by Schwertassek and Senger [124].

The fundamental characteristic to distinguish the behaviour of joints is the way they relate the relative mo-
tion of frames F1 and F2. Unconstrained motion between two frames has 6 degrees of freedom (dof), i. e.,
one requires 6 independent variables to describe the relative position7). The set of independent variables
parametrizing the relative position and velocity are generally called position and velocity state variables
denoted by symbols qp and qv. The number of holonomic and nonholonomic constraint equations be Nfp

and Nfg . The number of motional dof Nf across the joint then is Nfp +Nfg = 6−Nf .

It has been pointed out in [124] that using relative position and velocity variables allows for all constraint
equations to be established without any knowledge about the multibody aspects of the whole system
under consideration. This enables a completely component oriented view on every type of joint with a
minimum coupling to the complete model. The various joint types can be compiled in an independent
joint library which allows for changes in the applied multibody formalism without requiring changes in
the library. That perfectly fits into an object-oriented modeling paradigm with demand for encapsulation
and minimum but well-defined coupling between all parts of the system. The main characteristic of joint
behaviour is captured by a classification of the type of its positional constraint. From a data perspective
the requirements for the description of a joint in a multibody dynamics simulation are

• joint positional constraint (desirable in mathematical explicit form),

• sets of joint position state variables qp and joint velocity state variables qv,

• kinematical equations of motion, i. e., the relations between the chosen velocity variables and the
time derivatives of the position variables,

• mode vectors and dual vectors, describing the mappings between state space in cartesian space.

There are two more categories given in the joint description [124] not considered in this context for clarity.
The first are so-called kinematical excitation functions which describe modes of motion which not excited

7) Position encompasses the terms displacement and orientation.
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by state variables. This feature of special mechanisms is not required in robotic applications. The second
are laws for the generalized applied forces, i. e., functions representing applied interaction forces in terms
of the motion across joint most prominently friction, which is later captured by drivetrains including
friction.

ME:Joint

IP:1IP:2

IP:3

PS:JointStateVar
CF:1CF:2

KinematicConstraint

PP:ModeVectorPP:DualVector

Kinematic eom

constraining

FIGURE 2.8: ER model of the MBS entity Joint.

In the domain of robotics the most important joints are revolute and prismatic which are single dof joints.
They constrain the motion between frame F1 and F2 along one axis n. One obvious choice for relative
position and velocity state variables are the joint angle θ and its time derivative θ̇. The kinematical
equations of motion take the most simple form qv = d

dt
qp. One concrete specialization is shown in

Figure 2.9 and called Joint<Revolute,Type1>. The classifier Type1 denotes the parameterization of the
positional constraint equation, in this case using an arbitrary axis of rotation resolved w. r. t. frame FCF :1

hence CF :1n.

Joint<Revolute,Type1>

CF:1 CF:2

PS:Angle

IP:1 IP:2 IP:3

PositionConstraint<Revolute,Type1>PP:ModeVector

n : Vector3

CF:3

representation

FIGURE 2.9: ER model of the MBS entity Joint<Revolute,Type1>.

The spatial operator induced by the positional constraint is the rigid body transformation operator φCF :1,CF :2.
A crucial point for all algorithms based on a joint space or state space representation – actually the most
efficient ones – is a mapping between the spaces of velocity variables and cartesian velocities and its dual
mapping between cartesian actions and variables of generalized force variables. In the simplest case of
single dof revolute joints this turns out to be the mappings between joint angular velocities and torques
and cartesian velocities and actions. In case of holonomic constraints the mode vectors and its dual are
equivalent to the joint projection operator H [66]. This operator will be applied in the further analysis in
the following sections. If CF :1n is a unit column vector describing the axis of rotation of a revolute joint
the H = (CF :1n

T
, 0T

3)
T, if CF :1n is the joint axis of a prismatic joint H = (0T

3,
CF :1n

T
)T.
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2.2.1.4 ReferenceFrame entity

Motion of mechanical systems finally are described w. r. t. inertial space. The idea of a reference frame
component is a coordinate frame whose translation and orientation w. r. t. an inertial frame are known
functions of time, which may, in particular, be zero [115]. This frame could be reference to one prominent
(’reference’ or ’main’) body attached to the robot mechanism, and is strictly speaking not a part of the
mechanism itself. Or one might choose a reference frame corresponding to no material body and having
no physical relation with any body of the system. This case can be covered by the idea of a ’conceptual’
joint relating the reference frame and the ’main’ body. Because this conceptual joint models, depending on
context context, different qualities from a ’real’ joint entity [115] it is part of the separate ReferenceFrame
model shown in Figure 2.10(a). For instance a conceptual joint with six degrees of freedom [40] does
not constrain motion in any sense. ReferenceFrame is a purely kinematical concept, though similar
components, as reported in literature [94], carry semantical information about gravitional acceleration.
As discussed in Section 2.1.1 this implicitly assumes a homogeneous gravitational field.

More important is the meaning of ReferenceFrame as part of the description of the robot’s environment.
Information is required on which parts of the robot model are interacting with, e. g., the ground if it is
mounted on the floor. The specialized model ReferenceFrame<Kinematic,Type1> shown in Figure 2.10(b)
is designed to express these conditions. The specialization tag <Kinematic,Type1> tells that the frame is a
kinematic reference where the inertial frame coincides with the frame of reference.

ReferenceFrame

IP:1

CF:1CF:InertialFrame CR:PositionConstraint

PS:PositionVariable

(a)

ReferenceFrame<Kinematic,Type1>

CF:InertialFrame

IP:1

CF:1

equivalence

(b)

FIGURE 2.10: Left: ER model of the MBS entity ReferenceFrame and its specialization
ReferenceFrame<Kinematic,Type1>.

2.2.1.5 Default component set and additional components

Robotics is a rapidly developing domain with a vast range of applications. Vew types of components and
machines are continuously emerging and there is undoubtedly an increasing demand for precision, safety,
and efficiency. This is reflected by the modeling requirements where domain specific solutions and new
algorithms require new types of components catching more detailed physical effects. In Section 3.2 where
algorithms for concrete applications are presented some more types of specialized MBS entities will be
introduced, e. g., representing elasticity, physical contact, or angular momentum.

When considering the Multibody entities in the following chapters, prominently in the context of multi-
body system algorithms we will rely on a default set of components which are listed in Table 2.2. These
suffice to describe tree-structured robot mechanisms system with fixed base on a detailed level without
further assumptions. The table also introduces an iconic representation für each default entity useful
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in drawing multibody component diagrams and shows which spatial operators appears in the equations
through the presence of this type of entity in the model description.

TABLE 2.2: Default set of MBS entities.

MBS entity declarator iconic representation spatial operator

ReferenceFrame<Kinematic,Type1>
1

RF

Joint<Revolute,Type1> 2

JR

1

3

H,Φ

Displacement<Type1>
2

D

1

Φ

RigidBody<1,Type1> RB

1

M

2.2.2 Robot specification model

Known interconnection topologies of the robots are:

• kinematic chain

• star topology

• tree structure

• partial loops

• fully closed kinematic mechanisms

Figure 2.11 shows a schematic view of each class of these mechanisms. When mechanisms are depicted
schematically throughout this work, small circles symbolize any kind of holonomic joint and ellipses
material bodies.

The reason to do this subdivision is that each class has distinct mechanical properties and hence alge-
braical properties in a mathematical description. For instance the presence of kinematic loops make the
numerical treatment of kinematics and dynamics much more intricate due to additional algebraic con-
straint equations. One main issue of the various existing dynamics formalisms in general and one main
topic of this work is to exploit this structural properties to arrive at an efficient numerical representation
of the governing equations.

The most common type of mechanism in robotics is the kinematic chain, a series of bodies, where adjacent
ones are connected by joints. There is one body with a special status lying on one end of the chain which
is called reference body, or robot base. When several branches emerge from one common reference body
the system has star topology. When branches are allowed to emerge from every body in the system, the
mechanism is called to have tree structure. In a tree the total number of jointsNJ

+ is one less than the total
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1

(a) (b)

1

(c)

1

(d) (e)

FIGURE 2.11: The main topologies of robotic mechanisms depicted schematically. From left to right: chain struc-
ture, star topology, tree structure, partial loops, and fully closed mechanism.

number of bodies NB
+. Index + denotes numbers which are related to the multibody system as a whole.

Introducing some additional joints which connect some of the branches of the tree leads to kinematic
loops, each extra joint forming one loop. When each body is at least connected to two contiguous bodies
by joints the robotic mechanism is called fully closed. Most robots belong to the class of moderately
constrained mechanical systems, i. e., the number of mechanical degrees of freedom of the robot equals
roughly the total number of bodies and the total number of mechanical dof and the number of kinematic
loops is low in comparison to the number of bodies.

Model component interaction is based on a port concept in this thesis, a versatile technique from object-
oriented modeling that is sufficiently powerful to handle the MBS domain. Relations between MBS entity
objects are established by an MBS connection (MC) between two or more interaction ports. The interpre-
tation of an MBS connection is manifold and depends on the level of abstraction one is considering:

• From a modeling perspective it is an undirected relation between two or more interaction ports.
It can be represented by pairwise binary relations or by relations between multiple ports. To re-
duce modeling errors it is possible to enforce or avoid the formation of topological constructs by
restricting the possible connections. This has been used, e. g., in [104, 56] to enforce the forma-
tion of a spanning tree of the model graph by providing two complementary types of ports, A- and
B-types, allowing only for connections between one A- and one B-port. This strategy is adequate
if the application relies on tree-structure only. The limited scope of the application, for instance a
dynamics algorithm for tree-structure, is mirrored in the modeling paradigm. In this work assur-
ing, if the topology is adequate for a certain application, is postponed to a later logical stage where
information is available about the requirements from the algorithm to apply.

• From an MBS perspective it defines a unique location or frame where two or more entities of the
MBS model interact mainly mechanically. Depending on port semantics and the type of coordinate
frame associated to the interaction port, this corresponds to different levels of detail in physical
modeling. One encounteres two types in this work. The first is a fixed mechanical connection in
a spatial frame living in three dimensional Cartesian space. This can be illustrated by matching
all coordinate frames associated to the ports taking part in the MBS connection in one frame. The
second is used for drivetrains where the associated coordinate frames are aligned along a conceptual
symmetry axis.
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• From an implementation perspective kinematic and dynamic data which are exchanged between
the components, e. g., force and torque vectors, are represented and available in coordinate frames
associated to the ’implemented ports’. This concept is borrowed from the concept of ’cut’ actions
in mechanics, two examples for this perspective are the works of Leister [85], Kecskeméthy [74]. In
the dataflow model presented in the next section a re–interpretation of a multiple relation between
N ports to a (tree-structured) set of directed connections is mandatory to result in streams of well-
defined input-output causality of the software components representing the MBS entities and their
ports.

2.3 Relating recursive dynamics algorithms to dataflow

This section relates the important class of efficient and versatile recursive multibody algorithms to the
model of dataflow. This has two advantages: First, the algorithm for a complete robot can be established
symbolically from properties and equations describing the components and their interconnection structure.
Second, the dataflow model of computation allows for an immediate conversion of the algorithm into code
or an executable.

In multibody view a robot is an ensemble of material bodies connected by joints, including some in-
teractions through actuators, elastic elements and external forces such as gravitation. Such systems can
be treated mathematically and numerically by a number of formalisms. Modeling a technical system
by means of a network of operators or blocks transformings flows of data is well known from the do-
mains of electronic circuits and automatic control. A higher-level description is achieved by using trans-
fer functions with block-diagram structures and the dynamical equations capturing the behaviour of the
systems. These formalisms are rather similar to what a dataflow system is in the domain of computer
science [71, 84]. The PTOLEMY project [23], for instance, studies modeling, simulation, and design of
concurrent, real-time, embedded systems. The focus is on assembly of concurrent components. The key
underlying principle in the project is the use of well-defined models of computation that govern the inter-
action between components. A major problem area being addressed is the use of heterogeneous mixtures
of models of computation. Model-Integrated Computing [138] has been developed for building embedded
software systems. The key element of this approach is the extension of the scope and usage of models such
that they form the "backbone" of a model-integrated system development process. The main application
domain is signal processing.

The family of recursive multibody formalisms stresses transformation properties of each component and
topological properties of the system as a whole. Starting from this observation this section develops a
symbolic mathematical representation of multibody systems such as robots which combines information
about interconnection structure and equations describing the components. For reasons that become clear
in the following this mathematical representation is called Port-Based Spatial Operator Algebra (PSOA).

There are distinct advantages of using the dataflow model as a basis for a high-level description which
are discussed in [47]. It is a functional model with its subsequent mathematical representation, with no
complex side effects, amenable to formal verification and safe program transformation, because functional
relations over dataflows might be time invariant properties. Moreover it is an inherent parallel model,
where any sequencing and synchronization constraints arise from data dependencies. The following
section develops mathematical operators for the description of multibody system dynamics within the
high-level dataflow paradigm.
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Port-Based Spatial Operator Algebra

The formalism developed in this section can be viewed as a natural extension of the Spatial Operator
Algebra (SOA) introduced by Rodriguez et al. [117]. PSOA extensions (a) offer a more general way to
specify and describe mechanisms and (b) alleviate development and object-oriented realization of recur-
sive symbolic multibody algorithms which are applicable to a broad range of robots [63, 68, 65, 66, 67].
As revealed in Section 2.1.1 even the mathematical description of one single body requires considerable
algebraical effort. The spatial operators and operator identities derived through SOA help in reducing
the symbolic complexity and arriving at more concise expressions. Spatial operators present powerful
means to establish spatial recursions, i. e., to state the kinematics and dynamics equations of complex
rigid multibody systems symbolically and recursively.

The following sections clarifie the relation between MBS model structure and spatial recursions, i. e.,
the entities that are to be modeled and the algebraical relationships between them. The idea is that a
generalized way of specifying the mechanical system’s properties has a counterpart in the process of
establishing the system’s equations, to guide generation and organization of code on a later stage. As a
consequence this section does not follow the classical introduction of multibody formalisms and starts
from more abstract arguments.

Multibody component diagrams

Consider an N-joint kinematic chain with fixed base, the case N = 2 being depicted schematically in
Figure 2.12(a). Following robotics literature, bodies are numbered ascending from 0, where index 0 de-
notes the robot base. Starting from body 0, the joint labelled i is followed by body labelled i. Moving
from base body to bodies/joints of increasing index is called outboard direction, the opposite direction is
called inboard.
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FIGURE 2.12: (a) Schematic view of a tooled 2-joint kinematic chain manipulator and (b) a more abstract graphical
representation, (c) a more detailed representation using the default MBS entities from Section 2.2.1.5. Outlined
boxes are MBS entities, black squares MBS ports indexed starting from 1, straight lines between ports are MBS
connections.

A graphical representation of Figure 2.12(a) where the interconnection structure is more emphasized are
shown in Figure 2.12(b) and (c). Joint i and body i and their mechanical connection are merged into a
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single component represented by an outlined box. The mechanical connection between joint i and body
i−1 is symbolized by a straight line terminated by black squares placed on the boxes’ border. The compact
iconic representation is taken from [127] where it is used to draw Unified Modeling Language (UML)
class collaboration diagrams [100] in order to explicitly represent interconnections between architectural
entities. At this stage it is sufficient to mention that in [127] outlined boxes represent capsules, black
squares ports, two ports connected by a line a connector. We will further refer to such a diagram as MBS
component diagram (MCD). The outlined and filled boxes in a MCD are iconic representations of MBS
entities and MBS ports. The straight line between two connectors represents a MBS connection. The rules
for drawing a MCD are defined as follows:

(i) An MBS entity owns one or more ports which lie on the boundary.

(ii) An MBS entity may contain an arbitrary number of other MBS entities.

(iii) Ports must belong to any MBS entity and lie on its border.

(iv) Connections terminate in ports, nowhere else.

(v) Connections are irreflexive, they relate two different ports. Self-connections are not allowed.

(vi) Connections are transitive, if port 1 is connected to ports 2 and 3, then there is a connection between
2 and 3. This rule might not be explicit in the MCD.

(vii) Two different ports may be related by exactly one connection. No parallel connections are possible.

These rules induce a transitive binary symmetric relation on the ordered set of ports. The interconnection
structure of an ensemble of MBS entities is captured by the connectivity matrix which is introduced
here. This matrix determines which pairs of ports are coupled by a connection. Each of all Np ports,
which are present in a MCD, are assigned a unique integer value {1, . . . , Np}, as shown in Figure 2.12(b).
Identifying this value with a component index the connectivity matrix C ∈ FNp×Np is defined by

C :=

{
Ci,j = 1, if there is a connection between port i to j,
Ci,j = 0, otherwise,

(2.28)

where F is the set of numbers {0, 1}with addition and multiplication modulo 2. C is inherently symmetric
as the relation ’connection’ is symmetric and all diagonal elements are zero because of rule (v). Ports
which are not connected are open and lead to zero colums/rows in C.

Roberson and Wittenburg introduced a graph theoretical description of multibody systems [116, 149]. A
comprehensive overview of applications of graph theory in MBS dynamics can be found in [115]. Some
required definitions and properties are reproduced here. A graph G(N,E) is defined as the nonempty set
of nodes (or vertices) N and a set E of pairs of these nodes, called edges. If the set E is ordered one
can assign a direction to each edge and the edges and the graph are called directed. Otherwise the graph
is called undirected. We are concerned with graphs that are simple, i. e., that contain no self-loops and
multiple edges and which are connected.

If ports are omitted from the MCD and each entity and its ports are represented by one node one obtains
a connected graph G. Undirected graph edges represent connections. The connectivity C+ of the graph
is obtained from the connectivity of the MCD using the port-entity projection operator PE ∈ FNp×Ne

defined by

PE :=

{
PEi,j = 1, if port i belongs to entity j,
PEi,j = 0, otherwise
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which requires a sequential numbering of the nodes starting from 1. PE can be used to collapse C to get
C+ := PET · C · PE. C+ determines connectivity between MBS entities and not between ports.

Causality and spatial recursions

Starting from the visual syntax of the MCD we are now able to specify a graphical description resulting
in a directed graph where nodes represent entities from the multibody domain and edges represent a
mechanical interrelation. Turning to recursive multibody computations, either symbolic or numerical, the
notion of a dataflow process network [84] becomes valuable, where nodes represent transformations and
edges directed streams of data, in MBS domain: usual kinematical and dynamical values.

The first step is to refine the connectivity by assigning a direction to all connections. Thus each port is
represented by a unit vector ui ∈ FNp , i ∈ 1, . . . , Np and either defined to be outport or inport. A directed
connection points from one outport to one inport. The unit vectors of all outports form the columns of
the matrix O and span the outport space and those of all inports form I and span the inport space. {O|I}
forms a complete basis of the linear vector space FNp , if each port is either defined in- or outport. For
example, the MCD from Figure 2.12, if ports 0, 2, 4 are defined outports, results in

C =




0 1
1 0

0 1
1 0

0



, O =




1 0 0
0 0 0
0 1 0
0 0 0
0 0 1



, and I =




0 0
1 0
0 0
0 1
0 0



.

Proceeding from this pure topological considerations the next step adds new connection semantics and
defines which dataflow quantity8) is used and transferred between MBS ports. As a first example we
choose the spatial velocity V ∈ R6 and associate one vector to each of the Np ports. The Np velocities are
stacked to form the stacked spatial velocity V ∈ R6Np . The ith spatial component vector of any stacked
vector is denoted by right lower index V[i] ≡ Vi in square brackets.

In order to state transformation properties of the MBS entities we add new port semantics and associate
a frame Fi in Euclidean space with each port i. In our example obviously F1 ≡ FI and F5 ≡ FNp

is the
tool frame. The semantics of an MBS entity now is to transform data entering from all the inports to all
outports. For the moment it suffices to think of a linear transformation similar to (2.19).

A good example to explain the transformation property between ports are 2-port MBS entities representing
the coupled joint-body pair from Figure 2.12, where i is the port at the joint side and i+ 1 the port on the
body side. The spatial velocities of frames Fi and Fi+1 associated to the ports, V[i] and V[i+1] are related
by

V[i+1] = φi+1,iV[i] + ∆i+1 . (2.29)

The relative rate of velocity change across the joint ∆i+1 depends on the inner properties of the MBS
entity, e. g., the joint angle q. The spatial velocity V[i] transforms under the rigid body transformation op-
erator φi+1,i analogously to (2.19). Please note that the expressions derived are independent of coordinate
representation R, thus index 〈R〉 is omitted. The rigid body transformation (2.29) of all MBS entities in a
MCD is captured by the stacked linear rigid body transformation matrix Tφ. The transformations from
i→ i+ 1 as well as i+ 1→ i can be covered uniformly because φi+1,i is invertible. For the example this

8) later we will see that this is related to the notion of a protocol [127].
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results in

V =




V1

V2

V3

V4

V5



, Tφ =




0
0 φ2,3

φ3,2 0
0 φ4,5

φ5,4 0



, and ∆ =




0
∆2

∆3

∆4

∆5



.

The final goal of a recursive algorithm is to derive an iterative method by successive transformation of a
dataflow quantity in a particular direction and between particular ports. To put it in other words: according
to a given causality. Please note that this form of causality does not invoke time. Inspired by Wittenburg
[149] assigning a direction to each connection results in a directed MCD. He distinguishes between an
undirected MBS system graph to define topology and components and a directed graph to enable unique
assignment of relative motion and direction of forces.

Inboard or outboard causality is determined by projecting the involved stacked operators C, Tφ, V, and
∆ into the associated inport and outport spaces using the projection operators

Ô := (OOT) · I6×6 and Î := (IIT) · I6×6 . (2.30)

Multiplication by unit matrix I6×6 denotes identification of F by {06×6, I6×6}, i. e., scalar numbers are
replaced by matrices ∈ R6×6. The outboard transfer matrix

C↑ := ÎCÔ (2.31)

guides the dataflow from outports to inports via connections. The arrow ↑ is used to denote outboard
quantities. Its complement is the outboard rigid body matrix

T ↑
φ := ÔTφÎ , (2.32)

which transforms inport data to outport data. This leads to the definition of the outboard rigid shift
operator

Eφ
↑ := T ↑

φ + C↑ , (2.33)

which transforms the dataflow one stage outboard, from each inport to the adjacent outport and from each
outport the adjacent inports. In case of our example this is

Eφ
↑ =




0
1 0

φ3,2 0
1 0

φ5,4 0



.

The outboard recursion for the spatial velocities in terms of stacked operators gives

V = Eφ
↑V + Ô∆ . (2.34)

For tree-structured systems it has been shown that Eφ↑ is nilpotent [117]. With the definition of the rigid
manipulator velocity transformation

Φ :=

N∑

i=0

(Eφ
↑)i (2.35)

and following the ideas from [117] one can use the nilpotency to get the fundamental inverse

Φ = (I6Np×6Np
− Eφ

↑)−1 , (2.36)
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and (2.34) writes
V = ΦÔ∆ . (2.37)

This identity is an explicit expression for the spatial velocity of frames associated to all ports present in
the MCD. Often one desires a more coarse spatial recursion, leading to evaluation of (2.37) on a sub-set
of ports. Evaluation is taken to be symbolic. The sub-space is spanned by columns of matrix E with
orthogonal space spanned by E⊥. Restriction to this subset means that dataflow in ports ∈ E⊥ does not
explicitly appear in the final symbolic recursion. There is not necessarily a graphical representation of
this recursion as MCD. The restricted recursion denoted by subscript |E can be shown to have the same
structure as (2.37):

V|E = Φ|E∆|E , (2.38)

where

Φ|E := ETΦE (2.39)
∆|E := (ET + Φ|−1

E ETΦE⊥E⊥T)Ô∆ . (2.40)

Proof:

ETV = ETΦÔ∆

= ETΦ(EET + E⊥E⊥T)Ô∆

= Φ|EE
TÔ∆ + (Φ|EΦ|−1

E )ETΦE⊥E⊥TÔ∆

= Φ|E(ET + Φ|−1
E ETΦE⊥E⊥T)Ô∆ �

The special case E = O will be discussed in more detail: Using V|O = OTV can be shown to lead to the
stacked symbolic recursion

V|O = OTEφ
↑2
OV|O + ∆|O . (2.41)

The squared shift operator stems from the property that an outport quantity first is transformed into an
inport quantity. As we would like to restrict to outboard quantities, i. e., E = O one has to perform
two outboard shifts in sequence between two successive ports. They are referred to as sub-recursions.
Equation (2.41) is an important result as it recasts the spatial recursion for the spatial velocity derived
by Rodriguez et al. [117] but including the topology of the multibody system . The iterative algorithm can
be established easily from the reduced PSOA expression (2.41). Defining a sweep as a single recursion
along a kinematic chain or tree structure in either direction, the single outboard sweep for the case of the
example 2-dof manipulator is

N = 2, V [0] = 06

for i=1 to N do {Outboard sweep}
V [i] = φi,i−1V [i−1] + ∆[i]

end for
A fundamental difference must be noted between the definition of an MBS graph introduced here and
that used commonly in literature, e. g., Wittenburg [149], Roberson and Schwertassek [115]. The usual
MBS graph interpretation represents bodies by nodes and joints and springs by edges. It is called primary
graph in [149]. Other ways of interaction such as forces are sometimes represented by edges, too. A
complementary definition would be the port connection graph [110], where all elements of the mechanical
network are associated with an edge The presented approach treats all entities of interest, bodies, joints,
etc. uniformly as MBS entities to emphasize its active role while acting on dataflows. Edges have pure
dataflow semantics and carry no dynamic transformation semantics, neither physically nor in symbolic
expressions, making them purely passive. The next section discusses the advantages of this point of view
on the graph and components of a multibody system.
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Chapter 3

Multibody dynamics algorithms for robots

3.1 Fundamental algorithms for rigid manipulators revisited

Enabled by the PSOA formulation even complex multibody algorithms can be described in a purely math-
ematical but object-oriented way without losing any rigor while being at the same time very close to
object-oriented implementation. This chapter recasts fundamental algorithms emerging from standard
problems in robot control in a new component oriented form using the new Port-Based Spatial Operator
Algebra formulation presented in Section 2.3. This forms a powerful basis for immediate object-oriented
implementation at a later stage. The algorithms presented will mainly rely on the following set of model-
ing assumptions, concerning physical aspects of the robot and its environment:

(i) rigid links and joints

(ii) fixed base

(iii) tree-structure

(iv) only joints with one mechanical dof

(v) fully actuated, i. e., each joint is driven

(vi) homogeneous gravitational field

These assumptions hold for a large range of robotic systems and are used most commonly in literature.
Algorithms based on these assumptions are among the most efficient ones known [136, 90] and so qualify
naturally for real-time control applications. Please note, that the equations in this section describe ex-
clusively three-dimensional robot models. The mathematical notation of the presented algorithms relies
on the spatial notation introduced in Section 2.1.2. When stacked notation is applied to describe a com-
plete system, then we presume a causality definition step, as described in Section 2.3, has been performed
already.

3.1.1 Recursive algorithms—general considerations

It has been shown in Section 2.2.2 that most robotic systems have a moderately connected topology. A
recursive algorithm exploits this fact by calculating iteratively kinematical and dynamical quantities by



3.1. FUNDAMENTAL ALGORITHMS FOR RIGID MANIPULATORS REVISITED 35

starting from a certain location or coordinate frame and applying local transformations based on local
states to calculate, e. g., the position of each coordinate frame present in the mechanical model. One
iteration is called a sweep. In terms of matrix computations the system to solve is very sparse and this
sparsity is directly exploited by the algorithm induced by MBS connection topology. Recursive algorithms
are known to be (i) very efficient, (ii) easily modularizable, (iii) hence require low computing resources,
and are therefore well-suited for application in embedded systems [87].

Exploiting sparsity in each algorithm presented in this chapter is enabled by operators acting on a dataflow
which is established between the interaction ports of MBS entities. These operators are interpreted as
algorithm specific mathematical instantiations of the ME classes introduced by the specification paradigm
in Section 2.2.1. The algorithm specific dataflow between IPs is an instantiation of the abstract MBS
connections. To emphasize the property of recieving and transforming dataflow these kind of component
is called in some works transmission object [74]. The requisites required to completely describe a given
dynamics algorithm are:

• coordinate representation

• choice of a protocol [126], mainly the dataflow depending on algorithm and coordinate representa-
tion, in other words static IP semantics.

• MBS entity semantics: Transformations/equations between the interaction ports for given causality
– the expected behaviour for each ME class in a certain algorithm.

• requirements and local constraints, to model algorithm specific properties and restrictions. For
instance if only certain types of joints are supported by the mathematical formalism. Famous exam-
ples are the dynamics algorithms by Walker and Orin [147] formulated for prismatic and revolute
joints and Armstrong [12] for spherical joints.

This work suggests a categorization of dynamics algorithms which is not restricted to numerical evaluation
of mathematical quantities. We propose a dynamics algorithms ’space’ which is spanned by the categories
of

(i) desired mathematical result, i. e., joint torques,

(ii) used internal coordinate representation,

(iii) port semantics, the internal dataflow coupling the components, and

(iv) set of additional requirements.

This will allow for a more flexible design of algorithm components in Chapter 4.3 to alleviate exchange
of code. This additional degree of freedom in design can be applied to create flexibly the most efficient
robot control system architecture.

3.1.1.1 Data-Transfer Protocol and Ports

The complete set of data or messages exchanged between two parties in the MBS component diagram,
i. e., two different interaction ports, is called data flow or protocol [126]. It comprises (i) the type of data
exchanged, and (ii) a relative order in which the data is exchanged, and (iii) a direction in which the data
is sent.
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The first two, (i) and (ii), solely depend on the kind of dynamics algorithm to be performed. The last
also depends on how the topology of the system has been specified, it is determined by the causality of
the MBS components. It is essential for proper function of a software to define clearly the meaning of
the data flow variables used in a protocol for three reasons: to allow for code reuse, maintenance and for
optimizations. One certain type of protocol is symbolized by <algorithmtag,porttag> where the two tags
denote the kind of algorithm and port semantics.

As an introduction the first example presented is the calculation of the forward kinematics. That is deter-
mination of the position and orientation and their time derivatives in Cartesian space for each location of
interest in the mechanical model from given joint position and velocity variables. One prominent example
is to calculate the tool-frame of a manufacturing robot. Because this section is restricted to tree-structured
systems the algorithm comprises one sweep iterating from the base location outboard to the leafs of the
multibody system by successively applying transformations prescribed by the components’ behaviour.

Forward kinematics to some extent is a prerequisite for nearly any type of dynamics computation. In
presence of closed kinematic loops the equations to solve might be rather complex and have no or multiple
solutions, e. g., see [150, 115].

The protocol data in a spatial kinematics recursion is listed in Table 3.1 on the facing page. The messages,
of course, are spatial position, orientation, and velocity. We use a unique symbol in SansSerif shown in
the left column to emphasize the equal quality of the messages explained in the second column. The
data structure in implementations of various coordinate representations would also be identical. The
various mathematical interpretations of the message symbol depends on the coordinate representation
chosen shown in the remaining columns. Orientation can be expressed in various ways, for instance
in terms of angle parametrizations, quaternions, or direction cosine matrices. To avoid the singularity
problem of angle representation direction cosine matrices are chosen. These also can be used to resolve
tensorial quantities w. r. t. local frames. The representation of velocity is depending on the coordinate
representation employed.

Requirements for a well-posed recursive forward kinematics are:

• each interaction point is associated to coordinate frame Fn, which are called spatial ports

• existence of a unique reference frame F0

• tree-structured topology

• input values are joint position and velocity states qp and qv

Joint variables are provided via state ports, that are interaction ports where different port semantics ap-
plies. The messages required are joint position and joint velocity as shown in Table 3.2. This work
concentrates on relative joint variables, so the symbol to denote this coordinate representation for joint
state variables is suppressed for the sake of brevity.

3.1.1.2 Component Space for MBS entities

The representation of an MBS entity within a certain algorithm or task is only valid for a context which
is determined by:

(i) given numerical algorithm (see above)
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TABLE 3.1: Protocol <RKIN,6D> required in spatial forward kinematics recursions. Please note a frame Fn is
associated to this protocol.

message explanation semantics depending on coordinate representation
symbol 〈I〉 〈B〉 〈A〉

p distance
from O0

〈I〉r0,n = Ir0,n
〈B〉r0,n = nr0,n

〈A〉r0,n = Ir0,n

R orientation
w. r. t. 0e

0R
n

0R
n

0R
n

V spatial
velocity

〈I〉Vn =

( 0ω0,n
˙0r0,n

)
〈B〉Vn =

(
nω0,n

˙nr0,n

)
〈A〉Vn = 〈I〉φI,n

〈I〉Vn

TABLE 3.2: Protocol <RKIN,1D> required in scalar forward kinematics recursions.

message symbol explanation semantics
p joint position variable qp
V joint velocity variable qv

(ii) given interaction port semantics, i. e., the protocol associated to each port

(iii) given causality, i. e., direction of the transformation, takes messages from which interaction port to
which one

In order to categorize MBS components, it is useful to introduce a component space spanned by the type
of described MBS entity, and the three criteria above. In Table 3.3 the transformation properties of the
default set of MBS entities are described within the given categorization.

The default MBS entities with two ports can have a reverse causality, required, e. g., if the displacement
is ’mounted’ in a reverse manner in the model specification. In this case the reverse causalities are easiliy
obtained, because the rigid body transformation is generally invertible. The PSOA formulation does not
presume a defined causality, but subsumes several ones in one symbolic expression, if possible.

Recall Section 2.3 to obtain the complete closed form and symbolic algorithm, amenable to further treat-
ment. The algorithm for a certain robot can now be expressed by

(i) the connectivity C of the model, which is a structural hence algorithm invariant property,

(ii) determining the causality, which is an algorithm specific strategy depending on C, and the reference
nodes, for example depth-first search, and

(iii) assembling the spatial operators describing all Np system ports by stacking the relevant local prop-
erties and messages of the present MBS entities in larger matrices. The typesetting is, e. g., V ∈ R6

for the spatial velocity and V ∈ R6·Np to denote the stacked pendant. When an MBS entity does not
contribute to a certain operator, e. g., the stacked joint projection operator H, the missing entries are
filled by zero-blocks.

In forward kinematics the second issue is quite simple, one chooses a reference port which then is con-
nected to the reference system port. Starting from there, one can determine causality by performing a
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TABLE 3.3: Spatial forward kinematics transformations for the default MBS entities.

component: Displacement<Type1>
port semantics: {1, 2} ← {3D, 3D}

msg. 〈I〉 〈B〉 〈A〉

0r
1,2 = 0R

1
r see 〈I〉

φ2,1 = φD(0r
1,2) φ2,1 = φD(r) φ2,1 = I6×6

Tφ :=

[
φT

2,1

φ2,1

]
,V :=

(
V1

V2

)

p p2 = p1 + 0r
1,2 p2 = p1 + r see 〈I〉

R R2 = R1

V V = TφV

component: Joint<Revolute,Type1>
port semantics: {1, 2, 3} ← {3D, 3D, 1D}

msg. 〈I〉 〈B〉 〈A〉

u := n/ |n|, θ := q3
p, θ̇ := q3

v ,
1R

2
from (B.1)

H := 〈I〉H = φR(R1)
〈B〉H H := 〈B〉H =

(
u
03

)
H := 〈A〉H = φ0,1

〈B〉H

φ2,1 = I6×6 φ2,1 = φR(2R
1
) φ2,1 = I6×6

H :=

(
−H
H

)
, Tφ =

[
φT

2,1

φ2,1

]
, V =

(
V1

V2

)

p p2 = p1 p2 = 2R
1
p1 see 〈I〉

R R2 = R1 ·
1R

2

V V = TφV + Hq3
v

component: ReferenceFrame<FixedBase>,
port semantics: {1} ← {3D}

msg. symbolic transformation
p 〈I〉, 〈B〉,〈A〉 p1 = 03

R 〈I〉, 〈B〉,〈A〉 R1 = I3×3

V 〈I〉, 〈B〉,〈A〉 V1 = 06

depth-first-search [140] on all spatial ports. All state ports are defined as inports because they provide
the mathematical input data, the joint positions. The forward kinematics on velocity level for any robot
model formulated in terms of the components listed in Table 3.3 can be compactly written as

V = EφV + Hqv .

In this expression causality is already defined and the operators are restricted to spatial ports. Applying
identity (2.36) one obtains the rigid velocity shift operator Φ [66]. This gives the closed form forward
velocity kinematics valid for tree structured systems

V = ΦHqv .

Note this expression is independent of the three coordinate representations regarded.
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3.1.2 Inverse dynamics

This section presents the standard recursive inverse dynamics algorithm for rigid manipulators, but re-
casted in new component oriented style as required by the Port-Based Spatial Operator Algebra presented
in Section 2.3. This allows for further symbolical manipulation vital for deriving new advanced algo-
rithms, as will be shown for instance in Section 3.2.1, as well as direct obect-oriented implementation.

In the context of robotics inverse dynamics denotes the computation of all driving forces from predefined
trajectories, e. g., joint positions. The ability to calculate the inverse dynamics is a basic prerequisite for
path planning algorithms and feed forward controllers in robotic systems, so there is plenty of literature
on its numerical calculation, e. g., [87, 109, 60]. The computation of the inverse dynamics for rigid robots
in tree structure is described by the well-known joint-space equations of motion for tree-structured rigid
MBS

M(q)q̈ + C(q, q̇) + G(q) = u , (3.1)

and given the desired joint positions q(t) and their derivatives w. r. t. time up to a order of two, the force
exerted by the drives u(t) can be calculated algebraically. M, C, and G, are joint space mass matrix,
matrices of gyroscopic and gravitational effects. There exist several formalisms to derive these equations,
the most prominent are Lagrangian and recursive Newton-Euler (RNE) formalisms leading to equivalent
results [129]. Without any precautions taken Lagrangian formalisms lead to algorithms of complexity
O(N4). The complexity of the most efficient inverse dynamics algorithms based on recursive arguments
is O(N), either starting from Lagrangian [53] or Newtonian arguments, the latter reported firstly by Luh
et al. [87] and with minimum operations by Khalil and Kleinfinger [77]. An extensive survey of methods
and computational complexity can be found in the paper by Li [86]. The classical RNE comprises a
sequence of two sweeps [133]:

• sweep 1 (outboard): calculate position, spatial velocities, accelerations for each IP.

• sweep 2 (inboard): calculate spatial force in each spatial IP and joint torques in each state IP.

The RNE inverse dynamics has been formulated in various coordinate representations. Inertial represen-
tation is used by Jain [60], Featherstone [40] uses a kind of absolute representation, and Park and Bobrow
[108] an equivalent formulation of the body fixed representation, which has been shown by Hardt [49].
The protocol required for the calculations extends the kinematics protocol described in Table 3.1.

TABLE 3.4: Protocol <RNE,6D> required in spatial inverse dynamics recursions.

message explanation sw. semantics depending on coord. repr.
symbol 〈I〉 〈B〉 〈A〉

V̇ spatial acceleration 1 d
dt

〈I〉Vn = 〈I〉V̇n

nd
dt

〈B〉Vn
d
dt

〈A〉Vn

V̇g
spatial acceleration due
to gravitation 1 〈I〉V̇gn =

(
03
Ig

)
〈B〉V̇gn

〈A〉V̇gn

f spatial force 2 〈I〉fn
〈B〉fn

〈A〉fn

A prerequisite for sweep 1 is the calculation of position and orientation of each MBS entity. Due to the
structure of the underlying Hamiltonian system the fundamental equations of motion of a MBS consisting
of joints and bodies do not depend on absolute position if there are no potentials dependent on absolute or
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TABLE 3.5: Protocol <RNE,1D> required in 1D scalar inverse dynamics recursion.

message symbol explanation sweep semantics
V̇ joint acceleration variable 1 qa
f joint generalized force variable 2 u

relative position. Position calculation can therefore be omitted for ’pure’ dynamics. Gravitation couples
to material bodies carrying mass. The coupling is provided in this realization by the protocol which ’sup-
plies’ each material body with a gravitational acceleration. In case of a position independent gravitational
field one can apply a pseudo-acceleration of the reference system for two reasons: (i) the point of appli-
cation of gravitation resultant is identical to the point of application of inertial forces and (ii) gravitational
acceleration is position independent. An MBS context could provide this information to select a mode for
efficient code generation at a later stage.

The transformation properties for the inverse dynamics contribution of each MBS entitiy are shown in
Table 3.6 and Table 3.7. They extend the kinematics transformations from Table 3.3. An object-oriented
implementation can exploit that relation through, e. g., an inheritance relation. When compared to spatial
kinematics the inverse dynamics recursions require some additional spatial operator matrices related to
properties of certain MBS entities. Stacked diagonal spatial inertia M, stacked antisymmetric spatial
velocity Ṽ, stacked antisymmetric spatial angular velocity Ω̃, and stacked antisymmetric joint velocity
contribution ∆̃.

TABLE 3.6: Recursive Newton Euler inverse dynamics transformations for default MBS entities Reference-
Frame<FixedBase> and Displacement<Type1> and three coordinate representations. The columns msg. and
sw. denote the involved message type and sweep number.

component: ReferenceFrame<FixedBase>
port semantics: {1} ← {3D}

msg. sw. symbolic transformation
V̇ 1 〈I〉, 〈B〉,〈A〉 V̇1 = 06

V̇g 1 〈I〉, 〈B〉,〈A〉 V̇g
1
=

(
03

g

)

component: Displacement<Type1>
port semantics: {1, 2} ← {3D, 3D}

msg. sw. symbolic transformation

V̇ =

(
V̇1

V̇2

)
, f =

(
f1
f2

)

V̇ 1

〈I〉 Ω̃ := diag(Ω̃1, Ω̃2)

V̇ = TφV̇ + Ω̃TφV − TφΩ̃V see 2.20
〈B〉,〈A〉 V̇ = TφV̇

f 2 〈I〉, 〈B〉,〈A〉 f = Tφ
Tf

V̇g 1 〈I〉, 〈B〉,〈A〉 V̇g = TφV̇g

An interesting observation is that each kind of displacement in absolute representation is completely pas-
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TABLE 3.7: Recursive Newton Euler inverse dynamics transformations for default MBS entities Displace-
ment<Type1> and RigidBody<1,Full,Type1> and three coordinate representations. The columns msg. and sw.
denote the involved message type and sweep number.

component: Displacement<Type1>
port semantics: {1, 2} ← {3D, 3D}

msg. sw. symbolic transformation

V̇ =

(
V̇1

V̇2

)
, f =

(
f1
f2

)

V̇ 1

〈I〉 Ω̃ := diag(Ω̃1, Ω̃2)

V̇ = TφV̇ + Ω̃TφV − TφΩ̃V see 2.20
〈B〉,〈A〉 V̇ = TφV̇

f 2 〈I〉, 〈B〉,〈A〉 f = Tφ
Tf

V̇g 1 〈I〉, 〈B〉,〈A〉 V̇g = TφV̇g

component: RigidBody<1,Full,Type1>
port semantics: {1} ← {3D}

msg. sw. symbolic transformation

2

〈B〉 M[1] = 〈B〉M1 =

[
I− mr̃CMr̃CM mr̃CM
−mr̃CM mI3×3

]
, Ω̃[1] := diag(I3×3, 03)V1

〈I〉 M[1] = φR(R1)
T〈B〉M1φR(R1)

〈A〉 M[1] = φT

0,1
〈B〉M1φ0,1

f 2
〈I〉 f1 = M[1](V̇1 + V̇g

1
)− (M[1]Ω̃[1] + ṼT

1
M[1])V1

〈B〉,〈A〉 f1 = M[1](V̇1 + V̇g
1
)− ṼT

1
M[1]V1

sive w. r. t. dynamics, reflecting its purpose of just moving the reference point. The complete closed form
inverse dynamics algorithm in PSOA is shown in Table 3.8 on the next page for pre-defined causality. Ex-
panding Φ using (2.36) will again lead to the well-known two sweep calculation, one outboard sweep from
base-to-tip to calculate spatial velocity and acceleration and one tip-to-base inboard sweep to calculate
the spatial and joint forces.

Now turning again to the joint space representation of the dynamics reveals explicit factorizations of the
joint space matrices by means of spatial operators. Expanding the symbolic expression for u leads to

u = HTΦT
(
M(Φ

(
Hqa − ∆̃V

)
+ V̇g)− ṼTMV

)
(3.2)

which can be shown to be independent from the chosen coordinate representation 〈I〉, 〈B〉, or 〈A〉. Comparison
to (3.1) gives the Newton-Euler factorization of the joint space mass-inertia matrixM [119]:

M = HTΦTMΦH (3.3)

Extending the standard set of ME will lead to an augmented set of stacked spatial operators and hence
extensions in the closed form PSOA expressions, if additional physical effects are included. Please note
that efficiency in terms of floating point operations for the three inverse dynamics formulations is different.
An assessment of the most efficient method is depending on the topology of the system and the set of
required of MBS entities, but for the settings described in Section 3.1 representation 〈B〉 will be most
efficient [136].
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TABLE 3.8: PSOA expressions for RNE inverse dynamics in inertial, body, and absolute coordinate representation
for the standard set of MBS entities.

〈I〉

V̇ = Φ
(
Hqa − ∆̃V

)
+ Ω̃V

f = ΦT
(
M(V̇ + V̇g)− (MΩ̃ + ṼTM)V

)

u = HTf

〈B〉

◦

V = Φ
(
Hqa − ∆̃V

)

f = ΦT

(
M(

◦

V + V̇g)− ṼTMV

)

u = HTf

〈A〉

V̇ = Φ
(
Hqa − ∆̃V

)

f = ΦT
(
M(V̇ + V̇g)− ṼTMV

)

u = HTf

3.1.3 Forward dynamics

Forward or direct dynamics denotes in robotics the calculation of joint accelerations qa from given ap-
plied joint forces u and position and velocity variables qpand qv. It is primarily amenable to the purpose
of simulation this representation is also required, e. g., for model predictive control schemes and trajec-
tory optimization methods. Recalling the state space equation for inverse dynamics (3.1), the forward
dynamics is obtained formally from inverting the positive definite joint space mass matrixM:

q̈ =M(q)−1 (u − C(q, q̇)− G(q)) =: M(q)−1ũ (3.4)

Jain [60] reviews a large number of formalisms to solve this set of equations and categorizes the numer-
ical schemes in three classes: (i) algorithms that require explicit computation of the mass matrix, (ii)
algorithms that are completely recursive in nature, and (iii) algorithms of intermediate complexity. A
comparison of the numerical efficiency of forward dynamics algorithms, especially w. r. t. coordinate rep-
resentation and placement of coordinate frames can be found, e. g., in [40, 136, 90]. Numerical properties
such as cancellation errors and stability have been investigated in [13, 106].

Forward dynamics based on the explicit computation ofM followed by theO(N3) process of solving the
linear matrix equation (3.1) for q̈ forms the class of O(N3) algorithms, most prominent are the methods
developped by Walker and Orin [147], valid for MBS with prismatic and revolute joints. Here N denotes
the number of bodies in one kinematic chain.

For brevity this section reformulates one O(N) articulated body algorithm (ABA) [39] by means of
spatial operators expressions, to develop the realization of a PSOA component formulation and a dedicated
protocol. The first O(N) formalisms have been reported by Vereshchagin [144] and Armstrong [12],
more efficient formulations can be found in [21, 40, 90]. This class of algorithms is based on the idea
of the articulated body [39], which is a chain of joint-connected bodies for which all applied forces are
compensated by Coriolis and internal forces are assumed to be zero. This resembles a ’floppy’ serial
chain. Featherstone [39] observed that the applied spatial force acting on a body in a tree-structure is
linear in the spatial acceleration

f = PV̇ + z ,

here already shown in stacked notation. Where z ∈ R6Np is a bias force vector and P ∈ R6Np×6Np is the
stacked block-diagonal articulated body inertia matrix. Each block in P corresponds to the inertia of the
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articulated body starting outboard form the body under consideration. Np is the number of ports, Nd the
number of positional degrees of freedom in the joints.

The key to the algorithm is the construction of an explicit inverse of M, which can be expressed by
means of spatial operators. Rodriguez et al. [117] discovered an alternative factorization for the mass
matrix, called innovations factorization, which has an explicit operator inverse:

M = (I−KΦH)T D (I +KΦH) (3.5)
M−1 = (I−KΨH)D−1 (I +KΨH)T (3.6)

(3.5) can be interpreted as an LDLT factorization ofM where L is left block-triangular and D is block-
diagonal. The involved spatial operators are defined by:

P = Eψ
TPEψ + M (3.7)

D := HTPH (3.8)
G := D−1HTP (3.9)
τ̄ := I− τ = I− HG (3.10)
Eψ := τ̄Eφ (3.11)
K := GEφ (3.12)
Ψ := (I− Eψ)

−1 (3.13)

In [66] a physical interpretation for the involved operators is given. P ∈ R6Np×6Np is identified by stacked
articulated inertia, D ∈ RNd×Nd by articulated inertia about joint axes, G ∈ R6Np×Nd by Kalman gain,
K ∈ R6Np×Nd by shifted Kalman gain, τ̄ ∈ R6Np×6Np by joint articulation operator, Eψ ∈ R6Np×6Np by
to-next-link articulated shift transformation, and Ψ ∈ R6Np×6Np by articulated manipulator force transfor-
mation. Using (3.6) gives the symbolic computation of the forward dynamics for tree-structured systems

q̈ = (I−KΨH) D−1
{
u − HTΨT

[
KTu −M(Φ∆̃V + V̇g)− ṼTMV

]}
(3.14)

It has been shown in [117, 49] that decomposing this operator expression down to component level recur-
sions leads to a recursive algorithm comprising 3 sweeps:

(i) sweep 1 (outboard): compute

(a) spatial velocities V = Φ∆̃,

(b) gravitational acceleration V̇g = EφV̇g,

(c) bias acceleration a := Φ∆̃V

(ii) sweep 2 (inboard): compute

(a) local articulated inertia P = Eψ
TPEψ + M,

(b) portion of spatial forces independent of qa, b := M(a + V̇g)− ṼTMV,

(c) intermediate terms c := ΨT [KTu − b], and

(d) d := D−1 {u − HTc}

(iii) sweep 3 (outboard): compute
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(a) intermediate term e := ΨHd and finally the
(b) joint accelerations: q̈ = d−Ke

An analysis of this equations leads to the protocol exchanged between multibody entities for the articu-
lated body algorithm (ABA) shown in Table 3.9. This again is an extension of the kinematics protocol
described in Table 3.1. The interpretation in each coordinate representation is omitted because the mes-
sages do not give access to any direct physical interpretation, except for the gravitational acceleration.

TABLE 3.9: Protocol <ABA,6D> required in spatial inverse dynamics recursions.

message symbol sweep explanation
a 1 bias acceleration
V̇g 1 spatial acceleration due to gravitation
P 2 articulated body inertia
c 2 bias force
e 3 intermediate term

TABLE 3.10: Protocol <ABA,1D> required in 1D scalar forward dynamics recursion.

message symbol sweep explanation semantics
f 2 joint generalized force variable u

V̇ 3 joint acceleration variable qa

The transformations derived from the stacked notation can split up w. r. t. the components and associated
to the separate multibody entities, which are shown in Table 3.11. The forward dynamics extends the
forward position and velocity kinematics transformations shown in Table 3.3. The most expensive com-
putations are the ones concerning the articulated inertia and its projections. A detailed analysis is required
to decide which coordinate representation is most efficient. Considering further algorithms, e. g., contact
and collision dynamics shown in the next section, the analysis becomes quite involved and depends on
the concrete application. When no further computations are required the body-fixed representation again
can be shown to be the most compact one [90]. Please note that for expressiveness the equations for the
joint in Table 3.11 are given only for one special causality, generalization to reverse causality and other
holonomic joints is straightforward [49].

3.2 Advanced and new dynamics algorithms

Completely new or extended special purpose algorithms which go beyond the standard forward and in-
verse dynamics for rigid robots are presented in this section. This includes some new components and
physical effects which has not been captured by the default multibody entities applied in Section 3.1.

3.2.1 New elastic joint inverse dynamics

This section presents the derivation of a new recursive inverse dynamics algorithm for the class of so-
called elastic joint robots.1) This includes new components to model the drivetrain effects and a new

1) This section extends parts of the paper [59].
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TABLE 3.11: Recursive articulated body forward dynamics transformations for default MBS entities.

component:ReferenceFrame<FixedBase>
port semantics: {1} ← {3D}

msg. sw. symbolic transformation
a 1 〈I〉, 〈B〉,〈A〉 a1 = 06

V̇g 1 〈I〉, 〈B〉,〈A〉 V̇g
1
=

(
03

g

)

e 3 〈I〉, 〈B〉,〈A〉 e1 = 06

component:Displacement<Type1>
port semantics: {1, 2} ← {3D, 3D}

msg. sw. symbolic transformation

a :=

(
a1

a2

)
, P =

(
P1

P2

)
,c :=

(
c1

c2

)
,e :=

(
e1

e2

)

a 1 〈I〉,〈B〉,〈A〉 a = Tφa

V̇g 1 〈I〉, 〈B〉,〈A〉 V̇g = TφV̇g

P 2 〈I〉, 〈B〉,〈A〉 P = Tφ
TPTφ

c 2 〈I〉, 〈B〉,〈A〉 c = Tφ
Tc

e 3 〈I〉, 〈B〉,〈A〉 e = Tφe

component: Joint<Revolute,Type1>
port semantics: {1, 2, 3} ← {3D, 3D, 1D}, causality: outboard: O = {2}, I = {1, 3}

msg. sw. symbolic transformation

a 1
〈I〉 a2 = φ2,1a1 + Ω̃2V

2 − φ2,1(Ω̃1V
1) see 2.20

〈B〉,〈A〉 a2 = φ2,1a1 − ∆̃2V2

V̇g 1 〈I〉, 〈B〉,〈A〉 V̇g2 = φ2,1V̇g
1

2 D := HTPH, G := D−1HP, τ̄ := I6×6 − HG
ψ2,1 := τ̄ φ2,1, d := D−1(f3 − HTc2)

P 2 P1 = ψT

2,1P2ψ2,1

c 2 c1 = φT

2,1(τ̄c2 + Gf3)

e 3 e2 = ψ2,1e1 + Hd

V̇ 3 V̇3 = d−GTφ2,1e1

component: RigidBody<1,Full,Type1>
port semantics: {1} ← {3D}

msg. sw. symbolic transformation
M[1] = same as inverse dynamics in Table 3.6, Ω̃[1] := diag(I3×3, 03)V1

P 2 P1 = M[1]

c 2
〈I〉 c1 = M[1](a1 + V̇g

1
)− (M[1]Ω̃[1] + Ṽ1

TM[1])V1

〈B〉,〈A〉 c1 = M[1](a1 + V̇g
1
)− Ṽ1

TM[1]V1

method to cope with the algebraical task of differentiating the equations of motion several times and
reveals several new symbolical identities which are invaluable for comparison of the method a existing
approaches and for development of more advanced control strategies.
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The main source of vibration in manufacturing robots and certain types of light-weight robots is due
to the presence of elasticity between the actuator and the driven links [52, 32, 7]. This is caused by
the deformation of transmission elements such as harmonic drives, belts, long shafts during high-speed
motion, by large payloads, and/or hard contact with the environment [137]. These effects are subsumed
under the term elastic joint. Advanced robot controllers aimed at the accurate and stable tracking of
trajectories defined on basis of a model with neglected elasticity should be designed on basis of a more
complete dynamics model of the robot [33].

When formulating the dynamics of an elastic robot it is convenient to use the Euler-Lagrange formalism,
as shown for the cases of elastic links [19] and elastic joints [133]. This approach reveals the equations’
structure without the necessity to express them explicitly. But, on the other hand, application of the
Euler-Lagrange formalism for non trivial robots having many dof imposes several difficulties. While the
demanding formulation of the Lagrangian can be handled with special tools one drawback is inherent:
depending on the chosen coordinates the formalism results in a small system of large equations. Differen-
tiation additionally increases their size and simplification by symbolic computational tools is still hardly
tractable.

From this point of view it seems favourable to employ a recursive formalism, which leads to more compact
equations and is scalable to a large number of dof. Forming the required derivatives of recursive equations
is non-trivial for elastic joint robots but by means of the Spatial Operator Algebra symbolic manipulation
of the recursive equations is a feasible task. Applications of the operator formulation to linearize forward
and inverse dynamics of tree-structured systems by first-order derivatives of rigid MBS equations have
been reported by [64, 49, 67, 132] and Murphy et al. [97] calculated the forward dynamics of a simple
class of elastic joint robots.

3.2.1.1 Investigated elastic and gyroscopic effects

The robots considered in this section have fixed base, rigid links and linear elasticity in the joints. For
simplicity the analysis shown is restricted to chain-structured mechanisms, though all arguments given
are valid for tree-structured MBS, too. Joints and links are labelled sequentially from base to tip starting
from index i = 1 as shown in Figure 3.1, where link i follows joint i. Index 0 denotes the robot’s base.
Joints are supposed to have one mechanical dof and the total number of joints and dof is N . The drives
are rotatory and mounted on the links, and the motor driving joint i is located on link i − 1 as shown in
Figure 3.1.

ii-11 i+1
1 i-1 ii-2

i+1i1 N
N-1

N

0

FIGURE 3.1: Schematic view of an N -joint kinematic chain where each link is a gyrostat. Small circles are joints,
ellipses rigid links, tilted cylinders are rotors. Numbering ascending from base to tip.

The drivetrain actuating joint i is modeled by the rotor of drive i controlled by torque τi, driving an
ideal gear connected to a spring which is connected to link i as shown in Figure 3.2. Dissipative effects
like bearing friction and gear efficiency as well as nonlinear effects like spring stiffening, hysteresis and
backlash are neglected. When the rotors of the drives show axial symmetry, they do not affect the mass
distribution of the complete MBS. In consequence the robot can be viewed as a rigid MBS, where each
link contains an internal source of angular momentum, i. e., each link is a gyrostat [149]. Hence we
suppose that all inertial properties of the drivetrain are lumped with the rigid links.
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FIGURE 3.2: Schematic view of elastic drivetrain model. From left to right: rotor with inertia I , gear with ratioR,
torsional spring with spring constant K, and link.

The following section presents the intricate structure of the governing equations which are obtained from
Lagrangian arguments [33]. This is to show the mathematical problems inherent in this class of robot but
is not adequate to derive an efficient algorithm.

3.2.1.2 Classical Lagrangian approach

A Lagrangian derivation of the equations of motion for an elastic joint robot using independent joint
variables can be found in, e. g. [33], and results in

M(q)q̈ + C(q, q̇) + G(q) = u− urotor (3.15)
−K(q −Rθ) = u (3.16)

S(q)θ̈ + Crotor(q, q̇, θ̇) = urotor (3.17)
S(q)T q̈ + Ccarrier(q, q̇) + I θ̈ +Ru = τ , (3.18)

where q ∈ RN and θ ∈ RN are joint and motor position variables, and u ∈ RN and τ ∈ RN are generalized
applied joint/motor forces.M ∈ RN×N is the mass matrix, C ∈ RN the vector of Coriolis and centrifugal
terms of the links, K the diagonal matrix of spring constants,R the diagonal matrix of gear ratios, G the
vector of gravitational forces, and S is the matrix of inertial couplings between links and motors. Crotor
is due to the spatial motion of the rotors’ angular momentum, Ccarrier corrects for motion of the ’carrier’
links and I is the diagonal matrix of rotor inertias. R, K, and I are supposed to be constant. When the
drives are mounted as described above, S is upper triangular [33]:

S =




0 S12(q1) S13(q1, q2) . . . S1N(q1, . . . , qN−1)
0 0 S23(q2) . . . S2N(q2, . . . , qN−1)
...

... . . . . . . ...

0 0 0
. . . SN−1N (qN−1)

0 0 0 . . . 0




(3.19)

The ith component of Crotor explicitly depends on link variables and θi+1, . . . , θ̇N

Crotor =




Crotor1(q, q̇, θ̇2, . . . θ̇N )

Crotor2(q, q̇, θ̇3, . . . θ̇N )
...

CrotorN−1(q, q̇, θ̇N)
CrotorN (q, q̇)



. (3.20)

This model is similar to the one described in [31] but includes the more general case of non-constant S
and, hence a non-zero Crotor. Additionally it shows the dependency on the gear ratiosR.
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For calculation of the inverse dynamics using equations (3.15)–(3.20) one starts with the N th component
equation of (3.15). Due to (3.19) and (3.20) this equation only depends on link variables and one is able
to solve for θN . Differentiating this equation twice w. r. t. time gives θ̇N and θ̈N . Now one can solve the
N th equation of (3.18) for τN . Proceeding from tip to base it is possible to solve the second-last equation
of (3.15) for θN−1 using θ̇N and θ̈N . Again this equation needs to be differentiated twice to calculate θ̇N−1

and θ̈N−1 what in turn requires θ(3)
N and θ(4)

N and therefore the third and forth derivative of the N th equation
of (3.15). Repeating this way one completes calculating τ1 which requires derivatives of the equations of
motion up to order α = 2N and derivatives of the desired joint positions up to order 2(N + 1). Greek
index α denotes the number of derivations.

This approach results in N very large algebraic equations for the motor forces which are awkward to
handle and inefficient for computation. In the following sections a new non-Lagrangian approach is
presented, which is amenable to efficient implementation while preserving the structure of the governing
equations.

3.2.1.3 Modeling the drivetrain

One important part of robotic systems are the drivetrains driving the joints. In general a drivetrain contains
motors, gears, transmissions, with characteristic phenomena such as bearing friction, damping, elasticity
especially in the gears, or bearing clearance. Though being mechanical devices like links there are several
simplifications possible to improve efficiency of drivetrain dynamics calculations. The idea is to exploit
the rotational or translational symmetry present in many drivetrains.

A glance at Figure 3.2 shows invariance of the mass distribution w. r. t. to rotation angle. This can be
used to reduce the effort for establishing a full spatial description of the governing equations to a kind of
one-dimensional projection, based on scalar rotational variables and the concept of reduced of moments
of inertia. This is a well-known approach in the discipline of machine dynamics and applied in many
commercial simulation tools, such as ADAMS [121] and SIMPACK [120]. The latter even is able transform
a DAE formulation into an ODE form by symbolic transformations if this is possible. The advantages of
this description are (i) an easy and efficient way to establish the equations of motion avoiding complex
full spatial dynamics, (ii) easy integration of frictional and elastic effects, and (ii) avoidance of spatial
kinematic loops—a general feature of drivetrains making the spatial formulation awkward without adding
much relevant detail. In parts we follow in this section the treatment of Otter [104], who discusses an
object-oriented modeling approach to simulate drivetrains in that spirit.

For the description of the elastic drivetrain investigated we first introduce new MBS entities to represent
the effects of (idealized) devices, torsional elasticity, ideal gear, inertia and angular momentum of the
rotor. One choice of MBS entities representing and separating these effects is

• Spring<Torsional,Linear>: a massless ideal, linear torsional spring with spring constant c between
scalar ports IP:1 and IP:2.

• Gear<N,M,Revolute,Ideal>: a massless ideal gear with linear gear ratio matrix R, transmitting from
N to M scalar ports. We just consider the simplest case M = N = 1, with a scalar ratio R relating
scalar ports IP:1 and IP:2.

• RotorInertia<Type2>: a pure ’massless’ angular momentum.

– idea of Type1: A rotator with rotational symmetry around an implicitly defined axis of rotation
between ’flange’ scalar ports IP:1 and IP:2. The inertia around this axis is the physical property
I.
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– idea of Type2: Extension of Type1 by one spatial port IP:3, which is able to provide (spatial)
reaction forces. The axis of rotation w. r. t. F3 is denoted the physical property nr .

Spring<Torsional,Linear>

IP:1 IP:2

ElasticRelation<Torsional,Linear>

PP:SpringConstant

K : double

CF:1 CF:2

(a)

Gear<1,1,Revolute,Ideal>

IP:1 IP:2
PS:GearRatio

R : double

PositionConstraint<1,1,Revolute,Type2>

CF:1 CF:2

(b)

RotorInertia<Type2>

IP:3 IP:2
PP:RotorAxis

nr : Vector3

PP:RotorInertia

I : double

CF:3

AngularMomentum<Type2>

IP:1

CF:1CF:2

repr

(c)

FIGURE 3.3: ER models of MBS entities (a) Spring<Torsional,Linear>, (b) Gear<1,1,Revolute,Ideal>, and
(c) RotorInertia<Type2>.

3.2.1.4 New symbolic higher-order time derivatives of multibody equations

In this section a method is developed to calculate derivatives of the multibody equation (3.15) in a sym-
bolic and recursive manner employing the PSOA. This comprises four steps:

(i) establishing the inverse dynamics equations for the rotor inertia

(ii) assembling all component equations to a closed form PSOA inverse dynamics

(iii) differentiating the kinematical expressions (forward recursion)

(iv) differentiating the dynamics equations (backward recursion)
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It turns out that an appropriate coordinate representation of the dynamics is a key issue to obtain compact
expressions for higher-order spatial derivatives. The body-fixed representation described in Section 2.1.2
presents an efficient means, because expressing dynamics w. r. t. a body-fixed frame allows for recursions
based on local time derivatives and essential spatial operators remain constant [66]. Important to note that
stacked spatial operators H , Hr, and M remain constant in body-fixed representation which simplifies
derivatives w. r. t. time drastically. This leads to simpler construction of the recursions than in [109], so
in the analysis below exlusively body-fixed representation will be applied and the prefix 〈B〉 is omitted for
simplicity. For further use the notion of the α-times local derivative

◦
x(α) of an arbitrary spatial vector x is

introduced, with α denoting the number of differentiations.

Because the algorithm presented will rely on an extension of the recursive Newton-Euler the standard
protocol of inverse dynamics defined in Tables 3.4 on page 39 and 3.10 on page 44 will not suffice
to finally calculate the motor torques. The protocol must be able to transfer a number of higher order
derivatives of the velocities and forces. This is aggravated by the fact that the maximum as well as the
local order of differentiations depends on the topology of the multibody system.

The protocol to exchange data in the elastic joint inverse dynamics is shown in Table 3.12 on this page. In
order to support a variable number of derivatives of spatial velocities and forces, the number of messages is
not fixed, yet has to be determined from topological arguments. That will be discussed in Section 3.2.1.6.
For the moment it suffices to think of an arbitrary number of messages.

TABLE 3.12: Protocol <EJRNE,6D> supporting N times derivatives of spatial forces required in 3D spatial elastic
joint inverse dynamics recursions, for body-fixed representation. The column sw. denotes the involved sweep.

msg. sw. explanation semantics 〈B〉

V(α) 1.α
αth derivative of spatial velocity, where
α = 0, . . . , N + 1 〈B〉

◦

V
(α)

f(α) 2.α αth derivative of spatial force, where α = 0, . . . , N 〈B〉
◦

f(α)

TABLE 3.13: Protocol <EJRNE,1D> required in 1D scalar inverse dynamics recursion.

msg. sw. explanation semantics,〈B〉

V(α) 1.α αth derivative of joint velocity variable, where
α = 0, . . . , N + 1

q
(α)
a

f(α) 2.α αth derivative of joint generalized force variable,
where α = 0, . . . , N

u(α)

Component equations The transformation properties of all the new ME introduced above are listed in
Table 3.14. In this section we need the spatial force of the port IP:3 of the rotor inertia entity. This is
simply the total time derivative of the spatial angular momentum, which stems from the rotation of the
motor. When using the rotor inertia entity a new spatial operator, the rotor axis projection operator Hr, is
required. It describes the direction of the angular momentun in Cartesian space. For brevity and because
the equations of the torsional spring and the gear are quite simple we already state their transformations
for all orders of differentiations in the same table.

The equations for the rotor inertia require some care. The rotor is mounted on any ’carrier’ link. The
relative internal angular momentum w. r. t. to F3 attached to that link is L := HrIV(1)2

, where I := I.
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So the reaction force in port IP:3 depends on the relative angular momentum, but drivetrain dynamics
(3.18) depends on the absolute spatial angular momentum of the rotor Labs = L + Ω3I. Its absolute
time derivative projected onto its axis of rotation Hr

T L̇abs is the required quantity to establish the torque
balance of the rotor f(α)2

= f(α)1
+ Hr

T d
dt
Labs.

TABLE 3.14: Recursive Newton Euler transformations in body-fixed representation for MBS entities required to
model elastic joint robots.

component: Gear<1,1,Revolute,Ideal>
port semantics: {1, 2} ← {1D, 1D}
msg. symbolic transformation

p p2 = p1

R
V(α) V(α)2

=
V(α)1

R
f(α) f(α)1

=
f(α)2

R

component: Spring<Torsional,Linear>
port semantics: {1, 2} ← {1D, 1D}
msg. symbolic transformation

p p2 = p1 + f1

K
V(α) V(α)2

= V(α)1
+

f(α)1

K
f(α) f(α)1

= −f(α)2

component: RotorInertia<Type2>
port semantics: {1, 2, 3} ← {1D, 1D, 3D}
msg. symbolic transformation

p p1 = p2

V(α) V(α)1
= V(α)2

f(α) f(0)3
= d

dt
L =

◦

L + Ω̃3L =
◦

L + Ṽ3L = I(HrV(2)2
+ Ṽ3HrV(1)2

)
f(α)2

= Hr
T d

dt
Labs = f(α)1

+ V(2)2
I + d

dt
Ω3I

Expressions for the complete system The model of the elastic joint robot is sketched in component
oriented form in Figure 3.4 as an MCD. The robot base is RS and each dashed box contains one elastic
joint and rigid link. The drivetrain with index i consists of the sequence STi–Gi–RIi showing that drive i
is mounted on link i− 1. The component BN is the outermost link including a payload.

2

D0

1 2

JR1

1

G1

RB0

1

RI1

3

ST1

1

RS
2

DN-1

1 2

JRN

1

GNRIN

3

STN

RBN

1

2

D0'

1

RBN-1

12

DN-1'

1

FIGURE 3.4: Multibody component diagram depicting the first and the last link of the elastic joint robot chain
(dashed boxes). Link i being a gyrostat is here synthesized from the four components displacement D[i-1] and
D[i-1]’, rigid body RB[i-1], and rotor angular momentum RI[i].

The component causality is defined that one gets simple outboard and inboard sweeps. For outboard
sweep this leads to outport set O = {RS.IP:1,Di.IP:2,JRj.IP:2 } and the corresponding inport set results
in I = { Di.IP:1,JRj.IP:1, RBi.IP:1,RIj} where i = {0, . . . , N − 1} and j = {1, . . . , N}. Assembling
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the component relations leads to the inverse dynamics in body-fixed representation:

V = Φ∆ (3.21)
◦

V = Φ(Hq̈ − ∆̃V ) (3.22)

f = ΦT{M
◦

V − ṼTMV + HrI θ̈ + Ω̃HrI θ̇} (3.23)
u = HT f . (3.24)

This is identical to the expressions shown in Table 3.8 except for two extra terms in the calculation of
the spatial forces f. These account for the additional gyroscopic effects of the rotors. Gravitational
acceleration is considered by accelerating the reference system so matrix V̇g can be omitted for simplicity.

Restricting the symbolic expressions to the sub-set E = {JR1.IP : 2, . . . , JRN.IP : 2} (ports IP:2 of
all revolute joints) allows to concentrate on one important structural characteristic of this system. The
joint projection operator is diagonal H|E = diag(H[JR1.IP :2], . . . ,H[JRN.IP :2]). Now Hr|E shows on which
link each motor is mounted. In case rotor i is mounted on link i− 1 the blocks [i− 1, i] are non-zero and
the operator writes

Hr|E :=




06 Hr[RJ1.IP :3]

. . . . . .
. . . Hr[RN−1.IP :3]

06


 , (3.25)

i. e., changing angular momentum of rotor RIi contributes to torque of the joint JRIi-1. The next step is
now to establish a recursion w. r. t. differentiation order α for the standard recursive equations w. r. t. link
index i analogously to equations (3.21)–(3.24). The goal is to arrive at an algorithm which is amenable to
an efficient and straightforward implementation.

Kinematics derivatives When restricting to the rigid MBS model described by (3.1) the calculation
of the α-times derivative of the dynamics requires derivatives of M and C up to an order of α. As a
consequence the spatial velocity V has to be differentiated for α + 1 times. In absence of collision and
contact it is possible to obtain derivatives of the equations of motion of arbitrary order which is due to the
structure of the underlying smooth kinematics and dynamics equations [98]. To obtain a recursion w. r. t.
α we assume the α-times local derivative of V obeys the identity

◦

V (α) = Φ (Aα +Bα) . (3.26)

From (3.21) follow
A0 = ∆ = Hq(1) and B0 = 0 (3.27)

which are needed to start the recursion. Differentiating (3.26) once locally w. r. t. time and using operator

identities for the time derivatives of Eφ and
◦

Φ found in [66]

◦

Eφ = −∆̃Eφ (3.28)
◦

Φ = −Φ∆̃EφΦ (3.29)

leads to
◦

V (α+1) = Φ

(
◦

Aα − ∆̃Eφ
◦

V (α) +
◦

Bα

)
(3.30)
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which is advantageous, because between the brackets there is no Φ, avoiding explicit higher derivatives
of Φ. The equivalences

Aα+1 ≡
◦

Aα = Hq(α+2) (3.31)

Bα+1 ≡ −∆̃Eφ
◦

V (α) +
◦

Bα (3.32)

formally lead to the desired form of equation (3.26). By construction Bα always fulfills

Bα =
∑

i

bα,i

where each summand is a product

bα,i := ki
∏

j∈Ji

[
◦

∆̃(αj)]Eφ
◦

V (αi)

with ki scalar and Jj ⊂ {0, 1, . . . , α− 1}. This follows from identities (3.27) and (3.28).

Dynamics derivatives If motor j is mounted on link i all of its inertia properties Mr [j] can be added to
the link resulting in a total M [i]. The rotor angular momentum relative to the link Li := Ijnrj θ̇j has to be
considered separately in order to calculate the correct dynamics. Hereby nrj is the rotor axis of rotation
and Ij the inertia about nrj. The rotor spatial angular momentum hence is

L[i] := Hr [i,j]Ij θ̇j =

(
Li
03

)
. (3.33)

A change in angular momentum

d

dt
L[i] =

◦

L[i] + Ω̃[i]L[i] = Ii(Hr [i,j]θ̈j + Ω̃[i]Hr [i,j]θ̇j) (3.34)

expressed conveniently with circle derivative and stacked representation

L̇ =
◦

L + Ω̃L

causes a torque which contributes to the dynamics. There is no need to apply a rigid body transformation
from the center of rotor to the center of link, because this pure torque is independent of the point of
application. When calculating the MBS dynamics the contribution of each link to the spatial force

fδ := M
◦

V +
◦

L− Ṽ TMV + Ω̃L (3.35)

allows for a compact expression of the spatial recursion (3.23), f = ΦTfδ . Analogously to (3.26) one
again can assume

◦

f (α) = ΦT (Cα +Dα) (3.36)

and for α = 0 follows
C0 =

◦

fδ
(0) and D0 = 0 .

Differentiating (3.35) α-times and using a binomial expansion one arrives at a compact non-recursive

◦

fδ
(α) = M

◦

V (α+1) +
◦

L(α+1) +

α∑

j=0

(
α
j

) [
−

◦

Ṽ (j)

T

M
◦

V (α−j) +
◦

Ω̃(j)
◦

L(α−j)

]
. (3.37)
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Differentiating (3.36) w. r. t. time

◦

f (α+1) = ΦT

(
◦

Cα − E
T
φ ∆̃T

◦

f (α) +
◦

Dα

)

again leads to a symbolic recursion when identifying

Cα+1 ≡
◦

Cα =
◦

fδ
(α+1)

Dα+1 ≡
◦

Dα − E
T
φ ∆̃T

◦

f (α) .

3.2.1.5 Combining elastic drivetrain and rigid multibody models leading to new operator expres-
sions

A strategy for solution of the complete inverse dynamics problem, i. e., the multibody dynamics coupled
to the drivetrain dynamics, becomes clear when expressions from (3.15)–(3.18) are identified in (3.21)–
(3.24). Combining the latter together and using (3.34) gives

u = HTΦTMΦHq̈ (3.38)
+HTΦT (−MΦ∆̃ − ṼTM)V (3.39)
+HTΦTHrI θ̈ + HTΦT Ω̃HrI θ̇ (3.40)

where (3.38) and (3.39) are standard factorizations ofM and C [64]. Comparing expression (3.40) with
(3.17) leads to the important operator factorizations of S and Crotor:

S(q) = HTΦTHrI (3.41)
Crotor(q, q̇, θ̇) = HTΦT Ω̃HrI θ̇ . (3.42)

Equation (3.41) restates (3.19) in an explicit manner and it obviously results in the upper triangular shape
derived in (3.19) from pure structural arguments. An arbitrary axis of rotation ni is invariant under its
generated rotation, iRi−1ni = ni. It follows that

φi,i−1(qi)H[i] =

(
ni

−ir̃i−1,ini

)
(3.43)

is independent of qi. This observation shows that row i of the operator product HTΦT in (3.41) is inde-
pendent of qi, thus revealing one more structural property of S(q):

Si,j = S(qi+1, . . . , qj−1)i,j , 1 < i < j < N . (3.44)

Drivetrain dynamics (3.18) depends on the absolute spatial angular momentum of rotor j mounted on link
i

Labs[i] = L[i] + Ω[i]Ij .

Its absolute time derivative projected onto its axis of rotation using (3.22) is in case of revolute joints

Hr
T L̇abs = I θ̈ + Hr

TΦ(Hq̈ − ∆̃V)I .

Now it is possible to establish the torque balance of the rotors

τ = Ru+ I θ̈ + Hr
TΦHq̈I − Hr

TΦ∆̃VI . (3.45)
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This allows to identify
Ccarrier(q, q̇) = −Hr

TΦ∆̃VI , (3.46)

using (3.18) and (3.41) and reveals

Ccarrier(q, q̇) + S(q)T q̈ = Hr
T Ω̇I . (3.47)

These were the last missing identities to express equations (3.15)-(3.18) completely in closed form by
means of spatial operators. The algorithm presented in the following section is based on these symbolic
operator factorizations.

3.2.1.6 Numerical computation of the inverse dynamics

From operator expressions (3.26) and (3.36) one concludes that the recursive algorithm will comprise two
sweeps, one outboard sweep to calculate velocities and all required higher order derivatives followed by
one inboard sweep to do force and force derivative computations for rigid body and drivetrain parts. The
arguments discussed in Section 3.2.1.2 show how the structural properties of Hr and S modify the simple
two sweep execution logic of rigid MBS inverse dynamics. This leads to Algorithm 1 when restricting
the evaluation to the port set E .

Algorithm 1 Elastic joint inverse dynamics algorithm
Detect permanent zeros of S(q) from MBS topology

Require: S(q) is upper triangular
Calc. max. order αmax[i] for each ui from (3.17)
αmax = maxi=1,...,N αmax[i]
◦

V (α)
[0] = 06, α ∈ {0, . . . , αmax + 1}

for i=1 to N do {Outboard sweep}
for α=0 to αmax+1 do

◦

V (α)
[i] = φi,i−1

◦

V (α)
[i−1] + Aα[i] +Bα[i]

end for
end for
◦

f (α)
[N+1] = 06, α ∈ {0, . . . , αmax}

for i=N to 1 do {Inboard sweep}
for α=0 to αmax[i] do

◦

f (α)
[i] = φTi+1,i

◦

f (α)
[i+1] + Cα[i] +Dα[i]

θ
(α)
i =

(
u(α)

i

Ki,i
+ q(α)

)
1

Ri,i

end for
τi = Ri,iui + Ii,iθ̈i +Hr

T
[i,i]Ω̇[i]Ii,i

end for

It is important to note, that the required number of differentiations of the dynamics decreases from tip to
base. The maximum order αmax is required just for the outermost link.

Concerning code generation it is worthwhile to note a great potential for optimization. Hr is sparse
when each Hr [i] is a unit vector in local coordinates and H̃r [i]H̃r [i] = I6×6 results in simple expressions
for Bα needed in (3.26), even for large α. Loss in numerical precision might occur likewise for all
evaluations of higher-order Taylor expansions. The explicitness of spatial operator expressions helps in
taking precautions against that problem.
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The complexity of the Newton-Euler inverse dynamics for a rigid robot isO(N). The maximum possible
number of differentiations is 2(N + 1) as discussed in Section 3.2.1.2. The complexity of expressions
(3.26) and (3.36) grows linearly in α. Analysis of the nested loops in outboard and inboard sweeps in
Algorithm 1 shows that without any further symbolic simplifications this algorithm is at the worstO(N 3).

The elastic joint robot model is a first step towards a more realistic description of robot dynamics. For
industrial robots with very stiff links the rigid body approximation is rather good and gear elasticity is
by far the most dominant source of compliance [137]. Even when links are elastic an elastic joint model
serves as a first order approximation, however, as kind of ’lumping’ the elasticity in the joints. This is
exploited for the calibration model in Section 5.3.

Systems where link elasticity can not be neglected are called elastic multibody systems. The dynamics of
elastic bodies is considered for instance by menas of finite element methods. An excellent basis for the
task of formulating elastic bodies in terms of a MBS entities is Chapter 6.4. in the book of Schwertassek
and Wallrapp [125] which describes the involved data and its meaning. This data is obtained from finite
element or continuum models and preprocessed for usage in MBS codes via a standardized description,
which has been investigated by Wallrapp [148]. There are several specialized algorithms for elastic link
robots. Inverse and forward dynamics for chain-structured robots with fixed base is presented in [75, 20].
An approach using the spatial operator algebra and Ritz functions to establish dynamics equations for
robots with elastic links is presented in [62] leading to an algorithm of O(N) complexity. It can be
directly applied within the PSOA framework, but this is beyond the scope of this work.

3.2.2 Obtaining sensitivity information

Calculation of derivatives of the robot kinematics and dynamics is essential in solving problems involving
numerical optimization, non-linear analysis, parameter identification and calibration, e. g., see [15, 98].
Kinematics derivatives appear naturally in the form of velocity kinematics, but are generally required for
mappings between Cartesian and joint space. Applications are interpretations of rate sensor data and, e. g.,
so-called Jacobian transposed control schemes [134]. Forward and inverse dynamics models for robots
linearized w. r. t. state and control variables are useful in motion planning and control applications [99,
64, 67].

3.2.2.1 Kinematics derivative using pseudo-velocities

The manipulator Jacobian J (q)[134] relates joint rates to the endeffector motion. It states the linear
relation between joint velocities and the spatial velocity of a frame F1, called endeffector frame, which
is fixed in the model w. r. t. a reference frame F0. The definitions found in literature differ in the way
the angular end-effector motion is parametrized. One possible definition which employs the (physical)
angular velocity of the end-effector of an Nd dof manipulator is

(
1ω0,1
1v0,1

)
= J (qp)

0,1 · qv . (3.48)

Here qp and qv denote the vectors ∈ RNd of joint position and velocity state variables and J (qp)
0,1 ∈

R6×Nd . Even when using a Jacobian-free formulation of the velocity kinematics, J can be computed
analytically without any discretization errors. Relying on an existing velocity kinematics V1 = V1(qp, qv)
for the end-effector frame and applying unit pseudo-velocities qv = ei results in column i of the Jacobian:

J (qp)
0,1
i = V1(qp, ei) .
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This method known from the dynamics algorithms 1 and 2 in Walker and Orin [147] is nearly as efficient
as dedicated algorithms used for kinematic chains [30], but applicable to more general topologies such as
closed-chained robots as shown by Kecskeméthy [74]. The only prerequisite required is the existence of
the velocity kinematics function V1 = V1(qp, qv), naturally present in dynamics schemes.

Forward kinematics does not only depend on joint positions but on physical properties λ ∈ Rm of the
robot, i. e., V1 = V1(qp, qv, λ). Calibration is a process to identify the real values of uncertain or changing
physical parameters of the robot such as link-lengths. Some employed numerical techniques require the
sensitivity of the end-effector position of the manipulator in terms of these physical parameters λ. The
method used for (3.48) can be applied to compute a generalized Jacobian matrix J (qp, λ) with respect to
kinematical physical parameters λ := (λ1, · · · , λm) For instance the components λi may be tilt angles of
the joint axes. The term ’kinematical’ denotes the nature of parameters which qualify for this method:
parameters which influence directly the forward kinematics function. This Jacobian is defined as

J (qp, λ)0,1 :=

(
ρ1 · · · ρm
χ1 · · · χm

)
∈ R6×m ,

where

ρi :=
∂1r0,1

∂λi
and

∂0R
1

∂λi
= −χ̃i ·

0R
1
.

This approach applies to all physical kinematic parameters, as long as the transformation of the multibody
entity provides a pseudo-velocity with respect to λi. The abstract robot description provides an elegant
means for re-interpreting a given model during equation code generation. For instance a pure displace-
ment would be mapped to a chained ensemble of three prismatic joints providing the required velocity
transformations without any symbolic processing.

3.2.2.2 Dynamics sensitivities

This section sketches symbolical methods and a recursive algorithm to obtain derivatives directly from
multibody equations by differentiating them symbolically.

Calculation of sensitivities in Section 3.2.2.1 is restricted to parameters providing naturally a velocity or
pseudo-velocity kinematics transformation. This method does not apply for differentiation w. r. t. applied
joint accelerations and actions, because they usually do not appear in the kinematics or inverse dynamics
equations of rigid MBS in differentiated form. The objectives in trajectory optimization, see Section 5.4,
to apply these kind of sensitivities are (i) more robust and faster convergence in gradient based methods
and (ii) more reliable approximation of the Hessian from the exact analytical first derivative. In contrast
to numerical differentiation this technique is robust, avoids errors, and is scalable to large-dimensional
systems such as full three dimensional humanoid models with more than 50 dof.

The sensitivities of inverse dynamics δu and forward dynamics δq̈ w. r. t. position, velocity, and control
variables for tree-structured rigid MBS are :

δu = ∇qu δq +∇q̇u δq̇ +∇q̈u δq̈ (3.49)
δq̈ = ∇uq̈ δu+∇q q̈ δq +∇q̇ q̈ δq̇ (3.50)

Starting from the closed form spatial operator expressions for the inverse dynamics (3.2) and the forward
dynamics (3.14) the linearized models are obtained from special operator identities. The following steps
are restricted to absolute coordinate representation for brevity, hence the index 〈A〉 is omitted. It has been
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shown in [64] that closed form expressions exist for the single partial derivatives of the inverse dynamics

∇qu = HTΦT (−f̃⊗H +M ˜̇VgΦH + 2M̌ΦḢ +MΦḦ) (3.51)
∇q̇u = HTΦT (2M̌ΦH +MΦḢ) (3.52)
∇q̈u = HTΦTMΦH =M (3.53)

and the forward dynamics

∇uq̈ = M−1 = [I − KΨH] D−1 [I −KΨH]T (3.54)
∇q q̈ = −M−1∇qu

= − [I − KΨH] D−1HTΨT
(
−f̃⊗H +M ˜̇VgΦH + 2M̌ΦḢ +MΦḦ

)
(3.55)

∇q̇ q̈ = −M−1∇q̇u = − [I −KΨH] D−1HTΨT
(
2M̌ΦH +MΦḢ

)
(3.56)

where the latter are obviously strongly related to the linearized inverse dynamics. New operators intro-
duced are the spatial co-cross operator

X̃⊗ :=

(
c̃ d̃

d̃ 03×3

)
withX :=

(
c
d

)
∈ R6

and the modified first derivative of the spatial inertia

M̌ :=
1

2
(Ṁ − M̃V

⊗
) = −

1

2
(Ṽ TM +MṼ + M̃V

⊗
) (3.57)

using the identity Ṁ = −Ṽ TM − MṼ [49]. The matrix f̃⊗ is the stacked block-diagonal matrix
f̃⊗ = diag(f̃1

⊗
, . . . , f̃Np

⊗
) and M̌ = diag(M̌1, . . . , M̌1) the stacked blockmatrix of modified inertia

time derivatives.

Jain and Rodriguez [64] present a recursive algorithm which is of orderO(N) for numerical evaluation of
δq̈ . Actually, it is closely related to the articulated body forward dynamics and be realized as an extension
to this. The coarse structure of the algorithm is the

(i) computing of the forward dynamics,

(ii) determining the true spatial accelerations,

(iii) computing the sensititvities.

The details of this algorithm are described in [64], which finally can be done in 5 sweeps starting by the
three sweeps from the forward dynamics, where the second outboard sweep can be used to calculate the
accelerations.

3.2.3 Inverse dynamics for closed chains

This section presents a new extension to methods for solving the inverse dynamics for robots with fixed
base and including a certain class of kinematic loops. It exploits the existence of a high-level model
description and relies on the assumptions that (i) the system is weakly constrained, i. e., the number of



3.2. ADVANCED AND NEW DYNAMICS ALGORITHMS 59

loops is small compared to the number of joints and, (ii) there exists an analytical solution to the closure
conditions. An assumption which is reasonable for many industrial robotic manipulators.

The solution of MBS that include kinematic loops is significantly more complicated than solving a tree-
structured system. In mathematical terms a closed loop imposes algebraic constraints on the equations
of motion, which requires the solution of a non-linear system of equations, sometimes called closure
conditions. Many techniques exist for their general solution, e.g., Newton-Raphson methods. However,
these are all iterative and have a number of inherent drawbacks: (i) the supply of initial values, (ii)
a varying number of iterations, (iii) no guarantee of convergence, and (iv) nonunique solutions. As a
consequence, it is difficult to apply iterative methods in on-line tasks with fixed timing, especially in a
manufacturing system, where robustness and safety are paramount.

3.2.3.1 Automatic processing of partial kinematic loops2)

root

fragment3

fragment1

fragment2

CR

S1 S2

J K

I

FIGURE 3.5: A kinematic loop partitioned for explicit solution. The generic loop consists of rigid bodies (ellipses),
arbitrary joints (balls), one connecting rod (CR), and one free revolute joint (J).

The problems inherent to an all purpose loop treatment can be mitigated by enforcing a restriction to a
special class of loops, which allows an analytic and hence a fast and reliable solution of closure conditions.
This class has been investigated by Woernle [150] especially for finding closed form solutions of the
inverse kinematics of manipulators. His method exploits the observation that certain configurations of
pairs of joints present in a loop lead to analytic solutions, if the loop is cut at this joint positions. The
method hence starts conceptually from a spanning tree of the MBS and ’closes’ the branches by joints.
For the sake of simplicity this presentation follows the idea of Möller [96] to close the loop by a special
MBS entity, a connecting rod. Its mechanical interpretation is a massless rigid link with a spherical joint
at each end, as illustrated in Figure 3.5.

In kinematic terms the connecting rod imposes one additional constraint, i. e., a constant distance between
two coordinate frames, which in turn reduces the number of dof in the loop by one. Therefore, one joint
position variable depends on the closure condition. If this variable belongs to a single dof joint, called free
joint, as depicted in Figure 3.5 for the revolute joint J, then there exists the desired analytical closed-form
solution.

The loop preprocessing requires three steps, to (i) detect loop presence and topology, (ii) define a span-
ning tree, (iii) extract the closing parts, and (iv) detect or define the free joints. That is identical either in

2) This chapter reproduces parts of the paper [57].
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manual or automatic treatment. When using automatical processing the advantages of a high-level model
description come to light. The presence of kinematic loops can be deduced from the model description,
MBS connections and the behaviour of MBS entities. Probably there exists a kinematical coupling be-
tween more than one loop, in robotics design often used to enhance mechanical stiffness, e. g., see Section
5.2.

The potential locations to cut the loop and apply the method can be identified by the presence of ensembles
formed by two ball joints and one displacement and one single dof joint, which are all not actuated, hence
free. In Section 5.2 those are the two spherical joints S1 and S2 with a rigid connection, and the non-
actuated revolute joint J. The actual definition of actuated or not is a model semantics detail. Possible
solutions are the presence of any drivetrain actuating the joint or simply defining free joints by a tag [57].

3.2.3.2 Solving loop kinematics and dynamics

The inverse dynamics algorithm used in this work allows the efficient and reliable solution of non-linear
closure conditions of loops permitting an explicit solution. It is illustrated in Figure 3.5 by a closed-
chain mechanism, built from several rigid bodies, arbitrary driven joints, one free revolute joint J and
one connecting rod CR. In the first step of the forward kinematics the loop is automatically partitioned
into three fragments, as shown in Figure 3.5. Next, the relative kinematics in fragment1 and fragment2
computes the vector pointing from frame FI to the center of S1 resolved in FI , x := IrI,S1 and y :=
KrK,S2. Considering the type of constraint imposed by the connecting rod, it can be solved explicitly for
joint variable qJ if it is a single dof joint, i. e. a revolute or a prismatic joint [96]:

g(qJ) := |KRIx− y|2 − |rS1,S2|
2 = 0 , (3.58)

where KRI(qJ) is the transformation matrix from frame FI to FK . In case of a revolute joint KRI(qJ) is
a rotation about the z-axis, and qJ can be determined by the solution of

A cos qJ +B sin qJ + C = 0

whereas
A := −2 · (x1y1 + x2y2)
B := 2 · (x2y1 − x1y2)
C := xTx + yTy − 2 · uT

3xu
T

3y − rT

S1,S2rS1,S2 .

In case of a prismatic joint the expressions can be derived in an analogous manner. Note that the solution
is not unique. To choose one solution automatically, the initial configuration of the kinematic loop in the
model, given by the model specification, is analyzed. After all joint variables are known, one can employ
global kinematics to calculate the position of all parts of the MBS.

The algorithm avoids repeated evaluation of the kinematics in parts of the model as follows:

(i) doing global kinematics in fragment1 and fragment3⇒ IrI,S1.

(ii) computing relative kinematics in fragment2⇒ KrK,S2.

(iii) solving closure condition (3.58)⇒ qJ .

(iv) computing global kinematics in fragment2 including joint J.
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q̇J and q̈J can be computed analogously from ġ and g̈.

On the one hand joint J is free which in turn requires the joint driving torque uJ to be zero. On the other
hand, the connecting rod CR introduces an unknown constraint force λCR acting between the spherical
joints S1 and S2. The method relies on the idea of applying the constraint force such that it compensates
for a torque τ0J introduced merely by the bodies in fragment2 and comprises 3 steps:

(i) computing inverse dynamics in fragment2 without taking into account for the constraint imposed
by CR. The result is the torque τ0J acting in joint J.

(ii) determining the constraint force λCR = f(τ0J ,
KrK,S2).

(iii) computing inverse dynamics in the complete mechanism, including CR⇒ τ0J ≡ 0.

The computation of qJ , q̇J , q̈J , and λCR involves some homogenuous transformations, and a second eval-
uation of kinematics and dynamics in fragment2. A computational effort even tolerable in a real-time
system.

3.2.3.3 Handling coupled loops

When dealing with more complex configurations, the model topology and, therefore, the structure of
the equations may be obscure. To alleviate the user and to avoid errors, the analysis is automatically
performed during model setup. First a directed a-cyclic graph is created from the model description, with
MBS entities as nodes and MBS connections as edges. The graph is tested for the configurations allowing
for explicit solution of the closure conditions according to Woernle [150]. When coupled kinematic
loops are present, a second intermediate graph structure is created showing the algebraical dependencies
between the loops, in words: which joint variables appear in which closure condition. The dedicated
Assignment-algorithm [107] is applied to the intermediate graph in order to determine the association of
free joint variables and loops. The final step identifies strongly connected parts of the graph in order to
find the correct sequence of solutions [140]. This information is sufficient to solve inverse dynamics in
terms of cutting the loops, performing relative kinematics and dynamics, und computing the dynamics of
the complete system.

3.2.4 Operational space dynamics

The algorithms presented in Section 3.1 were primarily based on the representation of motion in joint
or minimal coordinates, mainly because these schemes are computationally efficient. Many applications
in robotic manipulation involve mechanical interaction with the environment which is best described in
Cartesian coordinates. Mechanical constraints result either from direct physical contact of two bodies or
from an interconnection of the bodies by means of kinematically constraining mechanisms. This section
introduces some methods to treat direct physical contact of a mechanism with its environment. The spatial
operator formulation with its descriptor-like form helps in deriving these algorithms which are hybrid in
the sense of being neither in pure state space nor in pure descriptor representation, but optimally adapted
to the application.

The systems under investigation in this section are tree-structured articulated rigid multibody systems
which experience mechanical contact with the environment inNc discrete frames Fc,k, with k = 1, . . . , Nc,
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referred to as contact frames. Within the presented port-based formulation this corresponds to a subset
Sc of all interaction ports in the component description of the system. The more intricate case of more
than one contact per body at one instance of time is not discussed here, the reader is referred to the work
of Pfeiffer and Glocker [111].

Each contact frame Fc,k introduces Ncck holonomic constraints on position level, so the total number of
holonomic contact constraints is

Ncc :=
Nc∑

k=1

Ncck .

which are described by the column vector of contact constraints ∈ RNcc

c(q) = 0 . (3.59)

Differentiating this formally w. r. t. time gives the contact constraint equations on velocity and accelera-
tion level

Jcq̇ = 0 Jc :=
∂c

∂q
(3.60)

Jcq̈ +
dJc
dt

q̇ = 0 . (3.61)

Jc ∈ RNcc×Nd is called constraint Jacobian.

3.2.4.1 Operational space inertia

It has been shown in the fundamental paper by Khatib [79] that the crucial quantity describing the dynam-
ics of a tree-structured articulated system in mechanical contact is the so-called operational space inertia
Λ ∈ RNcc×Ncc . The most prominent example is the interaction of the end-effector of a manipulator in
assembly tasks, where Λ is the effective inertia of an articulated mechanism in the endeffector frame. The
inertia matrix is defined by

Λ :=
(
JcM

−1Jc
T
)−1

, (3.62)

whereM∈ RNd×Nd is the joint space mass matrix and Nd is the number of positional degrees of freedom
of the mechanical system. Obviously Λ is generically invertible, becauseM is. The stacked constraint
force vector fc ∈ RNcc is the force exerted back by the environment onto the system so that the contact
constraint remains fulfilled.

To avoid the expensive explicit calculation of Jc andM one can apply a recursive algorithm first men-
tioned in [118] to compute Λ−1. Here we recast the algorithm presented in [2, 49]. For a free flying
manipulator there even exists a possibility to compute Λ directly without inversion [65]. The following
derivation relies on body-fixed coordinate representation and is valid for tree-structured systems.

The manipulator Jacobian J is defined to map joint velocities to the unconstrained stacked spatial veloc-
ity of the frames under consideration, in this case the frames from the set Sc,

Vc := V|Sc
= J q̇ (3.63)

so Vc ∈ R6Nc . The velocity constraint equation (3.60) is equivalent to constraining certain components of
the spatial velocity V|Sc

, so we may rewrite this as QVc = 0Ncc
. The matrix Q ∈ RNcc×6Nc is a constant

blockdiagonal matrix with Q := diag(Q[1,1], . . . ,Q[Nc,Nc]) where each block Q[k,k] ∈ RNcck×6 singles out
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which components of the spatial velocity of Fc,k are required to be zero. Examples are Q[k,k] = I6×6

which represents a fixed contact because all velocity components are constrained, and

Q[k,k] =




0 1
0 1

0 1




which singles out just the translational dof of motion and represents a tip contact without slipping. It can
be shown that the inverse operational inertia matrix can be factorized

Λ−1 = JcM
−1Jc

T

= QΨHD−1HTΨTQT , (3.64)

where Ψ is the articulated manipulator force transformation defined in (3.13). Using the definition X :=
HD−1HT and supposing that the blockdiagonal matrix X satisfies the identity

X = S − EψSEψ
T

one can show [3] that there exists a Y

Y := ΨXΨT = ΨSΨT − (Ψ− I)S(Ψ− I)T

= SΨT + ΨS − S .

This recursive algorithm to compute Λ−1 is described in [2, 49]. The first step is a three sweep computation
of the block entries of matrix Y followed by a projection of Y onto the space of contact velocities using
the stacked matrix Q. For the sake of brevity the reader is referred to [2] for the presentation of the
complete algorithm.

3.2.4.2 Contact and collision

The method sketched here leads to a solution of the constraint equations on acceleration level, hence re-
sults in a zero tip acceleration in the constrained directions in the contact frames. The method developed in
[2] assumes that the true joint accelerations are a superposition of the accelerations of the unsconstrained
system, referred to as the free accelerations q̈f , and correction accelerations q̈δ which account for contact
forces treated as external forces. The equations of motion for a system experiencing constraint forces then
can be written

q̈ =M(q)−1 (u − C(q, q̇)− G(q) + Jc
Tfc) = q̈f +M(q)−1Jc

Tfc . (3.65)

The constraint forces in the contact frames must lead to vanishing contact accelerations which can be
shown to be [2]

fc = −ΛQV̇c . (3.66)

The contact algorithm is composed of the following steps:

(i) compute the free accelerations q̈f from standard forward dynamics

(ii) calculate the spatial accelerations V̇c in the contact frames from forward kinematics

(iii) compute fc from (3.66)

(iv) apply the resulting contact forces as external forces in the contact frames and calculate
q̈δ =M(q)−1Jc

Tfc
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(v) add q̈δ to q̈f to obtain the final accelerations

It should be noted that the position and velocity of the contact frames has to be known before starting the
algorithm, what requires a solution the constraint condition on position and velocity level. The solution of
(3.66) requires to solve a linear system of equations of dimension RNcc×Ncc using standard methods such
as Cholesky decomposition. The case of singular configurations of the branches is not considered here. If
the rank of the constraint Jacobian does not have full rank a different solution strategy has been presented
in[90].

Mechanical impact on a multibody system results in a sudden drop in total kinetic energy of the mechan-
ical system. If the time scale of the impact process is small enough then the process can be modelled as
a Dirac-shaped impulse applied to the robot in the point of interaction at one instance of time. This leads
to a discontinuous jump in generalized velocities from q̇− to q̇+. For small δt the terms containing no
accelerations can be neglected in (3.65)

lim
δt→0

∫ t+δt

t

Mq̈dt = lim
δt→0

∫ t+δt

t

(u − C(q, q̇)− G(q) + Jc
Tfc)dt , (3.67)

which leads to
M∆q̇ = Jc

Tfimp . (3.68)

Here ∆q̇ := q̇+− q̇− refers to the change in joint velocities from immediately before and after the collision
event and

fimp := lim
δt→0

∫ t+δt

t

fcdt (3.69)

is the total impulse from the collision normed by the time interval δt. Let the change in spatial velocities at
the contact frames be ∆Vc := Vc

+ − Vc
−. Multiplying (3.68) by JcM−1 and recognizing that Q∆Vc =

Jc∆q̇ results in the expression
fimp = ΛQ∆Vc , (3.70)

which gives the amount of impulsive ’force’ required for a given drop in spatial velocity between the free
and the constrained situation. Assuming completely inelastic collision the tip velocities has to be zero
in the constraint directions after the collision requiring QVc

+ = 0Ncc
, and fimp = ΛQVc

− . The joint
velocities after the collision then are q̇+ = q̇− + ∆q̇. The algorithm can be summarized as follows [49]:

(i) Calculate Vc from forward kinematics

(ii) Calculate fimp from (3.70)

(iii) Calculate ∆q̇ =M−1Jc
Tfimp treating the impulse as an external ’impulse force’ in one instance of

time in the contact frames

(iv) Add the correction term ∆q̇ to q̇− to obtain the new correct joint velocities

Before calling the algorithm the inverse kinematics on position level has to be solved and Λ is to be
computed. The complete algorithm can be shown to require a minimum of five sweeps starting with an
outboard sweep. It is here omitted for brevity, for a detailed presentation the reader is referred to [2] or
[49].
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Chapter 4

Methodology for operational robot models

Based on a detailed analysis this chapter proposes a new object-oriented class hierarchy satisfying the
requirements from the robot modeling applications leading to (i) modular, (ii) efficient, (iii) consistent,
and (iv) reconfigurable characteristics.

Practical realization of software for non-linear dynamics computations of robots must consider

(i) the complexity of the mechanical structure,

(ii) a great variety of topologies, components, actuation methods, and demanding environmental con-
ditions,

(iii) types, efficiency, and interaction of available kinematics and dynamics computer algorithms suitable
for such systems, and

(iv) application scenarios reaching from off-line trajectory optimizations to real-time closed-loop con-
trol including integration and communication to external soft- and hardware with tight timing con-
straints.

The requirements for a software system can be captured by a system model describing what is to be
realized. This model forms an abstraction in two ways [51, 126]. First, it is an abstraction from real world
details which are not relevant for the intended software system. Second, it also is an abstraction from the
implementation details and hence precedes an actual implementation in a programming language. The
ultimate goal of the framework is to implement multibody kinematics and dynamics algorithms efficiently.
So the primary task is to investigate which type of computations will be required.

All computations in a software-based system controlling a robot reflect distinct physical aspects of the
same machine in certain states leading to a strong coupling between all parts. Therefore on conceptual
and software-level there must exist a representation of this commonalities. This representation is the high-
level description described in the preceding chapter which serves as a basis for the required computations
and the various types of robots. Hence this approach is able to support for instance manufacturing robots,
humanoids and other walking machines, and a large variety of components forming the mechanical struc-
ture, different actuators, and contact models.

Efficiency is paramount in most control applications of realistic robots, because of the complexity of
calculations and the intended application in real-time systems. The governing equations for full three
dimensions, the large number of degrees of freedom, and the possibly huge number of dynamics eval-
uations during optimization and identification runs renders this problem still challenging. In order to
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TABLE 4.1: Main classes forming the specification model.

Base class Represents specification of. . .
MBSEntSpec MBS entities
MBSPortSpec MBS interaction port, is part of an MBSEntSpec
MBSConnectionSpec MBS connection
MBSModelSpec Mechanical robot model
SolverSpec Desired algorithm
ExteriorPortSpec Exterior port
MBSAttributeSpec MBS attribute, base class for all attributes which are part of

an MBSEntSpec, e. g., physical properties

mitigate the hard time constraints the most efficient and robust algorithms must be chosen. Unfortunately
these often are robot specific and not general purpose solutions. The most prominent and vital example in
robotics is the analytical solution of the inverse kinematics problem, which gives fast and reliable solutions
when compared to a general purpose approach. For integration of general purpose and problem specific
algorithms, which have been automatically generated or manually coded, in one formalism a software
architecture which is flexible enough is indispensible. In order to reconcile these concurrent requirements
in this section a carefully designed object-oriented operational architecture is proposed. This comprises

• objects for the high-level description of the robot model and problem setup,

• objects serving as domain-specific code generators mapping the descriptions and creating

• objects serving as encapsulated algorithms with clear interfaces and semantics to improve reusabil-
ity.

The intention is not to create a general purpose multibody (simulation) program, but to supply a high-level
design for standardized and efficient implementation and integration of dynamics computations by robot
domain specialists, who in general are no coding experts.

4.1 Classes for model specification

The benefits of having a high-level description have become obvious in the algorithms chapters. Because
robotic systems and algorithms themselves are quite complex entities it is inevitable in a complex software
system to use a high-level model representation that is modular and hierarchical.

The specification model proposed in this section comprises descriptions of the mechanical system and
the type(s) of desired algorithms. This follows Hatley and Pirbhai [51] who propose a model of the
requirements and the design of a system. An object-oriented representation of the specification model is
presented which is adopted by the main base classes listed in Table 4.1. The relations are shown in the
UML package diagram in Figure 4.1. A package in the UML notation is the possibility to group arbitrary
model elements together. This is graphically expressed by putting the model elements inside a package
symbol which is denoted by an identifier string on the flap, e. g., ’Specification Model’ in Figure 4.1.
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Specification Model

Specification of MBS model

PortSpec

MBSEntSpec

MBSConnectionSpec

MBSModelSpec

Specification of Solver

ExteriorPortSpec

SolverSpec

MBSAttributeSpec

FIGURE 4.1: Conceptual UML package diagram of the main classes forming specification model.

It is important to note, however, that the specification model of the robot does not provide any executable
code. The purpose is exclusively to decouple the dynamics model specification from its implementa-
tion and to form an object-oriented basis for other abstract representations such as textual or graphical
representations. This additional level of abstraction is amenable to various applications. It is used in
the following section to guide code generation, or to perform formal analyses, e. g., for verification or
optimization of the specification w. r. t. certain criteria.

The components belonging to the multibody system domain, such as links, bodies, joints, drives, have
been classified in Section 2.2 abstractly as MBS entities. In object-oriented terms this can be expressed by
inheritance from a class MBSEntSpec. The domain component library contains a carefully selected, finite
set of components representing concrete mechanical parts, such as drivetrains, or mathematical ideas such
as contact constraints. The common base class of all attributes of an MBS entity introduced in Section
2.2, such as physical properties, physical state, etc. is the class MBSAttributeSpec. The topology of the
mechanical model is formed by defining relations, specifications of MBS connections, between interaction
ports belonging to the class MBSPortSpec and being part of each MBS entity. An MBS connection is
represented by class MBSConnectionSpec.

The set of components and relations between ports forms an a-cyclic graph where the edges are the con-
nections and the vertices are the MBS entities. This is the specification of the mechanical model, which is
represented by class MBSModelSpec. There is an important semantic issue to note. Numerical schemes of-
ten are not avaliable for a complete model, but just for parts, e. g., inverse kinematics of 6-dof manipulator
mounted on a linear unit. In order to keep all computations consistent the model specification aggregates
a reference to MBSEntSpec and MBSConnectionSpec ensuring especially that all algorithms work on the
same structures and data contained in the entities. A realistic scenario where consistency becomes a vital
requirement is the tuning of parameters after a calibration cycle. The new parameters must be made avail-
able to all models and parts. The MBSModelSpec also should reflect changes in components and topology
by reconfiguration. This is crucial for robots where changing structural conditions require reconfiguration
of the models, for example while walking. Hence it should be conceptually possible to abandon a connec-
tion from a given MBSModelSpec. This part of the dynamic semantics of the specification can be realized
by removing the MBSConnectionSpec or by a special construct, for instance called disconnect.

The desired activity respectively algorithm is determined by a solver specification which are objects de-
rived from class SolverSpec. Restricting to the domain of multibody computations these are parametrized
in many cases by (i) the expected behaviour, or in other words the matrices or numerical result, (ii) the
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FIGURE 4.2: Multibody component diagram of a two-jointed kinematic chain. The robot base or reference system
is represented by the entity RS on the left side, the rigid body payload by the entity RB2. The endeffector frame is
identified F9 which is associated to displacement port D2.IP:2.

type of algorithm applied, and (iii) further tags to denote for instance the coordinate representation used
in the computations. Hence solver specifications for the algorithms investigated in this work could be
expressed using a C++ template class declaration:

template <
typename Computation,
typename Algorithm,
typename CoordinateRepresentation
> class SolverSpec;

For instance a forward dynamics algorithm implemented by the articulated body algorithm using body-
fixed coordinates might be described in C++ pseudo-code as follows

typedef SolverSpec<FwDynamics,ABA,BodyFixed> ABADynamics;

Stating the type of computation for a given mechanical model is not complete without further information.
The considered example is the forward kinematics for the kinematics chain shown in Figure 4.2. From a
mechanical viewpoint the task is uniquely defined: compute all Cartesian positions of all multibody enti-
ties (more precisely positions of the frames associated to interaction ports) from given values of position
variables, i. e., a mapping from joint space to SE(3)NP where NP is the number of ports.

A ’user’, for instance a path planning algorithm, might be interested only in the position of some special
frames. The most prominent example in the domain of manufacturing robots is the position of the tool
center (TCP) for manipulation, in Figure 4.2 the frame F9, or the positions of marker locations used for
obstacle avoidance. In order to decouple that more computation specific information from the mechanical
model description this requires one more tool to apply algorithm-specific port semantics, called class
ExteriorPortSpec. Currently an MBS connection between ExteriorPortSpec and an interaction port has three
applications. First it can be interpreted by a equation code generator to detect which numerical values are
to be exposed, i. e., to be calculated explicitly. Second it is used for algorithms such as Jacobians to select
the frames to be considered. The third is related to the second one and used to influence state selection
(manually or by a state selection algorithm), crucial in MBS dynamics. However, this is a dynamics
formalism specific topic and hence not further discussed here, the reader is referred to more detailed
discussions for instance in [115].

4.2 Mapping robot models

The main task of the framework presented is to provide mappings from the conceptual ’space’ of model
specifications to other ’spaces’. These can be code in the shape of numerical algorithms or just textual
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FIGURE 4.3: Sketch of dataflow transformed by the RNE implementation of Joint<Revolute,Type1>. Velocities
and accelerations ’enter’ the component in interaction ports IP:1 andIP:3 and leave it transformed on the right hand
side in port IP:2. Actions go vice versa.

representations. This section proposes and discusses some of these possible mappings and issues, when
such a mapping is useful und meaningful.

The notion of formalisms for multibody systems [115] denotes computer-oriented methods for obtaining
the system matrices describing aspects of the robot, most prominently the matrices concerning the equa-
tions of motion. The domain of multibody system dynamics distinguishes two approaches to generate
simulation codes, either numerical or symbolical programs. Numerical programs assemble the matrices
from given model data and states. The symbolical approach provides a complete computer program,
mainly in source code, to establish the equations of motion. Examples for practical realizations of both
cases can be found in [123, 80].

In the domain of robot control software this approach is not satisfying for several reasons. The matrices
required in robot control applications are not restricted to forward dynamics. Limited resources may
prohibit a compile-to-code step. Computations are required by several control tasks maybe running on
different hardware.

4.2.1 Mapping to a dataflow network

The dataflow interpretation of recursive algorithms from Section 2.3 showed the equivalence of the graph
of interconnected multibody entities exchanging kinematics and dynamics protocol data to a graph com-
putational nodes connected by dataflow edges. The basic idea of the model of computation presented in
this section is to incorporate this set of local transformations in dedicated objects of class MBSEntImpl.
These MBSEntImpl objects are nodes which represent computations/transformations in a suitably con-
nected graph or network. The edges of the graph are streams of data exchanged between the nodes. This
is a realization of the algorithm specific protocol, objects of class MBSConnectionImpl , a kind of software
connector [8]. Figure 4.3 sketches the in- and outgoing messages of the revolute ’object’ in the Newton-
Euler recursions. The protocol for each IP is shown in the boxes. Kinematical messages are transformed
from IP:1 to IP:2 and IP:3, actions the reverse direction.

This model of computation, having the characteristics of a simple synchronous dataflow process net-
work [84], finally is a numerical multibody formalism, because it assembles the required matrices. It is
able to map the topology as well as the properties in a probably isomorphic way. Hence it is able to carry
over some characteristics of a symbolical formalism, in the sense of maintaining the structural properties
of the mechanism/equations, with the potential for, e. g., optimizations.
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FIGURE 4.4: The relationships between roles in a design process involving an application generator [27].

Due to its appealing properties this approach has been applied for instance to the domain of digital sig-
nal processing [139]. It is well-suited for computations in embedded systems with limited resources
and hard real-time constraints, as shown in the Ptolemy project [83]. Embedded code will increasingly
consist of interacting software components [139], which requires the most applicable domain specific
software architectures. This supports a model-based approach to program synthesis, called Model Inte-
grated Computing [138] which exploits the ability to adapt to changing conditions even during run-time.
In the following it is shown how to generate on basis of the specification model an ensemble of interacting
objects forming the main parts of the computational model of the dynamics architecture.

The two main classes concerned with executable objects are the Builder and the Solver. The main purpose
of a Builder is to automatically transform the specification model into an executable numerical multibody
algorithm, a Solver. The Solvers discussed in this work are executable units of code, performing the
desired computations. Each multibody algorithm has one dedicated Builder, which is able to produce
Solvers implementing that algorithm. This behaviour of translating a high-level information into low-level
implementation makes a Builder object a domain- and algorithm-specific application generator [27].

Application generators in the domain of robot control software are advantageous for severeal reasons,
which can be analyzed best using Figure 4.4 taken from the paper of Cleaveland [27]. Figure 4.4 shows
various roles (not necessarily related to persons) in a typical application-generator scenario. In a typical
development effort the system analyst and the system designer build the specific applications, e. g., a tra-
jectory planning application for a class of robots. The domain analyst and the domain designer build the
application generators used by the system designer. The domain analyst specifies the generator’s require-
ments and thus must know and understand the needs and problems of a wide range of customers. This
includes knowing all current practices and whose which are likely to change in future. The domain de-
signer takes these specifications and implements them in a generator. In robotics each concerned domain
is mapping quite well to one role. The customer or user can be identified with the robot control engineer,
who requires some model computations. The domain designer is the mechanical engineer or multibody
expert who knows about mechanical modeling and multibody algorithms. The system designer will often
be a software engineer. Because a robot control engineer is not inevitably a coding or multibody expert
and vice versa, the presented framework decouples from a conceptual point of view the three domains. In
this work the role of the domain analyst is further taken over.

The relations between the specification and the computational model for an application generator and a
Builder are shown in 4.5. The involved classes and its purpose are shown in Figure 4.2 and are explained
in more detail in the following subsections.

The transformation process of a builder without compile-to-code step is sketched as follows.

(i) Check: The builder first checks if the specification model meets its requirements to create its output,
a Solver. This includes:



4.2. MAPPING ROBOT MODELS 71

Specification

Application

Generator

Application

input

Product

(program)

Compiler

Executable

application

Application

output

Solver

input

Specification

Model

Builder

Product

(executable Solver)
Solver

output

FIGURE 4.5: Schematic diagram showing the involved stages using an application generator [27] (left side) and
using a Builder (right side). Ellipses represent executable programs or objects.

(a) check for correctness of the model description,

(b) test model description for presence of ME or constructs which can not be handled by the
algorithm, e. g., kinematic loops,

(c) test if context meets the builder requirements.

(ii) Preprocessing: In the next step the builder may create intermediate MBSModelSpec specifications,
e. g., to adapt desired model properties. In Section 4.2.2 this topic will be discussed. The main goals
are:

(a) improvement of run-time characteristics.

(b) application of algorithm specific port and connection semantics, e. g., how to treat ports which
are not connected, or how to treat branchings, etc. .

(iii) Code generation: Finally the builder assembles objects containing portions or the entirety of the
required mathematical equations.

(a) apply port semantics, which port is interpreted as spatial and which as scalar.

(b) detect in which causality the transformations of the ME are required. That is formation of a
spanning tree by graph search methods such as depth- or breadth-first-search [5]. The special
properties of an MBS connection according to Section 2.3 are considered.

(c) obtain an implementation of the transformation (in inquired causality and coordinate represen-
tation) contained in objects of class MBSEntImpl from a kind of database. These MBSEntImpl
objects can be viewed as the data base for (pre-coded) component equations.

(d) connect the MBSEntImpl by establishing kinds of dataflow channels formed by objects MB-
SConnectionImpl .
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TABLE 4.2: Main classes forming the model of computation.

Class name Purpose
Builder Algorithm specific code generator
Solver Executable algorithm object created by Builder
MBSEntImpl Algorithm specific mappings of multibody entities. One block repre-

sents the behaviour of a single ME or a sub-graph of MEs for one algo-
rithm by implementing a special interface.

MBSEntImplFactory Objects providing one MBSEntImpl object from a given specification,
especially from a given MBSEntSpec.

ConnectionFactory Topology mapping part of a Builder. Realizes parts of the connec-
tion semantics. Creates MBSConnectionImpl attaches them to the MB-
SPortImpl parts.

MBSConnectionImpl Software connector, the dataflow ’channel’ between MBSEntImpl objects
MBSPortImpl The terminal objects
MBSAttributeImpl Implementation of MBS attributes, e. g., physical property mass
MBSExteriorPortImpl Interface to access data from ports

Solver

GraphSolver MasterSolverBlockSolver

master-slave

FIGURE 4.6: UML class diagram showing the solver base classes. Each solver type represents a different model of
computation: GraphSolver controls a dataflow network, BlockSolver a monolithic equation block, and MasterSolver
exploits another solver for related computations.

The main difference between an application generator and a builder is, that the latter is able to immediately
create or reconfigure executable Solver instances, thus does not need to invoke a time- and resource-
consuming compile-to-code step.

From a specification perspective [43] a solver represents an algorithm interface controlling the desired
behaviour, e. g., inverse dynamics computation. The implementation of the of the behaviour is possible
through various models of compuations represented by the descendants of Solver shown in Figure 4.6.
BlockSolver is the base class for algorithms consisting of one single equation block which can not be
decomposed on implementation level. BlockSolver is to wrap existing functions or automatically gener-
ated equations for whole robots. The purpose of GraphSolver is to control a complete dataflow network
of interconnected components. In this case the solver acts like the Multi-Graph-Kernel known in the
Model Integrated Computing approach [138, 56] conducting computations by controlling the dataflow in
a dataflow network and collecting the results from the graph.

This approach of distributing the computations has two disctinct advantages: it enables either possible re-
use of equations and code at compile-time or re-use of numerical results during run-time through solver
coupling. The simplest form of run-time coupling is performed by objects of class MasterSolver which
synthesize the desired numerical results from one or more other solvers, called slaves. This type of solver



4.2. MAPPING ROBOT MODELS 73

Builder

Solver

MBSEntImplFactory

create/re-configure

GraphSolver

MBSImplGraph

MBSEntImpl

create

BlockSolver

1..*

MBSModelSpec SolverSpec

MBSConnectionFactory

MBSConnectionImpl

create

1..*

demand automatic parts

MBSContextSpec

FIGURE 4.7: UML class diagram of classes involved in generating a Solver from a Builder. For a more detailed
discussion of the relations see text.

for instance perfectly fits for realizing the method of pseudo-velocity Jacobian computations described in
Section 3.2.2.1 using a forward kinematics solver. An overview of the involved classes and their relations
is shown Figure 4.7 and explained in more detail below.

MBSEntImplFactory A database-like component returning an object from a given input specification,
either a single MBSEntSpec or a subgraph of the MBSModelSpec, and the required causality. One possible
realization is using a factory pattern [44].

MBSConnectionFactory Proposed by Fischer and Hörmann [42] to apply algorithm and port specific
connections semantics based on local arguments, creating local reconfigurable subgraphs. Handles special
cases, for instance branchings in tree-structured systems, which require special treatment in dynamics
algorithms.

MBSEntImpl Is a dynamically created algorithm specific object that allows the modeling of dynam-
ically changing numerical schemes while ensuring that all valid communication relationships between
the objects are specified explicitly. This ensures architectural and numerical integrity. MBSEntImpl en-
compasses an algorithm specific interface TransformationSet implemented by equations prescribed by the
behaviour of a ME in a specific algorithm. In the multibody system domain this represents the knowledge
of the robotics or mechanical engineer, equations coded and precompiled in well-defined causality. It is a
generalization of the concept of transmission objects introduced in [74]. The advantages are

• Flexibility: can be implemented automatically or by manual coding.

• Transparency: in many cases direct mapping from one multibody entity to the algorithm, i. e., just
a direct implementation of the PSOA transformation equations.
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• Efficiency: optimization of the implementation contained in the member functions is possible with-
out sacrificing readability, because desired behaviour is well defined via the interface.

• Re-usability: the equations of each multibody component are uniquely ordered by the categories
multibody entity, algorithm type,coordinate representation, and causality. A possible C++ template
declaration of one MBSEntImpl expressing the dependency from these factors is the following frag-
ment

template <
typename MBSEntSpec,
typename Algorithm,
typename CoordRepresentation,
typename Causality
> class MBSEntImpl;

and

MBSEntImpl< MBSEntSpec<Displacement<Type1> >, RNE, BF, IP1IN_IP2OUT>

is an example class incorporating the coded recursive Newton-Euler transformations for the ME
Displacement<Type1> in body-fixed representation (BF) where the causality is defined so that the
forward recursion (sweep 1) of the RNE algorithm is directed from IP:1 to IP:2 and the backward
recursion (sweep 2) vice versa. The TransformationSet interface for this two sweep algorithm might
look like

template <RNE> struct TransformationSet
{
// Sweep 1 (outboard)
doPosition();
doVelocity();
doAcceleration();
// Sweep 2 (inboard)
doAction();
};

where the first three do... operations execute the outboard kinematics recursion which is subdi-
vided in calculation of position, velocity, and acceleration, and doAction() is the force calculation
during the inboard sweep. This interface may be directly implemented using the transformations
defined in Table 3.6.

• Safety: code implementing well-defined interfaces of well-defined objects is easier to read, to main-
tain, to debug, and to document. This leads to code with more reliable characteristics, a requirement
in the robotics domain where reliable function is vital.

MBSConnectionImpl A simple realization of a software connector [8] providing a binary relation be-
tween the two MBSEntImpl objects, or to be more precisely between two MBSPortImpl objects contained in
the MBSEntImpl objects. It implements the protocols vital to recursive algorithms but carries no executional
semantics.

4.2.2 Model transformation and optimization

The transformation of models is a crucial element in model-based endeavours. As models and meta-
models in essence all can be represented by attributed, typed graphs, we can transform them by means
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of graph rewriting [36]. The rewriting is specified in forms of graph grammar models [35] which are
highly amenable to any graphical representations. The graph grammars are composed of rules. Each
rule consists of left hand side (LHS) and right hand side (RHS) graphs. Rules are evaluated against an
input graph, called the host graph. If a matching is found between the LHS of a rule and a sub-graph of
the host graph, then the rule can be applied. When a rule is applied, the matching subgraph of the host
graph is replaced by the RHS of the rule. Rules can have applicability conditions, as well as actions to be
performed when the rule is applied. Graph-rewriting systems can have control mechanisms to determine
the order in which rules are checked and applied. In case of MBS graphs the order is a characteristic
feature of the type of desired solver type to create. After a rule matching and subsequent application,
the graph rewriting system starts the search again. The graph grammar execution ends, when no more
matching rules are found.

This section proposes the application of graph transformation methods in the context of MBS graphs.
Graph transformation reaps the benefits of an abstract robot model specification with well-defined seman-
tics: If a system performs local manipulations of the complex, structural, MBS specification graph then
graph transformation is a good formalism to specify and program it. Possible applications are imaginable
for:

(i) modification of a model specification graph to meet the Builder requirements:

(a) steps before code generation. That could be pre-treatment of special constructs such as kine-
matic loops, which are cut at certain positions depending on local properties of sub-graphs.

(b) model transformation into another target formalism, especially textual representations.

(ii) modification of the specification or implementation and dataflow graph to optimize a given model
specification w. r. t. certain criteria, hence to reduce complexity. Prominent cases on various levels
of abstraction are:

(a) optimization from abstract model specification, i. e. before equation code generation: In case
of dynamics calculations it is possible to merge, e. g., rigid bodies which have a rigid connec-
tion to a single body resulting in the dynamics. That can be used to compactify automatically
assembled and highly redundant robot models to reduce the number of inertia parameters and
reduce the computational burden.

(b) optimization while code generation, in MBSEntImpl objects: Depending on local properties of
the graph and parameters in MBSEntImpl objects one could create optimized code modules, if
applicable. A prominent example are rotational joints, whose axis of rotation is aligned to one
axis of a cartesian coordinate frame. The numerical effort equals that of a rotation in the plane.

The advantages of graph grammars are that they are a natural, formal, visual, declarative and high-level
representation of the graph modification in contrast to implementating them in a traditional programming
language. Computations are thus expressed in a graph grammar language expressed in the graph grammar
formalism. There is a strong need for modularity, because kinematics models have differing requirements
from dynamics models, for instance. These requirements can easily be met because transformations can
be stored in libraries and applied to MBS graphs like filters. The theoretical foundations of graph rewriting
systems may assist in proving correctness and convergence properties of the transformations applied.

A constraint inherent in graph grammars is that in the most general cases the subgraph testing is NP-
complete. Because robot model specification graphs contain numbers of nodes typically of O(10 . . . 100)
this is an issue for systems with extremely frequent model reconfigurations and under hard real time
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constraints. A solution is to use graph grammars as specification for manual implementations, an issue
not discussed further.

Especially for the application of robot models in a robot control system there remains some challenging
and unsolved questions, beyond the scope of this work:

• Consistency: reducing complexity means to remove details which might eventually prove relevant
in other computations.

• Transparency: graph rules could be a great means to formalize the domain knowledge of the
robotics and mechanical engineer, e. g., the possibility to lump masses in dynamics computations.
It is not known if a model graph after several graph rules is still expressive enough and leads to
correct physical results.

• Hierarchy: graph rules may apply to parts of hierarchical model components (assemblies). There
are several strategies to deal with this situation. Flattening the graph would be one possibility but
removes the relations, e. g., between model parameters, expressed by the hierarchy.

• Reconfiguration: Modifying the underlying graphs dynamically is a good way to react on struc-
tural changes in the model. The question is how to formally capture these modifications by graph
grammars without sacrificing efficiency.

4.3 Reusable components of robot models in control

The notion of a solver introduced in Section 4.2.1 denotes (i) the executable version of an algorithm and
from a specification perspective [43] (ii) the responsibility for a certain behaviour, in object-oriented terms
an interface. This section presents a number of interfaces which, e. g., can be implemented by the algo-
rithms discussed in Chapter 3. As complexity of all software based systems grows, software integration
is becoming more and more a key enabler. Software integration costs in US robotics industry alone are
estimated at $1 billion annually [114]. This section emphasizes the relevance of well-defined interfaces
for dynamics computations and presents interfaces to allow for seamless integration and exchange of
dynamics algorithms in a control software architecture.

4.3.1 Basic solver interfaces

This section sketches the responsibilities of the solver base class hierarchy shown in Figure 4.6, the cor-
responding UML interface of class Solver is shown in Figure 4.8.

Solver

update() : void

refresh() : void

reconfigure() : void

getAttributes() : MBSAttributeIterator

getMapping(preImage: MBSAttribute) : MBSAttribute

getExteriorPorts() : MBSExteriorPortImplIterator

resortExteriorPorts(newSequence: MBSExteriorPortImplIterator) : boolean

FIGURE 4.8: UML class diagram of interface Solver.



4.3. REUSABLE COMPONENTS OF ROBOT MODELS IN CONTROL 77

The operations of the base class Solver correspond mainly to two fields. Handling changes and the map-
ping from the model specification to the computational model. This work subdivides changes in three
domains, change of time-varying data, change of data which is supposed to be time-invariant, and struc-
tural change. The most important operation is update() which tells the solver to process new joint angles,
rates, etc., for a new time-step or system state. The responsibility is to update internal matrices whithout
doing the actual computations, to avoid multiple expensive evaluation of matrices in repetitive compu-
tations, which is the norm in robot dynamics. The operation refresh() commands the solver to update
matrices from data which are supposed to be time invariant, especially data describing mass, inertia, and
geometric properties. This is required after changing the tooling or payload or a during a calibration
process.

A solver is the product of the builder process described in Section 4.2.1. Operation reconfigure() is com-
manded exclusively by the builder to react on structural changes in the preimage of the solver, the model
specification. In the worst case the complete translation process has to be performed which might be
expensive, therefore it is realized as a separate method. The method getAttributes returns an iterator—
a certain method to loop over a collection of objects [44]—which MBS attributes are provided by the
solver. This structural information reveals which coordinate frames are present, which positional states
are contained, where mass is distributed, etc. The method getMapping is also concerned with the mapping
established by the builder. It returns if possible the preimage of an attribute of an MBS entity, e. g., the
implementation of the joint angle attribute in a certain implementation important to compute the number
of positional and velocity state variables.

Access to exterior ports, i. e., the exposed states and frames in the model, either input to provide joint
values (tag IN) or output (tag OUT) to retrieve the position etc, is permitted by the operation getExteriorPorts
which returns an iterator over all exterior ports present in the model. This is intended as a common
interface for access to all kinds of protocol data in the model, either of Cartesian or joint space nature.
In other words to provide a way to access the involved data independent from the type of algorithm
and protocol data. The operation resortExteriorPorts is intended to provide a new ordering or a selection
of states or frames. This is rather important to influence the layout of matrices, which is crucial when
communicating and cooperating with other functions. For example an optimizer may expect information
about state variables in a column vector of certain layout.

The interface GraphSolver shown in Figure 4.9 extends the interface Solver by two operations. These are
analogous to the getAttributes and getMapping operations, but concerned with the direct mapping of MBS
components. The idea of the Port-Based Spatial Operator Algebra is to provide the multibody equations in
a component oriented form, which are realized in MBSEntImpl objects. In case of the GraphSolver the model
specification graph is mapped to a topologically equivalent dataflow graph of interacting MBSEntImpl
objects.

GraphSolver

getMapping(preImage: MBSEnt) : MBSEnt

getEnts() : MBSEntIterator

FIGURE 4.9: UML class diagram of interface GraphSolver extending the interface Solver.

4.3.2 Interfaces for algorithm building blocks

This section presents interfaces for selected algorithms, some of them presented in this work. For the sake
of clarity only the mos relevant operations are listed in the interface declarations. It is not defined if the
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solver is implemented by a graph-, block, or master-solver, because the behaviour to be expected must be
the same. All solvers are subtypes of the basic interface Solver.

4.3.2.1 ForwardKinematics

Forward kinematics computes the Cartesian position and velocity of frames belonging ports connected to
ExteriorPort objects. The advantage is that this is not restricted to one single endeffector frame, though
in robotics often forward kinematics often means computation of the position of a single endeffector
frame. This is too restrictive, for example in collision avoidance schemes, so the interface provides
access to an arbitrary number of frames in a model. The two operations doPosition and doVelocity start
the kinematics computation but do not return results. The results are obtained from ExteriorPort interface
objects, whose interface is shown on the right part of Figure 4.10. The position data is compactly retrieved
using a homogeneous transformation object NumericalMatrixHomTrafo comprising the positional vector and
the rotational matrix. The desired joint position and velocities are set through the exterior ports tagged IN.

ExteriorPort< <RKIN,6D>, OUT>

getPosition() : NumericalMatrixHomTrafo

getVelocity() : NumericalVector6

ExteriorPort< <RKIN,1D>, IN>

setPosition(position: double) : void

setVelocity(velocity: double) : void

ExteriorPort< <RKIN,1D>,OUT>

getPosition() : double

getVelocity() : double

ForwardKinematics

doPosition() : void

doVelocity() : void

FIGURE 4.10: UML class diagram of interface ForwardKinematics and the interfaces of involved exterior port
objects to set and retrieve data.

4.3.2.2 CenterOfMass

This interface is to compute the total robot mass m+, position of center of mass frame F+
c , and the total

moments of inertia w. r. t. the center of mass frame c
cJ

+ of a robot model. The center of mass of multibody
systems is a uniquely defined frame for a given model in a given positional state. The positional state is
again set by taccessing the exterior ports through the base class solver, then the computation of the center
of mass frame is started by the operation doCOM(), the computation of the total mass by doMass(). The
inertial parameters relevant are the total robot mass, and the moments of inertia wrt the center of mass
frame, are obtained from the operations getMass, getPosition, and getInertias.

CenterOfMass

doMass() : void

getPosition() : NumericalMatrixHomTrafo

doCOM() : void

getMass() : double

getInertias() : NumericalMatrix

FIGURE 4.11: UML class diagram of interface CenterOfMass.
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4.3.2.3 MassMatrix

There are several methods to compute the (joint space) manipulator mass matrixM explicitly, the classical
methods have been presented by Walker and Orin [147] which may be applied using any coordinate
representation. The interface shown in Figure 4.12 which can be implemented by these methods is always
the same because the mass matrix is uniquely defined. The layout of the mass matrix depends on the
ordering of exterior ports which is determined by the method resortExteriorPorts inherited from the base
class Solver.

MassMatrix

doMassMatrix() : void

getMassMatrix() : NumericalMatrix

FIGURE 4.12: UML class diagram of interface MassMatrix.

4.3.2.4 InverseDynamics

The inverse dynamics can be interpreted as a mapping from joint positions, velocities, and accelerations
to generalized applied joint actions. The only service provided is to start the computation as shown in
Figure 4.13. The input and output values, the states, are transferred via the exterior ports with tag IN.
The mapping remains in the space of joint variables, however, the computation often is performed in
Cartesian space, e. g. in recursive Newton-Euler schemes. So, if desired, values living in the Cartesian
space, for instance cut forces, can be extracted through the exterior port interfaces shown on the right side
of Figure 4.13.

InverseDynamics

doAction() : void

ExteriorPort< <RNE,1D>, IN>

setPosition(value: double)

setVelocity(value: double)

setAcceleration(value: double)

getAppliedAction() : double

ExteriorPort< <RNE,1D>, OUT>

getAppliedAction() : double

getPosition() : double

getVelocity() : double

getAcceleration() : double

ExteriorPort< <RNE,6D>, OUT>

getPosition() : NumericalMatrixHomTrafo

getVelocity() : NumericalVector6

getAcceleration() : NumericalVector6

getAction() : NumericalVector6

FIGURE 4.13: UML class diagram of interface InverseDynamics and related exterior port interfaces.

4.4 Aspects relevant to realizing a dynamics framework

The objective of this section is to describe some topics relevant in the practical realization of a framework
for object-oriented robot modeling using the design concepts presented in the preceding chapters. In
object-oriented terms a framework [70] denotes an infrastructure for integrating software components,
i. e., it is a collection of classes obeying a high-level design [69]. Frameworks are one possible type
of object-oriented software—design and code—reuse technique and present a possible methodology for
practical realization of the concepts developed in this work. Johnson motivates frameworks but does not
withhold that there is a price to pay:

[. . . ]. Applications seem infinitely variable, and no matter how good a component library
is, it will eventually need new components. Frameworks let us make a new component [. . . ]
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out of smaller components [. . . ] and they also provide the specifications for new components
and a template for implementing them. [. . . ] but [it] requires domain analysis and domain
engineering, so there is a big expense before benefits can be realized. [69]

On the one hand a dynamics framework should prevent reinvention of the wheel by providing a common
’language’ to realize and systematize the various complex multibody formalisms. Particularly in the field
of robotics emerge continuously new types of robots, dynamics formalisms, and control schemes, e. g.,
[10, 59], which should integrate seamlessly into an existing framework. The goals are the ability to add
a new component without any modifications to existing algorithms or to the main portions of the code
itself, and that new algorithms will be interoperable with the elder ones. This requires detailed domain
analysis and domain engineering, a big expense before before benefits can be realized—the work done in
the preceding chapters.

Choice of the language

Any object-oriented language can be applied to express a framework [69]. Languages supporting natively
the object-oriented features required in this thesis are C++, Java, and latest Fortran versions. Compu-
tational efficiency of the resulting code must be the primary criterion for the choice. Unfortunately the
availability of compilers on the various platforms is currently the most restricting factor.

Because dynamics model computations for robot control are required to run on workstations, real-time
systems as well as on digital signal processors involved in joint control, the best compromise is to choose
C++ at the time this work was finished. It is currently industry standard in the domains of robotics, signal
processing, embedded systems and available on nearly every platform. The computational performance
has been shown to be close to Fortran codes, when obeying certain coding rules and constructs.

Guidelines for gaining maximum performance are discussed in [102], a comparison of the efficiency
of certain benchmark problems for a large number of compilers and platforms can be obtained from
here: http://annwm.lbl.gov/bench/. Some results for dynamics computations using a C++
realization of this framework are discussed in [56].

Linear algebra computations

Nearly all multibody dynamics computations are expressed by means of linear algebra. An efficient and
reliable implementation of a linear algebra library is fundamental for high performance dynamics compu-
tations. Because of the physical nature of most mechanics problems, concerned spaces in computations
are R3 and R6 involving structured matrices ∈ R3,R3×3,R6,R6×6. Object-oriented methods are perfectly
suited to represent these special matrices and their operations while exploiting the special structure and
operations. Especially for multibody dynamics problems it has been shown that exploiting the structure
is computationally very advantageous and can help to reduce the number of floating point operations
significantly [90, 136].

Graph abstraction

Wittenburg [149] points out that a natural and powerful representation of a multibody system is a graph.
The framework presented in this thesis relies on graph structures on nearly each conceptual level. In the
formulation of the equations in the Port-Based Spatial Operator Algebra, in the specification model as
well as when implementing algorithms by means of objects of type GraphSolver and MBSEntImpl, or in
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certain algorithms such as the solution of kinematic loops in Section 3.2.3 for detection of the solution
strategy. Therefore a generic way of abstracting graphs is indispensible for a realization of this framework.
A promising candidate is the Boost Graph Library [128], an extension to C++, which generically supports
all kinds of graph topologies and types and provides powerful mechanisms for graph traversal in form of
generic iterators.

Assuring correct function

Robotics is an extremely safety critical domain. For example in automotive industry with a high degree
of automatization the economic loss can be considerable if just one welding robot fails in a car production
line. In the emerging domain of service robotics with inevitable contact to living beings, damage to
humans may occur by no means. General guidelines for safety critical applications C++ can be found
in [17, 102]. One general approach to provide correct function is Extreme Programming [14], where an
integral component of each portion of code is a number of testcases checking inherently the correctness
of classes.

Correctness is especially hard to assure in multibody dynamics. Because of the complexity of the equa-
tions and the great number of components testing is not as straightforward [115]. The choice of well-
behaved and robust algorithms is a first requirement. The presented framework and solver interface
presents a good basis for testing results because an interface requires to produce identical results (in
the order of the numerical precision) from identical input. So implementation of several algorithms pro-
ducing the identical results can be exploited for testing purposes. Even better is the existence of an inverse
mapping, for example the result of the inverse dynamics can be used as input for a forward dynamics for
the same robot. This must lead exactly to the input joint accelerations.

Responsibilities

Taking a look on Figure 4.4 one can identify several roles in the application generator design process. For
a dynamics framework the three most significant are:

• System designer: this for example is a robot control engineer who requires a certain type of com-
putation for his robot control scheme under consideration, or a robot design engineer who requires
a certain computation executed for a class of robots, for instance to perform optimal design stud-
ies. These are the final ’users’, who require moderate coding capabilities and mulibody domain
knowledge.

• Domain engineer: this is multibody domain specialist or mechanical engineer who analyses and
implements new dynamics algorithms using the framework and its features. He needs moderate to
medium coding capabilities and excellent multibody domain knowledge.

• Domain analyst: a multibody domain specialist with good knowledge in object-oriented modeling
and programming and a broad knowledge about the requirements from the system designers. He
is responsible for the design, implementation, and extension of the fundamental framework class
hierarchy.

Package subdivision

Physical distribution over files and directories is a crucial point in library development [81]. The following
list is a proposal for package subdivision in a realization, package names are in sans:



82 CHAPTER 4. METHODOLOGY FOR OPERATIONAL ROBOT MODELS

• kernel: Provides the basic services required in all classes, but no algorithms and equations

– specification_model: contains all classes concerning the specification model

– linear_algebra: contains the crucial optimized linear algebra class library

– graph: contains the graph abstraction classes

• components: this package contains implemented equations for the multibody entities, the mechani-
cal components and solely depends from package kernel

– protocols: contains the protocol classes and fundamental interfaces

– mbsentimpl: contains MBSEntImpl objects implementing the multibody equations

• solver: this package contains builder/solver pairs for the algorithms

Documentation

Of course code has to be well documented. The additional requirement of a dynamics framework is the
ability to express mathematical entities of great symbolical complexity. So a tool is favourable which is
able to integrate mathematical equations. A recommendable public domain tool which is able to process
LATEX source code and extracts documentation directly from source code augmented by special control
tags is doxygen [142].
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Chapter 5

Selected applications in research and industry

This chapter reviews some applications of the methods presented in the preceding chapters using a C++
realization of which first results have been published in [57]. The presented applications span real-world
industrial applications and challenging research topics. An overview is given below in Table 5.1.

TABLE 5.1: Overview of applications presented in this chapter.

robotic system model type joints contribution application

light-weight
robot (DLR)

rigid body,
elastic joint,
fixed base

7 structure of gyro cou-
pling matrix

efficient code genera-
tion

elastic joint inverse dy-
namics

investigation of effect,
prerequisite for feed-
back linearization

pallettizing
robot

rigid body,
partial kine-
matic loops

9 modular closed form
solution of inverse dy-
namics, automatic de-
tection of loop coupling

inverse dynamics for
on-line trajectory opti-
mizer

manufacturing
robot

rigid body,
fixed base,
elastic joints

6 sensitivity calculation
by pseudo-velocities

calibration, identifica-
tion, elasticity compen-
sation

legged robots rigid body,
free floating,
tip contact

12 integrated object-
oriented model:
reduced dynamics,
contact/collision, so-
phisticated boundary
conditions

trajectory optimization
of legged robots
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5.1 DLR light-weight robot inverse dynamics

In this section the new dynamics method developed in Section 3.2.1 is applied to the DLR light-weight
robot LBR 2. The method allows for (i) powerful symbolical equation manipulation such as differentia-
tions and (ii) deriving an efficient algorithm for numerical evaluation of the elastic joint inverse dynamics.

Properties of the DLR LBR 2

Service robotics will become a driving force for robotics industry in the next decades. After robots have
been established in factory automation and as toys, there seems a huge market for smart light-weight
robots acting in the vicinity of humans. In contrast to purely position controlled standard industrial robots
with very stiff mechanics and a payload to weight ratio of 1:10 or even higher a service robot has to be
designed and controlled completely differently.

The series of DLR light-weight robots (LBR) follows the vision to form a manipulator arm similar to the
human arm [52]. A picture of version 2 is shown in Figure 5.1(a). To approach this vision a mechanical
structure with a low dead weight and an optimized payload to weight ratio is required. The LBR 2 ma-
nipulator arm with approximately 1 m length and fully integrated actuatorics and electronics is capable of
handling a payload of 8 kg with a total weight as low as 17 kg. The manipulability for service applications
requires a considerable number of mechanical degrees of freedom, therefore the LBR 2 is a redundant
7 axes robot. Advanced sensory equipment and feedback capabilities to improve impedance, stiffness,
and damping in control is mandatory in order to increase precision and safety while performing tasks in
an environment with humans.

(a) (b) (c)

FIGURE 5.1: (a) The DLR light-weight robot LBR 2. (b) The kinematic structure of LBR 2 just showing the
pairwise perpendicular joints. (c) Drive used in DLR lightweight robot LBR 2. Drawings courtesy of DLR e.V.

The LBR 2 is a good example for practically relevant robots and clearly indicates the problems in compu-
tation of the elastic joint inverse dynamics for non-trivial robots. It is a chain-structured mechanism with
seven revolute joints as shown in Figure 5.1(b). The motors are mounted in the joints, their rotors’ axes of
rotation coincide with the joint axes, as depicted in Figure 5.1(c). The drivetrains are known to be elastic
due to harmonic drive reduction gears and torque sensors mainly due to the extreme light-weight design.
Joint stiffnesses are roughly 104 Nm

rad
. A more detailed description of the technical details of the LBR 2 can

be found in [6].
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Applying the methodology for deriving and implementing the inverse dynamics

The ability to calculate the inverse dynamics is a basic prerequisite for path planning algorithms and feed
forward controllers in robotic systems. The elastic joint inverse dynamics presented in Section 3.2.1 is
a non-standard new algorithm for calculating all driving forces from predefined trajectories, e. g., joint
positions. Therefore it is a perfect example for the application of the presented methodology which
provides a complete means to obtain an executable algorithm ’from scratch’. From scratch denotes the
sequence of three steps of (i) object-oriented physical modeling, (ii) symbolic equation manipulation, and
(iii) object-oriented code generation and implementation using the proposed class hierarchies presented
in Chapter 4.

First, step (i) comprises the choice and description of the behaviour of objects representing mechanical
components and physical effects of the robot and the attached drivetrains. This is covered by the Multi-
body entity paradigm presented in Section 2.2 and specialized drive-train components in Section 3.2.1.3.
Second, the topology of the multibody system graph representing the LBR 2 robot is described by means
of the specification model presented in Section 2.2.2.

The topological information is crucial in step (ii) to establishing the equations of the elastic joint in-
verse dynamics, because describing the topology explicitly reveals additional kinematical properties of
LBR 2 robot which is indispensible for efficient code generation. The rigid body equations for the whole
robot are easily established in symbolical form from the component equations shown in Tables 3.6 and
3.14 by means of the Port-Based Spatial Operator Algebra presented in Section 2.3. As pointed out in
Section 3.2.1 the equations of motion need to be differentiated up to an order of 2N in the general case,
N being the number of joints. For the LBR 2 the first off-diagonal of the matrix S(q) (q is the vector of
joint positions) vanishes according to the new Equation (3.41) because consecutive axes of the robot are
orthogonal as depicted in Figure 5.1(b). Considering (3.44) the structure of S(q) (see Section 3.2.1) which
was derived using the new Port-Based Spatial Operator Algebra presented in Section 2.3 is

S(q) =




0 0 S13(q2) . . . S17(q2, . . . , q6)

0
. . . . . . . . . ...

...
... . . . . . . S57(q6)

0 0 0
. . . 0

0 0 0 . . . 0



. (5.1)

This reduces the required number of derivatives to 12 since the solution of the sixth equation of 3.15
on page 47 no longer depends on the position of motor 7 θ̈7. The concrete structure of S(q), especially
its explicit independence from q1 and q7, is exploited to generate efficient code. It is worth noting, that
taking for granted zero and constant S-matrix, a simplification which is applied in control literature [32],
is only valid for academic robots, such as planar or elbow robots with two or three joints, but not for this
redundant manipulator with seven axes.

In step (iii), the implementation step, the multibody code of all components, i. e. joints, bodies, and driv-
etrains, for an arbitrary order of differentiation is implemented or better automatically generated from a
script using the symbolical recursion formulae presented in 3.2.1 and embedded in MBSEntImpl objects.
Finally the design principles proposed in Section 4.2.1 are applied to form a solver object implementing
a dedicated elastic joint inverse dynamics solver interface to conveniently access the dynamics computa-
tions and providing the resulting matrices containing the desired motor torques.
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Investigation of elastic and gyroscopic effects

In the following the effect of this detailed model in comparison to a rigid model neglecting elasticity
and gyroscopic effects of the drivetrains is investigated. The example trajectory shown in the inset of
Figure 5.2 was chosen to be a step input of 2 rad at time t = 0 s smoothed by a filter of order 16, for
all joints q1(t) = . . . = q7(t), t ∈ [0, 2.5 s], in order to ensure the required smoothness for differentia-
tion [141]. The filter dynamics chosen provides a trajectory that satisfies motor torque and velocity con-
straints of the real LBR 2 [6]. The obtained motor torques of three axes τ1, τ2, τ3 are shown in Figure 5.2.
The influence of drivetrain effects on the dynamics are shown in Figure 5.3 illustrated by the difference
in motor torques between the full elastic model and the rigid model. The results significantly differ even
for the very smooth trajectory chosen. For faster motion this effect increases due to proportionally larger
derivatives. In case of high-speed movements and high precision requirements it is recommendable taking
into account drivetrain effects in model-based control schemes.

Further applications of the elastic joint dynamics

Inverse dynamics schemes also are a central part of many controllers, especially feedback lineariza-
tion [131]. As pointed out by De Luca and Tomei [33] the complete dynamic model of robots with
elastic joints fails to satisfy the necessary conditions for input-output decoupling and/or full linearization
by static state feedback. For the general case it is useful to resort to the larger class of dynamic state
feedback controllers [32]. In this control scheme, the input torque applied to the robot depends both on
the robot state and on the state of a dynamic compensator of proper dimension.
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FIGURE 5.2: Inset: Example trajectory used in simulations. Large plot: Resulting motor torques τ1,τ2, and τ3

from elastic joint inverse dynamics computed using Algorithm 1 in Section 3.2.1.
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FIGURE 5.3: Differences between elastic model and rigid model inverse dynamics for the trajectory from
Figure 5.2.

Up to now no implementation of a dynamic feedback linearization controller, not even for the simplest
robots with elastic joints [32] has been carried through. This is due to the complexity of the multibody
equations which have to be manipulated to get the dynamic compensator. The completely symbolic PSOA
derivation presented in Section 3.2.1 using closed form spatial operator expressions is a promising start.
Further improved PSOA expressions will pave the way to solve the problem of feedback linearization of
elastic joint robots for the first time in general. A problem left for further research.

5.2 Modeling a palletizing robot

This section describes the inverse dynamics modeling, e. g., required for on-line path-planning, of an
industrial robot containing kinematic loops. First results have been published in [57].

Industrial robots often are designed to meet the specific needs mandated by the application. Figure 5.4(a)
shows a real-world pallettizing robot with four mechanical degrees of freedom optimized for assembling
pallets and filling containers from top. Its payload is 180 kg though several links are obviously quite
light weighted. This is possible through a parallel kinematics which is sketched in Figure 5.4(b) for a
very similar mechanism. It is a primary kinematic chain of 5 revolute axes R1,. . . , R5, augmented by
two coupled closed-chain mechanisms forming a parallel kinematics. This has two advantages. First,
the mechanism has improved stiffness and requires lower motor power in the plane of operation which is
perpendicular to axes R2, R3, R4. Second this keeps the tool flange permanently parallel to the ground
without the need for actuation of a fifth axis. Both properties result in lower weight and reduced power
consumption.

Dynamic path planning algorithms are used to determine the control variables, usually joint torque or
motor current, required to optimally move the robot’s endeffector along a desired contour or between
given start- and end-locations. The usual definition of ’optimal’ denotes time optimality, i. e., completing
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(a)
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(b)

FIGURE 5.4: Left: The KUKA KR180PA pallettizing robot. Photo courtesy of KUKA Roboter GmbH. Right side:
Schematic view of the resulting pallettizing robot model showing two coupled kinematic loops.

a task in minimum time. For robotic systems efficient schemes have been developed to compute these
optimal trajectories, e. g., see [18, 112]. These methods are based on the idea that the endeffector motion
is parametrized by a single path-parameter s(t). Then the equations of motion (3.1) can be expressed in
terms of s(t) :

ai(s)s̈+ bi(s)ṡ
2 = gi(s) + ui , (5.2)

where the column matrices a, b, and g can be computed from the rigid-body inverse dynamics eval-
uations [112]. Also general purpose numerical optimal control methods are available to compute op-
timal trajectories for general performance indices and subject to general robot dynamics models and
constraints [146, 145].

Obtaining the inverse dynamics for a robot containing kinematic loops is more challenging than for tree-
structured systems because not all joints are driven and joint states are primarily unknown. Using the
methods presented in Section 3.2.3 the inverse dynamics solver doing the computations is prepared by
the following steps: The given model specification graph is analyzed w. r. t. the interconnection topology
of the joints, driven or passive joints, and orientation of the joint axes according to a given heuristics
discussed in [150]. Analysis of the example mechanism shown in Figure 5.4(a) reveals two coupled
kinematic loops. If the criteria for cutting loops to obtain a closed form solution of the constraint equations
apply, then the given model description is transformed to a new one, amenable to explicit solution. This
means loops are cut and joint pairs are eventually replaced by connecting rods.

For the palletizing robot this results in the topology shown in Figure 5.5, where the four revolute joints
from the parallel kinematics are replaced by two connecting rods. This procedure is legitim for numerical
and efficiency reasons, if the desired values are the driving torques. Loop 1 in Figure 5.5 contains the
revolute joint R6 as a free joint and loop 2 R4 and R6. The algorithm presented in Section 3.2.3 automat-
ically determines the sequence for the solution: solve loop 1 for joint angle of joint R6, then solve loop 2
for the remaining angle of joint R4. The procedure is analogous for joint rates and accelerations. A single
inverse dynamics evaluation for this closed loop system is about 75µs on a 200 MHz Pentium PC, in
contrast to 36µs for a standard 6-axes robot. Evaluation of the a, b, g matrices requires about Nd inverse
dynamics computations [18]. Because the cycle time of industrial robots lies in the order of magnitude of
1 to 10 ms, both qualify for real-time trajectory planning schemes as described above.
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FIGURE 5.5: Schematic view of kinematic structure just showing the joints. Please note, only joints R1,R2,R3,
and R5 are driven.

5.3 Calibration models of manufacturing robots

This section sketches the modeling requirements for cyclic calibration and parameter identification of
industrial robots, and how they can be fulfilled by the methods proposed in this thesis.

Robot calibration is a method to improve robot positioning accuracy through modification of the robot
software rather than changing or altering the design of the robot or its control system. It involves a
computational model describing the relationship between the joint transducer readings and the desired
end-effector position in workspace. In contrast to adaptive control schemes where parameters of models
and controllers are continuously adjusted, calibration is a discrete event in time. Physical parameters
influencing the end-effector position, such as link lengths and elasticity coefficients, are uncertain or
robot hardware is changing with time as are environmental conditions. Unfortunately, these parameters
normally are not directly observable. The unknown model parameters have to be identified indirectly from
measurements, for instance by recording experimental trajectories, and using a model-based mathematical
optimization procedure. The new parameter set is updated to the software after each calibration event. For
more details the reader is referred to [54].

Manufacturing robots are designed for high performance in positioning tasks such as welding. This class
of robots are assembled from very stiff mechanical parts, joints and links, to increase overall positioning
accuracy. Thus a rigid body model is usually a very good approximation. Two inevitable sources of
errors, however, lead to a mismatch between the computational model in the robot’s software and the
hardware it represents. The first originates from tolerances in serial production of industrial robots. The
second stems from changing parameters w. r. t. time of operation. The most dominant effects known are
temperature drift of geometric dimensions and joint elastic as well as friction coefficients on short time-
scales, especially during machine warm-up, and wear of parts and replacement after maintenance on a
long time-scale.

Using the methods presented in this work a set of three models has been implemented which provides (i) a
rigid body model, (ii) a more detailed model to account for link and gear elasticity in the start and end-
position of point-to-point trajectories (trajectories where the manipulator starts from rest and stops), (iii) a
sensitivity model based on the method presented in Section 3.2.2.1 calculating the dependency of the end-
effector position on changes of uncertain physical parameters. The restriction to start- and end-positions
where the robot is in rest allows for a quasi-static appoximation of the elasticity.

The goal is to provide a model detailed enough to assure a given positioning accuracy in the whole
workspace of the robot. Physical parameters which optionally are subjected to identification and hence
must be provided by the sensitivity model are uncertain geometrical dimensions, lengths and tilt angles
of axes, errors from mounting the robot’s base, elastic coefficients in the joints and the links which are
treated as elastic beams. It should be noted that the model complexity can be adapted to the type of robot
and the calibrated specimen to meet the precision requirements. Elastic effects which are not primarily of
kinematic nature because they depend on the load and mass properties of the robot can be approximated
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FIGURE 5.6: Selected ISO poses used for calibration of a KUKA KR2000 manufacturing robot. Pictures created
by Matej Leskovar, by courtesy of AMATEC Robotics GmbH, Augsburg.

by using a iterative procedure. A calibration process can be described as follows:

(i) Measurement: The specimen is installed in a measurement cell equipped with some camera system
to detect the absolute position and orientation of the end-effector frame in Cartesian work-space.
The robot is moved to a number of well-defined configurations where the nominal and the real end-
effector frames are recorded. The goal is to ’excite’ all parameters under consideration to allow for
proper observability. Figure 5.6 shows a set of common, so-called ISO poses used for calibration.

(ii) Identification: The errors between measured and computed end-effector position and orientation
are formulated using a certain objective function as a minimization problem which can be solved
for instance by standard least-squares methods.

(iii) Correction: The identified parameters of the model are updated to the software and depending on
the precision requirements the calibration is repeated iteratively or cyclically.

The accuracy (repeatability) of modern industrial robots is roughly several 0.1 mm for repetitive tasks.
Absolute positioning accuracy in workspace is up to one order of magnitude larger due to non-modelled
effects present in the real robot structure. The method sketched above can reduce the errors in absolute
positioning effectively. The obtained accuracy lies in the order of magnitude of the repeatability for
point-to-point motions.

A different application such as identification of the inertial properties of an unknown load would require
a first- and higher-order inverse dynamics model in the mathematical parameter identification process.
Schemes such as those presented in Section 3.2.2 can be applied to derive the robot models needed for
this ’non-kinematic’ calibration.
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5.4 Trajectory optimization of legged robots

This section demonstrates how the methods of object-oriented modeling and advanced dynamics algo-
rithms developed in this works can be applied to supply an optimizer package with all modeling informa-
tion required for the complex task of trajectory optimization of legged robots satisfying the demand for
efficient equations of motion and a great variety of boundary conditions.

5.4.1 Dynamics of legged robots

In mechanical and mathematical modeling of legged robots one is facing several challenging conditions,

(i) many mechanical degrees of freedom and many actuated joints,

(ii) time-varying contact conditions,

(iii) tip-environment interaction,

(iv) impact effects,

(v) various stability regimes.

The first three topics also apply to multi-fingered robot hands, for instance. In this field grasping is a
challenging problem, but often relies on a solely kinematical physical model neglecting all inertial effects.
This simplification is no more adequate for legged robots where dynamics plays a dominant role in the
motion, especially w. r. t. stability issues.

A gait cycle for one leg comprises a sequence of phenomena starting for instance from a swing-phase, tip
impact, transition from impact to contact, contact during support phase with static friction, transition from
static to sliding friction, sliding friction until leg lift-off followed by the next swing phase. Algorithms
to consider the effect of leg collision and contact are discussed in [2, 4]. Detailed models describing the
interaction between the foot of a walking robot and the ground have been studied for instance by Ouezdou
et al. [105]. Dynamics modeling of legged robots with focus on trajectory optimization and gait stability
has been investigated by Hardt [49] and Hardt and von Stryk [48].

The robots investigated in this section are modeled as full three-dimensional rigid MBS. Legged robots
are described advantageously as free-flying systems experiencing contact forces to allow for the modeling
of running gaits including phases with all legs in a flight phase and for the flexible application of vari-
ous ground contact models. In this section feet-ground interaction is modelled by completely inelastic
collision.

Figure 5.7 shows the two types of legged robots under consideration. First a humanoid prototype whose
torso and two 6 jointed legs are modeled, leading to a number of 18 mechanical DOFs when modeled
free-floating. Data for this prototype is presented in [24]. Second a model of a four legged Sony Aibo
robot with 15 joints is investigated. For trajectory optimizations the head including three joints is omitted
and the four-legged robot is reduced to a torso (6 DOFs) and four legs each having three mechanical
DOFs, leading to a total of 18 mechanical DOFs.

From a mathematical point of view a free-floating system experiencing tip contacts leads to algebraical
constraints reducing the number of mechanical DOFs of the robot and hence the number of independent
states, which is a similar situation for kinematic loops. The numerical difficulties arising from this system
of differential algebraic equations (DAEs) of high index, resulting from the general modeling approach
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FIGURE 5.7: Legged robot examples. (a) The prototype of a humanoid robot [24]. (b) Kinematical structure of the
two humanoid. (c) A four legged Sony Aibo. (d) One 3 DOF leg of the AIBO model viewed from front and from
the side. Please note, models currently used in optimizations consider just the torso and legs.

of multibody dynamics and algebraic equations for contact can be avoided in this case. On the one hand
specialized numerical schemes can be applied for time integration of DAEs, for a survey and methods
see [130]. On the other hand in this section the problems are avoided by a reduced dynamics method pro-
posed in [49] where the system is transformed to state space form. This is often possible for mechanical
systems such as legged robots if the inverse kinematics has a well-defined solution. Only the indepen-
dent positional variables qI ∈ RNd−Ncc are treated explicitly, which are global orientation and position
and variables related to legs not in contact with the ground and explicit inverse kinematics solutions are
exploited to determine the dependent states qD ∈ RNcc of the other legs:

qI := global orientation, position; swing leg(s) states
qD := contact leg(s) states

qI may be computed from all states q using a constant mapping Z ∈ R(Nd−Ncc)×Nd , i. e., qI = Zq. The
velocity variables are related by a partioning of the velocity constraint equation (3.60) q̇D = Jc

−1
D JcI q̇I .

The solution of the reduced dynamics can be shown to be of the form

q̈I = ZM (q̄)−1 (u− C (q̄, ˙̄q)− G (q̄) + Jc
T(q̄) fc) , (5.3)

where q̄ contains the independent states and the dependent states determined from inverse kinematics on
position level. It can be shown that the solution of (5.3) is the solution of the original system of DAEs [49]
for the legged robot MBS with contact. There are two main advantages in using the reduced dynamics
approach. First the numerical optimization shows a better numerical convergence behaviour due to the
reduced dimension of the state vector and a smaller number of equality constraints. On the other hand
the re-use of existing efficient forward dynamics algorithms augmented by inverse kinematics and contact
dynamics computations for this constrained mechanical system is computationally efficient.

5.4.2 Formulating the optimization problem

Finding stable gaits for walking robots with two or four legs is still challenging due to the high-complexity
of the mechanical structure. Heuristic methods usually do not consider the full dynamics of the robot
while on-line computation of walking trajectories is computationally extremely expensive ruling out an
on-line calculation of optimal trajectories. In this section the problem of finding periodic and statically
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or dynamically stable gaits is realized as an off-line task allows for application of full three-dimensional
dynamics models in the computations.

Different gait patterns (such as walk, trot, rack, canter and rotary or transverse gallop for four-legged
robots or walk and run for biped robots) differ in the duty factor of each foot, i.e. the fraction of a total
stride cycle during which the foot is in contact with ground, and relative phases of feet, i. e., the order and
time displacement of feet reaching ground [9].

The optimal control problem is formulated as follows [48]:

min I[q, q̇, u, tf ] minimize the merit functionI subject to
Mq̈ = u− C (q, q̇)− G (q) + Jc

Tfc system of unconstrained MBS ODE
gc (q) = 0 contact algebraic conditions

b (q0, qf , t0, tf) = 0 boundary conditions
n(q, u) ≥ 0 nonlinear inequality constraints

qmin ≤ q ≤ qmax, q̇min ≤ q̇ ≤ q̇max box constraints on state
umin ≤ u ≤ umax and control variables.

Please note that in the optimization the reduced dynamics algorithm is applied. Common merit functions
may be final time tf , energy or a weighted sum of both [48]. Boundary conditions at initial and final time
of a complete gait cycla or a proper part of it account for

• exploiting symmetry resp. anti-symmetry of states (see [48] for more details),

• foot placement, i. e., conditions that force the feet to be placed on desired positions, which may
depend on parameters and therefore may also be subject to the optimization,

• contact forces at the end of a stance phase, that allow for foot lift-off.

Nonlinear inequality constraints applied are:

• Hips of legs in contact with the ground must stay within a maximum radius of the leg, so that the
inverse kinematics solution required for reduced dynamics has a well-defined solution.

• The swing feet are ensured not to be lower than a given contour above the ground, for example a
proper sine curve. This property increases stability by avoiding contact with the ground resulting
from non-modelled deflexions of bodies and joints, and which could lead to stumbling of the robot
in walking experiments.

• Slipping is avoided by limiting the horizontal contact forces relative to the vertical contact forces.

• Contact is unilateral, requiring vertical contact forces to be positive, i. e., the robot may only push
to ground but may not pull from ground.

• Additional constraints considered in the problem formulation stem from motor characteristics. By
now the box constraints for minimal and maximal values of angular velocities and torques only give
a rough estimate of the real actuator data.



94 CHAPTER 5. SELECTED APPLICATIONS IN RESEARCH AND INDUSTRY

Statical or dynamical gait stability may be enforced explicitly by inserting any common criteria into the
optimal control problem [48]. A more detailed discussion of the applied types of constraints can be found
in [24] for a humanoid model and in [135] for a four-legged Sony Aibo.

The optimal control problem is solved by the direct optimization method DIRCOL [145]. The state and
control variables are approximated by piecewise cubic respectively piecewise linear polynomials on a
discrete and successively refinable time grid. The optimal control problem thus is transcribed into a non-
linear program with the coefficients of the polynomials as variables, which—due to the special structure
of the variables—can be solved by a sparse sequential quadratic programming method [45]. A more
detailed discussion of applying these optimal control techniques to complex non-linear systems can be
found in [49, 50, 145].

5.4.3 Object-oriented dynamics modeling for gait optimization

This section shows how the modeling requirements from the gait trajectory optimization problems can be
fulfilled by the object-oriented framework presented in this work (cf. [58]). The developed methodology
is very well-suited for integrating general purpose algorithms such as the articulated body algorithm as
well as the model- or problem-specific schemes. For instance computing the reduced dynamics relies
on explicit inverse kinematics algorithms depending on specific properties of the model description. Es-
pecially the rich variety of boundary conditions describing certain constraint or stability regimes can be
described and implemented uniformly without losing computational efficiency.

The dynamic gait trajectory optimization algorithm requires the set of equations of motion of the robotic
system over one complete gait cycle, i. e., including time-varying support phases reflected by a chang-
ing dynamics model incorporating the structural changes. The treatment of a complete gait cycle as a
multi-phase problem requires additional collision computations to model the discontinuous state transi-
tions between various support phases. Depending on the applied optimization method derivatives of the
equations of motion w. r. t. state variables and design parameters might be required. When trajectory
optimization is subject to additional gait stability criteria new types of computations must be introduced
to determine, e. g., center of mass and zero moment point of the legged robot in its current state.

Originally, the legged robot dynamics has been provided by a set of hand-coded Fortran routines (SOAFOR)
for the reduced dynamics etc. developed by Hardt [49] and later developments. Applying the concepts
from Chapter 4 the complete object-oriented integrated model for trajectory optimization was realized
using the generalized multibody entity paradigm introduced in Section 2.2 instead of the notion of links,
applying the Port-Based Spatial Operator Algebra for establishing the component dynamics equations,
using the dataflow model of computation presented in Section 2.3 for all involved recursive algorithms,
and using C++ as basis for the complete implementation. The resulting package structure is shown in
Figure 5.8.

The DIRCOL optimizer interface comprises three main blocks depending on the system under investi-
gation: (i) the differential equation, (ii) the linear- and non-linear boundary conditions, and (iii) phase
transition behaviour when switching the phases between support phases. This includes symmetry con-
ditions to be fulfilled between start and end states when treating periodic solutions. For the humanoid
walking gait this is a change between single- and double support phase and vice versa. In our realization
each requirement is satisfied by a set of coupled Solver objects.

The model parts of the first package ’Differential equations’ are implemented by one solver containing
the O(N) articulated body algorithm for free-floating legged robots discussed in Section 3.1.3, a collec-
tion of hand-tailored inverse kinematics solvers for each single leg and Jacobian solvers for the velocity
inverse kinematics. The contact state is represented by a solver depending on the time-varying contact
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FIGURE 5.8: UML package diagram of gait trajectory optimization within DIRCOL using Spec-, Builder-, and
Solver objects.

model specification and is used for the reduced dynamics. Interestingly, the collision algorithm from
Section 3.2.4 can be generally applied to compute for inverse velocity kinematics avoiding establishing
and inverting explicitly the foot Jacobian. A fact easily exploited in the developed modular object-oriented
architecture.

The second package ’Constraints’ represents the linear and non-linear equality and inequality constraints
which are crucial during optimization to generate a useful solution. This package contains solvers which
compute the center of gravity of the complete mechanical system, and which detect foot collisions with
the ground and between legs.

The task of the third package ’Phase switching’ is to react to requests from the trajectory optimization
method DIRCOL to change the support phase by invoking the collision Solver, a realization of the collision
method presented in Section 3.2.4. The contact state is changed and the system of solvers reconfigured
accordingly to keep all components consistent.

DIRCOL is able to process user-defined gradient information. In order to enhance convergence properties
an optional set of solvers provides exact sensitivities of the differential equations. All solvers mentioned
are created and reconfigured by a collection of builder objects from a unique high-level specification of all
required aspects of the mechanical model. These aspects are descriptions of single legs, of the complete
legged mechanism or the way the mechanism interacts with the environment.
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5.4.4 Optimized trajectories

The architecture presented in the preceding section allows for trajectory optimizations of almost arbitrary
legged robots, which is based on a fully object-oriented description and implementation of the robot
model. This allows for flexible application of drivetrain and contact models, and application of appropriate
algorithms including dedicated closed form inverse kinematics solutions for the legs and efficient reduced
dynamics algorithms. Walking trajectories involving full three-dimensional models have been calculated
both for a MBS model of a four-legged robot by Stelzer et al. [135] and results for a two legged humanoid
robot are discussed in [24].

The walking sequence shown in Figure 5.9 is a slow optimized periodic gait of the two-legged torso with
two support phases taking 6 s. A free-flying rigid-body model of the torso and two 6 DOF legs was applied
for optimizations of a two-phase half-stride consisting of a single limb support phase and a double limb
support phase. Static stability was enforced explicitly by nonlinear inequality constraints. This can be
seen from the snapshots, where most time the center of gravity obviously is located above the support leg.
The merit function which was minimized is

I[q, q̇, u, tf ] =

∫ tf

0

(uTu+ q̇Tq̇)dt , (5.4)

which is a combination between the common squared actuator torque measure, often referred to as energy,
and the squared joint rates. The objective to use this merit function was to achieve a very slow trajectory
considering all constraints to test the real humanoid prototype shown in Figure 5.7 in first experiments
using trajectory following joint control. The average velocity of the resulting trajectory was roughly
0.06 m/s. DIRCOL transformed the optimization problem for the half-stride into a non-linear program on
63 grid points, resulting in 2176 variables, 1479 nonlinear equality constraints, 300 nonlinear inequality
constraints, 1 linear inequality constraint. Please note the gait pattern itself was prescribed by the user and
is not a result obtained from the optimization. The evaluation of one reduced dynamics computation was
roughly 1.6 ms on a 2 GHz Pentium IV Personal Computer including exact analytical sensitivities during
the smooth phases of the trajectory.

The efficient and reliable optimization of trajectories for torsos with legs is the prerequisite for investi-
gation of more realistic, hence detailed, systems. Including the dynamics of articulated arms especially
in two legged locomotion leads to more realistic ’human-like’ motion. The presented framework will
pay off in in such an application in several ways: The specification model does not put much restriction
on the description allowing for general topologies and components. The builder/solver pairs proposed
in the object-oriented modeling architecture in Section 4.2.1 allow for integration of new explicit inverse
kinematics reducing the computational burden and increasing robustness. Biomechanical systems require
more sophisticated actuator and optimization techniques. Biological systems are greatly overactuated sys-
tems, when considering muscle groups separately in a model. As a consequence the control variables will
be stimuli of the muscles and not the joint actuator torques—actually the joints themselves are completely
passive. These stimuli are parameters describing chemical potentials in biologically inspired muscle mod-
els. Compared to the conventional electrically or hydraulically driven robot joints this leads to completely
new actuation concepts, which has to be reflected by the numerical methods and the operational robot
model, too. These additional requirements can easily be handled by the methodology developed in this
work.
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FIGURE 5.9: Sequence of snapshots of a periodic two-phase gait of a humanoid-prototype. The gait is optimal
w. r. t. to merit function (5.4) and takes roughly 6 s. Optimization and animation by Michael Hardt, Max Stelzer,
and Martin Friedmann, TU Darmstadt.
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Summary

In this work a general purpose robot dynamics methodology was presented to support robot control design
engineers in (i) robot model specification, (ii) algorithm implementation by automatic code generation and
manual coding, and (iii) integration of the computational models and components in an evolving software
architecture for robot control.
Nowadays complex computer-controlled systems increasingly rely on the use of models representing both
hard- and software. Fundamental components of every software-based robot control system are executable
models reflecting the physical state of the robot, first of all the motion of the robot in its work-space. In
the growing robotics domain with its increasing demand for efficiency, flexibility, low cost, short time-
to-market, and safety, the integration of all parts becomes a key issue. The chosen ’glue’ between the
various conceptual models is a new developed abstract description of the mechanical robot model. This
includes the classical perspective on multibody models as interacting bodies and mechanical devices. The
new extension is a behavioural description of the components, external conditions, and the desired com-
putations. The algorithms are described symbolically by means of the new Port-Based Spatial Operator
Algebra, extending an existing multibody formalism to object-oriented concepts.
The presented methodology includes a carefully designed new class hierarchy, which allows for inte-
gration of the immense variety of numerical robot dynamics algorithms developed by domain engineers
during the last decades. The focus is on recursive dynamics algorithms, known to be very efficient and
flexible. Among the investigated algorithms are standard and new dynamics methods to treat special
closed-loop mechanisms automatically and the dynamics of elastic joint robots. Its derivation reveals
explicit symbolical operator identities invaluable for theoretical investigation as well as efficient code
generation. The backbone of the model of computation is the new concept of algorithm-specific code-
generators, called builders, creating executable instances, called solvers, which perform the desired multi-
body computations. This leads to efficient and light-weight code without a compile-to-code step required.
Builder/solver pairs are able to wrap dedicated problem-specific algorithms and efficient closed-form
solutions indispensible in robotics in order to reap maximum performance. To ameliorate code reuse
und integration without sacrificing readability the methodology provides new well-defined interfaces for
solvers and dedicated objects, capturing the multibody equations.
The presented applications document how implementation and integration of new and existing algorithms
and the collaboration of executable algorithm blocks are alleviated by this framework. Tackled problems
are dynamics computations required in joint control, robot calibration, and gait optimization of legged
robots.
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Glossary

ABA Abbrev. for Articulated body algorithm [39].

Absolute Any mechanical quantity represented by a vector or dyadic whose definition is tied to an inertial
reference is called absolute[115].

Action encompasses the two terms force and torque [115].

Application generator is a software to translate a specification into application programs, operating
much like a language compiler [27].

Articulated body inertia The spatial inertia of an MBS when viewing it as a ‘sloppy‘ chain of material
bodies interconnected by non-actuated joints.

Base body A body fixed in inertial space[149].

Change of basis (A)bi are base vectors of vector basis B represented w. r. t. the vector basis A. The
vector x represented w. r. t. B (B)x = (x1, x2, x3) is when represented w. r. t. system A of the form

(A)x =
(

(A)b
(A)
1 b

(A)
2 b3

)
·




x1

x2

x3


 ,

because the coordinates (B)xi are the projections of x on the basis vectors of B. Identifying A and
B with FA und FB , the transformation matrix is a rotation Bx = BRA

Ax. Remark: The columns of
the transformation matrix BRA are the basis of Be resolved w. r. t. to Ae.

C.M. Abbrev. for center of mass, symbolized by index c.

C.M.S. Abbrev. for center of mass system, the symbol mostly used in this work is frame Fc.

Constraint Denotes the restriction of the relative motion of two or more bodies. Constraints lead to
algebraical relations between position and velocity variables describing the interacting bodies.

holonomic A constraint function fc(q, t) is holonomic if ther exists a total differential dfc = ∇xfc + ∂fc

∂t
,

i. e. fc can be determined by means of integration.

ideal The constraint force do no work during virtual displacements.[149]
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nonholonomic For a constraint function fc there does not exist a total differential dfc, i. e. fc can
be determined by means of integration. Its treatment requires distinguishing between variables
of position and motion.

rheonomic A constraint which depends explicitly on time fc = fc(q(t), t)

scleronomic A constraint which does not depend explicitly on time fc = fc(q(t))

Contiguous Two bodies are contiguous, if and only if they exert force on each other directly [149].

DAE Abbrev. for differential algebraic equation.

DFS Abbrev. of depth-first-search, one possibility for graph traversal [5].

DOF Abbrev. for degree of freedom, in the context of robotics the number of mechanical degrees of
freedom, often related to the number of driven joints

Drive A technical component which transforms an input quantity into a mechanical quantity, mainly
position/force/moment. A rotational drive at least has one rotor, one stator and one unit to transform
energy.

Drivetrain The unit of a drive and connected mechanical components which transform the drive’s output
quantity and transport it to location of application, e. g. where a motor moment is required. It may
be identified with a technical device mounted for instance to the robot.

Dyadic A Cartesian tensor of second rank.

Endeffector One prominent location or frame designated on a robot manipulator. Usually the part where
tools can be mounted or interaction to other manipulators takes place.

Entity An entity e is defined as a ’thing’ which can be distinctly identified [26].

Entity set Entities are classified into different entity sets Ei. There exists a predicate associated with
each entity set to test whether an entity ei belongs to it [26].

Euclidean space The 3-dimensional space used in classical mechanics.

Euler parameters Normalized version of quaternions.

Force element Element or device which produces external forces and torques on Multibody system com-
ponents.

Formalisms, dynamical Methods for the generation and implementation of equations of motion of multi-
body systems. A comparison of various formalisms can be found in [115].

Formalism, modeling A formalism imposes certain syntactic rules, in a way similar to a type. Describes
all legal models within the formalism.

Frame A coordinate system (orientation) given by 3 base vectors xe = {xe1, xe2, xe3} attached to a point
location Ox. More precisely the tuple {Ox, x

e}. Used symbol throughout this work is Fx.

Framework A certain type of object-oriented software reuse technique.

(i) The structure of a framework is described in [69] as:
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A framework is a reusable design of all or part of a system that is represented by a
set of abstract classes and the way their instances interact.

(ii) Its purpose is defined there [69] by:

A framework is the skeleton of an application that can be customized by an applica-
tion developer.

Free-floating base A robot with a free floating base is one whose base member is free to move so that its
acceleration depends on the motion of the rest of the robot [40].

Gyrostat A mechanical system which behaves exactly like a rigid body except for an internal angular
momentum, for instance stemming from a rotating axial-symmetric mass [149].

Hinge The totality of interaction forces between one pair of bodies [149].

Inertial frame A non-accelerated frame, sometimes called Newtonian frame.

Interface Is as class without implementation and therefore has operation declarations but no method
bodies and no fields. They are often declared through abstract classes. It defines the responsibility
of a class.

IP Abbrev. for Interaction Port, introduced in Section 2.2.

Jacobian In robotics the mapping from joint rates to the spatial motion of an endeffector [134].

Joint see kinematic pair.

Mass matrix Matrix containing all parts proportional to q̈ in state-space formulation of equations of
motion of a Multibody system. Used symbol isM.

Matrix An array of numbers. This work adopts the convention of column-matrices for one-dimensional
matrices.

MBS Abbrev. for multibody system.

ME Abbrev. for MBS entity or multibody entity.

Message One member in the set of a protocol.

Modeling Act of abstraction of a real-world system to capture relevant features of this system in a certain
context.

Multibody entity A term introduced in Section 2.2.1 to denote the concept of a component of a robotic
multibody system.

Multibody system A collection of material bodies interacting through joints and force elements.

OO Abbrev. for object oriented.

OOP Abbrev. for object oriented programming.
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Ontology An ontology is an explicit specification of some topic. For our purposes, it is a formal and
declarative representation which includes the vocabulary (or names) for referring to the terms in
that subject area and the logical statements that describe what the terms are, how they are related to
each other, and how they can or cannot be related to each other. Ontologies therefore provide a vo-
cabulary for representing and communicating knowledge about some topic and a set of relationships
that hold among the terms in that vocabulary.

Operational semantics A set of rules specifying how the state of an actual or hypothetical computer
changes while executing a program. The overall state is typically divided into a number of com-
ponents, e.g. stack, heap, registers etc. Each rule specifies certain preconditions on the contents of
some components and their new contents after the application of the rule.

Operational space A term coined by Khatib [78, 79] to emphasize the view on robotic motion in six
dimensional space of rigid body motions SE(3) rather than in joint (state) space, i. e., the movement
of a certain frame, e. g., the tool of a serial link robot in operational space.

OS Abbrev. for operational space.

Pair, kinematic A joint constraining the relative motion of two bodies.

Lower pair Joints with surface contact, one member of set of joints {revolute, prismatic, screw or
helical, cylindrical, spherical, planar}

Higher pair Joints with line or point contact.

Path Take any two bodies of a MBS. Proceed from one body to the other along a sequence of bodies and
hinges in such a way that no hinge is passed more than once. The set of hinges defined this way is
called path [149].

Pattern A software pattern is a certain type of a object-oriented software reuse technique and could be
defined as

a proven, non-obvious, and constructive solution to a common problem in a well-defined
context, taking into account interactions and trade-offs ("forces") that each tend to drive
the solution into different directions. A Pattern describes the interaction between a group
of components, hence it is a higher-level abstraction than classes or objects [44].

A pattern describes a problem to be solved, a solution and the context in which that solution works.
It names a technique and describes its costs and benefits.
Patterns are less specialized than frameworks [69]; frameworks have a particular application do-
main, while patterns should be more generally applicable.

Persistence A property of a programming language where created objects and variables continue to exist
and retain their values between runs of the program.

Point-to-point motion A motion pattern where a robot manipulator starts from rest, moves along a pre-
scribed trajectory and stops completely.

Principle A statement on the nature of constraint actions in the case of constrained motion of a multibody
system, because the laws of Newton an Euler are not sufficient to describe constrained motion of a
rigid body. The main principles are
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D’Alembert’s, where the virtual actions vanish,

Jourdain’s, where the virtual power vanishes,

Gauß’s, obeying the least constraint.

Projection operator Idempotent operators, i. e. those satisfying the condition P̂ 2 = P̂ .

Protocol An abstract specification of desired behaviour in the conveying signals (messages) from one
port to another [127].

PSOA Abbrev. for Port-Based Spatial Operator Algebra, introduced in Section 2.3.

Quaternion The set of quaternions
Q := q0 + q1i + q2j + q3k

is a 4-dimensional vector space over R and forms a group w. r. t. the quaternion multiplication "·"

Q · P = (q0p0 − ~q · ~p, q0~p+ p0~q + ~q × ~p)

The i, j,k obey the commutation relations, q0 is called the scalar component and the 3-vector ~q :=
(q1, q2, q3) is called the vector component. Given a rotation matrix R := eω̃θ (ω unit vector ∈ R3

and θ ∈ R) we can define an associated unit quaternion

Q := (cos(
θ

2
), ω sin

θ

2
)

whose multiplication directly corresponds to multiplication on SO(3). The inverse is given by

θ = 2 cos−1 q0 ω =

{ ~q
sin(θ/2)

θ 6= 0

0 otherwise

[98]

RCS abbrev. for Robot Control System, denoting the complete hard- and software controlling the robot
hardware.

Real-time system A system where timeliness is a common and dominant feature. Crucial are strict
timing and synchronization requirements Hatley and Pirbhai [51].

Recursive algorithm In the field of Multibody systems a sloppy expression for iterative algorithm, ex-
ploiting the sparse structure of multi-body equations for very efficient solution.

Reference node One vertex in a MBS graph representation which is (declared) special. In a directed
tree structured system it is the root vertex, or for looped systems it acts as a more or less arbitrary
starting point.

Reference frame The frame acting as a reference for kinematical and/or dynamical values. It is not
necessarily an inertial frame.

Relationship An association between two entities[26].

Relationship set A relationship set Ri is a mathematical relation among n entities,each taken from an
entity set{[e1, . . . , en] |ei ∈ Ei} and each tuple [e1, . . . , en] is a relationship [26].

RNE Abbrev. for Recursive Newton-Euler algorithm.
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Role The role of an entity in a relationship is the function that it performs in the relationship [26].

Rotation matrix A matrix representation of an element of the group SO(3).

Screw motion A rigid body motion which consists if a rotation around an axis l in 3D space by an angle
θ followed by a translation along that axis by an amount d . Definitions:

A screw motion corresponds to motion along a constant twist by an amount equal to the
magnitude of the screw [98]

Axis l := {q + λω λ ∈ R}, q ∈ R3, ω ∈ R3, ‖ω‖ = 1

Pitch h := d
θ
, if θ 6= 0

Magnitude M :=

Associated twist ξ = (−ω × q + hω, ω), (θ 6= 0 )

Semantics Meaning of a string in some language, as opposed to syntax which describes how symbols
may be combined independent of their meaning. The two main kinds are denotational semantics
and operational semantics.

SOA Abbrev. for Spatial Operator Algebra .

Software engineering A systematic approach to the analysis, design, implementation and maintenance
of software. It often involves the use of CASE tools. There are various models of the software
life-cycle, and many methodologies for the different phases.

Spatial Operator Algebra A framework developed by [117] to express recursive multibody algorithms
symbolically in closed form by means of so-called spatial operators which reflect certain physically
properties of the multibody system.

Structured methods Methods consisting of modeling tools and techniques that illuminate certain aspects
of the desired system during the specification process [51].

Sweep A single recursion along a kinematic chain or tree structure in either direction.

Syntax The structure of strings in some language. A language’s syntax is described by a grammar.

System A systematic grouping of components put together to behave as a whole [51].

Twist Elements of generator group se(3).[98] Every rigid transformation can be written as exponential
of some twist ξ̂θ ∈ se(3), i. e. there exists a (surjective) mapping from se(3) to SE(3). Screw
coordinates of a twist with twist coordinates ξ = (v ω) ∈ R6:

Pitch h = ωT v
‖v‖2 , if ω = 0 then ξ ≡ ∞

Axis l =

{ ω×v
‖ω‖2 + λω : λ ∈ R ω 6= 0

0 + λv : λ ∈ R ω = 0

Magnitude M =

{
‖ω‖ ω 6= 0
‖v‖ ω = 0

Vector A Cartesian tensor of first rank.

Wrench Element of the generator group se∗(3).

XML Abbrev. for Extensible Markup Language, see http://www.w3.org/XML/.
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Useful identities

Rotation parametrization
Rotation about an arbitrary axis 1u = 2u by an angle θ results in a direction cosine matrix [115]

1R
2
= uuT + cos θ(I3×3 − uuT) + sin θũ (B.1)

which is strongly related to Rodriguez formula1)

eω̃θ = I3×3 + ω̃ sin θ + ω̃2 (1− cos θ) ‖ω‖ = 1, θ ∈ R (B.2)

Tilde identities
This section presents some definitions and useful identities concerning the tilde operator for column vec-
tors ∈ R3 and ∈ R6. The tilde operator for p ∈ R3 is defined as

p̃ :=




0 −pz py
pz 0 −px
−py px 0


 . (B.3)

For three dimensional column vectors p, q ∈ R3 one can show

p̃p = 03 (B.4)

p̃T = −p̃ (B.5)

p̃q = −q̃p (B.6)

(i)

(̃a+ b)q = ãq + b̃q (B.7)

(̃p̃q) = p̃q̃ − q̃p̃ (B.8)

p̃q̃ = qpT − pTqI3×3 (B.9)

1)for a nice derivation see [98].
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The spatial cross product is defined by

X × Y :=

(
a
b

)
×

(
c
d

)
=

(
ãc

b̃c+ ãd

)
=: X̃Y where X̃ :=

(
ã 03×3

b̃ ã

)
(B.10)

Please note X̃ is not skew-symmetric as its 3 dimensional brother, except for the case b ≡ 03. For vectors
in spatial notation the following identities can be shown [49]:

X̃X = 06 (B.11)

X̃Y = −Ỹ X (B.12)

˜(A +B) = Ã+ B̃ (B.13)
(̃
X̃Y

)
= X̃Ỹ − Ỹ X̃ (B.14)

X̃X̃X̃ = X̃

(
−aTaI3×3 03×3

−2bTaI3×3 −a
TaI3×3

)
(B.15)

The spatial co-cross product operator is defined by

X̃⊗ :=

(
c̃ d̃

d̃ 03×3

)
(B.16)

where X :=

(
c
d

)
∈ R6. The following important identity relates the spatial cross product to the

co-cross product
X̃

⊗
Y = Ỹ

T
X
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